

RESEARCH ARTICLE

Journal of Pharmaceutical Research

An accurate and precise method was developed and validated for the simultaneous estimation of the

Dolutegravir and Rilpivirine in Tablet dosage form. Chromatogram was run using Agilent C_{18} column (4.6x150mm, 5 μ m) with mobile phase containing KH₂PO₄ buffer of pH 3.5 and Acetonitrile in the ratio

of 45:55 v/v was pumped through column at a flow rate of 1 mL/min. Temperature was maintained at 30° C.

Selected wavelength was 240.0 nm. Retention time of Dolutegravir and Rilpivirine was found to be 2.239

min and 2.899 min respectively. %RSD of the Dolutegravir and Rilpivirine for system precision was found to be 0.9 and 0.6 respectively. Accuracy was performed in triplicate and the % Recovery was obtained as

99.33% and 100.5% for Dolutegravir and Rilpivirine respectively. LOD, LOQ values for Dolutegravir was

0.2 µg/mL, 0.6 µg/mL and for Rilpivirine was 0.02, 0.06 µg/mL respectively. So, the method developed was

simple, accurate and reproducible can be adopted in regular Quality control test in pharmaceutical Industry.

Keywords: Dolutegravir; Rilpivirine; RPHPLC; Method development and Validation

Development and Validation of RP-HPLC Method for the Estimation of Dolutegravir and Rilpivirine in Bulk and its Tablet Dosage form

P Pravalika^{1,*}, G Tulja Rani¹, P Teja Sree¹, Y Saritha¹

¹*Malla Reddy Pharmacy College, Maisammaguda, Secunderabad, 500100, Telangana, India*

ARTICLE INFO

ABSTRACT

Article history: Received 06.04.2021 Revised 12.08.2021 Accepted 04.09.2021 Published 25.11.2021

* *Corresponding author*. P Pravalika pravalika.jntu@gmail.com

https://doi.org/ 10.54839/v20i3.ms21040C

INTRODUCTION

Dolutegravir¹ is chemically (4R,12aS)-9-{[(2,4difluorophenyl)methyl]carbamoyl}-4-methyl-6,8-dioxo-3,4,6,8,12,12a-hexahydro-2H-pyrido[1,2':4,5]pyrazino[2,1b][1,3]oxazin-7-olate) and the selected drugs inhibit HIV integrase by binding to the active site and blocks the retroviral DNA integration. Rilpivirine² is a nonnucleoside reverse transcriptase inhibitor used especially for treating HIV-1 infections in treatment-naive patients. It is a derivative of diarylpyrimidine, a class of molecules that resemble pyrimidine nucleotides found in DNA. Chemically rilpivirine is 4-[[4-[(E)-2-cyanoethenyl]-2,6-dimethyl-anilino]pyrimidin-2-yl]amino]benzonitrile).³ The structures of the two drugs are shown in Figures 1 and 2. These drugs are used in combination for the treatment of HIV-1 infections in treatment of native patients.

There are several methods available for estimation of dolutegravir individually by UV⁴, HPTLC⁵ and UPLC⁶method. Rilpivirine was estimated by UV⁷method. But there are also methods reported for simultaneous estimation of dolutegravir and rilpivirine by UV⁸, HPLC^{9,10} and UPLC¹¹ method in a combination formulation. The aim of the present work is to develop and validate RP-HPLC method which will be specific, precise, accurate, robust and sensitive for simultaneous determination of dolutegravir and rilpivirine in bulk drug and formulations.

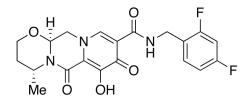
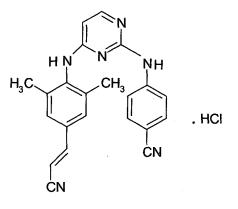



Fig. 1: Structure of Dolutegravir

Dolutegravir and Rilpivirine pure drugs were obtained from BMR chemical private limited, Combination dolutegravir and rilpivirine tablets (Juluca), containing dolutegravir 50mg and rilpivirine 25mg were obtained from local pharmacy. Water, methanol and acetonitrile were of HPLC grade. Potassium dihydrogen orthophosphate and ortho phosphoric acid were procured from Rankem Chemicals. All

Rilpivirine hydrochloride (I)

Fig. 2: Structure of Rilpivirine

the dilutions were done in standard volumetric flask.

