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Abstract
Objectives: To compute the polarizability and diamagnetic 
susceptibility values of a shallow donor in the valley – orbit split 
A1, T2, and E states of a many valley semiconductor. Methods/
findings: We demonstrate the enhanced values of the above 
quantities in the excited states, which clearly indicate a catastrophic 
behavior when Metal-Insulator Transition is approached. In 
intense magnetic fields, the polarizability values decrease as the 
system behaves like a harmonic oscillator. In an electric field, the 
magnitude of the diamagnetic susceptibility values increases.
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1. � Introduction
Though the electronic states of a shallow donor in a many valley semiconductor has been 
investigated over the last six decades, certain properties like the diamagnetic susceptibility 
and the polarizability in the excited E and T2 states among the valley-orbit split states in a 
semiconductor such as Si have not been explored [1–4]. Experimentally, these properties 
have been investigated to have a better knowledge of the Metal-Insulator Transition (MIT). 
The values of the above quantities diverge as MIT is approached [5–11]. The reason for 
the non-consideration of these values in the excited valley – orbit split states are (1) the 
absence of a proper many valley effective mass theory [12–13] and (2) the shift of interest 
to low-dimensional semiconductor systems in the last three decades [14–22].

The studies on MIT in doped semiconducting systems are on the increase at 
present especially after the observation of MIT in a two-dimensional electron gas in 
semiconducting systems [23–27]. Also, it has been clearly established at present that MIT 
is a precursor to superconductivity [11,26–28]. In the present work, we evaluate the donor 
polarizabilities in all the valley-orbit split states in Si as a function of magnetic field. Also, 
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we evaluate diamagnetic susceptibility values as a function of electric field. These results 
clearly demonstrate a tendency towards divergence as the electron is taken from the A1 
ground state to the excited states.

The organization of this manuscript is as follows. In section 2, we present the theoretical 
background. Results and discussions are provided in section 3. We summarize the 
important conclusions of the present work in section 4. 

2. � Theory 
Since the site symmetry of a substitutional donor in Si, is Td, the donor bound states should 
be designated according to the different irreducible representations of the Td group [29]. 
Hence the 1s ground state of the hydrogenic atom should be split into A1, E, and T2 states 
[1]. These are referred to as valley – orbit states. Considerable attention has been paid in 
the past to provide a many valley theory for a donor in a many valley semiconductor. At 
present no such theory free from criticism exists [12–13]. We follow here a one valley 
theory choosing the eigen functions transforming as A1, T2, and E representations.

The Hamiltonian for a donor electron in the effective mass approximation is given by 
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where m* is the effective mass pertinent to the conduction band minimum and k is the 
static dielectric constant. We choose the following functions for the valley – orbit split 
states.
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Since these are the basic functions of the different irreducible representations, they are 
orthogonal. The values of a1, a2, & a3 are taken from a many valley calculation of donor 
binding energies [30]. These values are given in Table 1.

TABLE 1.  Donor binding energies and wave function parameters of Eq. (2) for the 
valley-orbit split 1s-like states

State Ea (meV) Values of ai (Å)

A1 45.47 25.7
T2 33.74 36.7
E 32.51 133.5

aThese values are for P donor in Si; ai (i = 1, 2 &3).
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Two of the important properties of a doped semiconductor which require the wave 
functions are (1) the donor polarizability and (2) the diamagnetic susceptibility. The 
methods of calculation of these quantities are given below.

2.