MATERIALS AND METHODS

HPLC Waters 2695 separation mode with T-60 UV-Visible spectrophotometer and a Rheodyne injector valve fitted with 10μ L sample loop was used. Chromatographic separation was performed on Agilent C₁₈ column (4.6 x150mm, 5 μ m). The column effluent was monitored with PDA detector set at 240nm and column temperature at 30°C.

Chemicals and Reagents

Preparation of Buffer

Accurately weighed 1.36 gm of potassium dihydrogen ortho phosphate in a 1000 mL of Volumetric flask add about 900 mL of milli-Q water added and degas to sonicate and finally make up the volume with water then added 1 mL of triethylamine then PH adjusted to 3.5 with dil. orthophosphoric acid solution

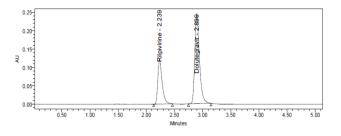
Preparation of standard solution

Accurately weighed 25mg of Dolutegravir and 12.5mg of Rilpivirine were transferred to 50mL flasks separately and 3/4th of diluents was added to the flask and sonicated for 10min. Volume was made up to the mark with diluent and labelled as standard stock solution (500μ g/mL of dolutegravir and 250μ g/mL of rilpivirine).

Preparation of working standard solutions (100% solution)

1mL from each stock solution was pipetted out and taken into a 10mL volumetric flask and volume was made up to the mark with diluent (50μ g/mL of dolutegravir and 25μ g/mL of rilpivirine).

Preparation of Sample solution


20 tablets were weighed and the average weight of each tablet was calculated, then the weight equivalent to 1 tablet was transferred in to a 100mL volumetric flask, 5mL of diluents was added and sonicated for 25 min, further the volume was made up to the mark using diluent and filtered using HPLC filter of 0.45μ m pore size.

Preparation of Sample working solutions (100% solution)

1 mL from the above stock solution was pipetted out and was transferred into a 10 mL volumetric flask and made up to the mark using diluent to give 50μ g/mL of Dolutegravir and 25μ g/mL of Rilpivirine respectively.

METHOD OPTIMIZATION

The separation was performed on Kromasil C8 column (4.6 x 150 mm, 5 μ m) using 0.1% OPA and acetonitrile in the ratio of 50:50 v/v as mobile phase, both peaks were eluted but peak splitting was observed. Then the mobile phase composition was varied using 0.1% OPA: Methanol in the ratio of 50:50 v/v using column of Agilent C₁₈ column (4.6 x 150 mm, 5 μ m) gave one retention peak due to rilpivirine. Then KH₂PO₄ buffer of pH 3.5 and Acetonitrile in the ratio of 45:55 v/v was selected as mobile phase and injected at a flow rate of 1mL/min. The column temperature was maintained at 30°C and the detection wavelength was 240 nm. The retention times were about 2.239 min and 2.899 min for rilpivirine and dolutegravir respectively and optimised chromatogram was shown in Figure 3.

Fig. 3: Chromatogram of Dolutegravir and Rilpivirine for standard solution

RESULTS

METHOD VALIDATION PARAMETERS

The method was validated for parameters like stability, linearity, specificity, accuracy, precision, limit of detection (LOD) and limit of quantitation (LOQ).

System suitability parameters

The system suitability parameters were determined by preparing standard solutions of dolutegravir ($50\mu g/mL$) and

		Tuble II by stelli sui	aonity pur		Sidlegiavii alla idipiv	mme	
S.		Dolutegravir			Rilpivirine		
No	RT (min)	USP Plate Count	Tailing	RT (min)	USP Plate Count	Tailing	Resolution
1	2.217	5009	1.32	2.210	3745	1.42	4.2
2	2.740	4528	1.34	2.124	3154	142	4.1
3	2.894	5763	1.34	2.201	4233	1.44	4.1
4	2.899	5321	1.34	2.239	3916	1.42	4.6
5	2.937	5864	1.32	2.271	4409	1.43	4.4
6	2.987	5901	1.34	2.306	4440	1.43	4.5

Table 1: System suitability parameters of Dolutegravir and Rilpivirine

rilpivirine $(25\mu g/mL)$ and the solutions were injected six times and the parameters like peak tailing, resolution and plate count were determined. The results were depicted in Table 1.

Specificity

Specificity of the method was determined by injecting blank and placebo to check whether peaks in the blank and placebo are eluting with drugs peaks and the chromatogram was shown in Fig.4 and 5.

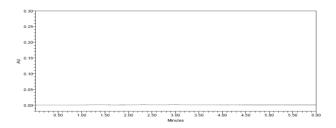
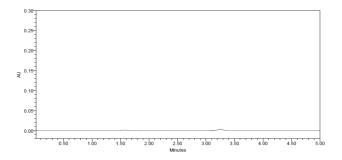
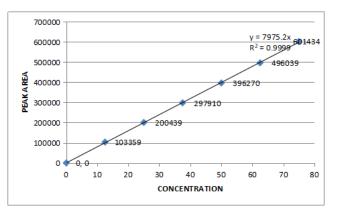
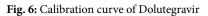



Fig. 4: Chromatogram of blank




Linearity

The linearity of dolutegravir and rilpivirine was in the concentration range of 12.5 -75 μ g/mL and 6.25-37.5 μ g/mL respectively with correlation coefficient (r²) of 0.9999 and 0.9997 for dolutegravir and rilpivirine respectively. The results are given in Table 2 and calibration curves are shown Figures 6 and 7.

 Table 2: Linearity data for Dolutegravir and Rilpivirine

Dolutegr	avir	Rilpivir	ine
Conc (μ g/mL)	Peak area	Conc (µg/mL)	Peak area
0	0	0	0
12.5	103359	6.25	102055
25	200439	12.5	216049
37.5	297910	18.5	305830
50	396270	25	415891
62.5	496039	31.5	525961
75	601434	37.5	622606

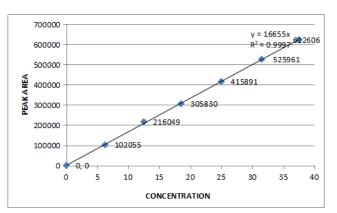


Fig. 7: Calibration curve of Rilpivirine

Accuracy

The accuracy of an analytical method is the closeness of the test results obtained by that method to the true value. It is done by measuring the amount of pure drug recovered at three different concentrations (50%, 100% and 150%) in triplicate. The results are given in Tables 3 and 4.

	Table 3:	Accuracy d	ata of Dolute	egravir	
% Level	Amount	Amount	Amount	% Recov	/-Mean
	taken	Spiked	recov-	ery	%
		(µg/ mL)	ered		Recov-
			(µg/ mL)		ery
		25	74.7	99.6	
50%	(50 µg/m	125	74.4	99.2	99.46
	(50 µg/11	25	74.7	99.6	
		50	99.2	99.2	
100%	(50 µg/m	1 ⁵⁰	99.4	99.4	99.26
	(50 µg/m	50	99.2	99.2	
		75	124.83	99.86	
150%	(50 µg/m	₁ 75	124.81	99.84	99.85
	(<i>30 µg</i> /III	75	124.81	99.86	

 Table 4: Accuracy data of Rilpivirine

% Level	Amount	Amount Spiked	Amount	% Recover	Mean % yRecovery
	taken (µg/mL)	$(\mu g/mL)$	recovered		
	(1.9,)		$(\mu g/mL)$		
	(25	12.5	24.8	99.2	
50%	μg/mL)	12.5	25	100	99.73
		12.5	25	100	
100%	(25	25	49.6	99.2	
100%	μ g/mL)	25	49.6	99.2	99.2
		25	49.6	99.2	
1500/	(25	37.5	62	99.2	
150%	μ g/mL)	37.5	62	99.2	99.25
		37.5	62.1	99.36	

Precision

The precision of an analytical procedure is usually expressed as relative standard deviation (coefficient of variation) of a series of measurements.

System precision

It was performed by injecting a standard solution of Dolutegravir and Rilpivirine at working concentration of 100% six times that is 50μ g/mL of Dolutegravir and 25μ g/mL of Rilpivirine). The % RSD was calculated for peak

area and R_t and results are given in Table 5.

Table 5: Precision data of Dolutegravir and Rilpivirine
--

S. No	Area of Dolutegravir	Area of Rilpivirine
1.	1327652	616251
2.	1337270	613005
3.	1329689	615445
4.	1329926	617843
5.	1357152	615461
6.	1321429	623139
Mean	1333853	616857
S.D ±(n=6)	12490.7	3452.1
%RSD	0.9	0.6

LOD and LOQ

For determining the limit of detection (LOD) and limit of quantitation (LOQ), the method based on the standard deviation and slope was adopted.

The limit of detection for dolutegravir and rilpivirine was 0.2μ g/mL and 0.6μ g/mL respectively and limit of quantitation (LOQ) was 0.02μ g/mL, 0.06μ g/mL for dolutegravir and rilpivirine respectively as shown in Table 6.

Table 6: Sensitivity data of Dolutegravir and Rilpivirine

Molecule	LOD	LOQ
Dolutegravir	$0.2 \mu g/mL$	0.6µg/mL
Rilpivirine	$0.02 \mu g/mL$	0.06µg/mL

Robustness

Small deliberate changes in method like flow rate, mobile phase ratio, and temperature were made. Robustness conditions like flow rate of +0.1mL/min, mobile phase ratio of +5v/v, temperature $+5^{\circ}$ C was maintained and samples were injected in triplicate manner. There was no recognized change in the peak area and were within range as per ICH Guide lines as shown in Table 7.

Assay of marketed formulation of Dolutegravir and Rilpivirine

The validated RP-HPLC method was successfully applied for the assay of dolutegravir and rilpivirine in marketed formulations. The chromatogram for sample was shown in Figure 8. Assay results were represented in Tables 8 and 9.

DISCUSSION

A new HPLC method was developed for estimation of dolutegravir and rilpivirine by trial and error method i.e., by using Kromasil C8 column, peak splitting was observed. Then the mobile phase composition was changed to 0.1%

Sl.no	Conditions	% RSD of	% RSDof
		Dolutegravir	Rilpivirine
1	Flow rate (-) 0.9 mL/min	1.3	0.6
2	Flow rate (+) 1.1 mL/min	1.2	0.9
3	Mobile phase (-) 55 B:45 A	1.0	0.7
4	Mobile phase (+) 60 B:40 A	1.2	0.8
5	Temperature (-) 25°C	1.1	0.7
6	Temperature (+) 35°C	1.3	1.1

Sl.no	Standard Area	Sample area	% Assay
1	1327652	1328520	99.50
2	1337270	1328860	99.53
3	1329689	1346299	100.83
4	1329926	1335282	100.01
5	1357152	1327674	99.44
6	1321429	1339273	100.31
Avg	1333853	1334318	99.93
Sl.no	Table 9: Assay DStandard Area	Data of Rilpivirin Sample area	e % Assay
	616251	619629	100.35
1	616251	019029	100.55
1 2	613005	621117	100.55
-	010201		
2	613005	621117	100.59
2 3	613005 615445	621117 614870	100.59 99.58
2 3 4	613005 615445 617843	621117 614870 621588	100.59 99.58 100.67

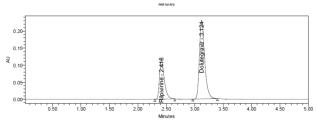


Fig. 8: Sample chromatogram of Dolutegravir and Rilpivirine OPA: Methanol in the ratio of 50:50 v/v using column of Agilent C_{18} column (4.6 x 150 mm, 5 μ m) gave one

retention peak due to rilpivirine. Then by keeping the column constant, different mobile phase was used to give satisfactory separation, well resolved and good symmetrical peaks which was obtained with the mobile phase of KH_2PO_4 buffer of pH 3.5: Acetonitrile in the ratio of 45:55 v/v. UV overlain spectra of Dolutegravir and Rilpivirine shows that both the drugs absorb appreciably at 240 nm, So 240 nm was selected as the detection wavelength in liquid chromatography. Optimization of mobile phase was done based on considering factors like resolution, asymmetric factor and peak area.

Different mobile phases were tried but satisfactory separation, well resolved and good symmetrical peaks were obtained with the mobile phase (potassium dihydrogen phosphate: acetonitrile) in the ratio of 45:55 v/v. The retention time of dolutegravir was found to be 2.239 min and that of rilpivirine was found to be 2.899 min, respectively. Resolution between dolutegravir and rilpivirine was found to be 4.583 which indicate good separation of both the compounds. The asymmetric factor for dolutegravir and rilpivirine was found to be 1.420 and 1.350 respectively. The calibration curve for dolutegravir and rilpivirine was obtained by plotting the respective peak areas versus their concentration over the range of 12.5-75 μ g/mL and 6.25-37.5 μ g/mL with correlation coefficient (r²) of 0.9999 and 0.9997 for dolutegravir and rilpivirine respectively which indicates good correlation exist between concentration and response. Detection of limit for dolutegravir and rilpivirine was 0.2 and 0.02 μ g/mL and quantitation limit was 0.6 μ g/mL and 0.06 μ g/mL respectively; which suggest that the method is sensitive. The % recovery of dolutegravir and rilpivirine was found to be in the range of 99.26-99.85 and 99.2-99.73% respectively, which shows that the developed method is accurate. The % RSD was found to be less than 2, which shows that the method was precise. The proposed RP-HPLC method was applied for the determination of dolutegravir and rilpivirine in tablet formulations and the assay values for dolutegravir and rilpivirine were comparable with the corresponding labelled amount.

Therefore the developed RP-HPLC method was suitable for quantification of the raw materials and formulation in combined dosage form.

ACKNOWLEDGEMENTS

We are very thankful to the Management of Malla Reddy Pharmacy College for the support during the execution of work and also for providing the facilities and equipment i.e. HPLC (High Performance Liquid Chromatography).

REFERENCES

- Min S, Sloan L, DeJesus E, Hawkins T, McCurdy L, Song I, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. *AIDS*. 2011;25(14):1737–1745. Available from: https://dx.doi.org/10.1097/ qad.0b013e32834a1dd9.
- Garvey L, Winston A. Rilpivirine: a novel non-nucleoside reverse transcriptase inhibitor. *Expert Opinion on Investigational Drugs*. 2009;18(7):1035–1041. Available from: https://dx.doi.org/10.1517/ 13543780903055056.
- 3. Clercq ED. An Odyssey in antiviral drug development—50 years at the Rega Institute: 1964–2014. *Acta Pharmaceutica Sinica B*. 2015;5(6):520–543. Available from: https://dx.doi.org/10.1016/j.apsb. 2015.09.001.
- Girija BB, Balasaheb AK, Subhash TR, Jijabapu K, Sudhakar PS. Development and Validation of UV Spectrophotometric Method for Estimation of Dolutegravir Sodium in Tablet Dosage Form. *Malaysian Journal of Analytical Sciences*. 2015;19(6):1156–1163.
- Bhavar GB. High-Performance Liquid Chromatographic and High-Performance Thin-Layer Chromatographic Method for Quantitative Estimation of Dolutegravir Sodium in Bulk Drug and Pharmaceutical Dosage Form. *Scientia Pharmaceutica*. 2016;84(2):305–320. Available from: https://dx.doi.org/10.3797/scipharm.1507-09.
- Wang X, Penchala SD, Amara A, Else L, McClure M, Boffito M. A Validated Method for Quantification of Dolutegravir Using Ultra

Pravalika et al.

Performance Liquid Chromatography Coupled With UV Detection. *Therapeutic Drug Monitoring*. 2016;38(3):327–331. Available from: https://dx.doi.org/10.1097/ftd.00000000000286.

- Sk M, Gottumukkala A. Development and Validation of UV Spectrophotometric Methods for Estimation of Rilpivirine in Bulk and Pharmaceutical Formulation. *International Journal of Pharmaceutical Sciences and Research*. 2014;5(2):483–489.
- Cozzi V, Charbe N, Baldelli S, Castoldi S, Atzori C, Cattaneo D, et al. Development and Validation of a Chromatographic Ultraviolet Method for the Simultaneous Quantification of Dolutegravir and Rilpivirine in Human Plasma. *Therapeutic Drug Monitoring*. 2016;38(3):407–413. Available from: https://dx.doi.org/10.1097/ftd. 00000000000290.
- Joseph J, Hepsebah NJR, Deepthi K. Analytical Method Development and Validation for the Simultaneous Estimation of Dolutegravir and Rilpivirine using RP-HPLC Method in Both Bulk and Pharmaceutical Dosage Form. European Journal of Biomedical and Pharmaceutical Sciences. 2016;3(07):237–243.
- Devi DV, Swarnalatha D, Subbareddy GV. Optimisation of RP-HPLC Method for Simultaneous Estimation of Dolutegravir and Rilpivirine in Binary Mixture by Using Design of Experiments. J Global Trends Pharm Sci. 2019;10(2):6298–6310.
- Khaleel N, Rahaman SA. Stability Indicating RP-UPLC Methods for the Simultaneous Determination of Dolutegravir and Rilpivirine in Bulk and Pharmaceutical Dosage Form. *Indian Drugs*. 2019;56(10):42– 49.

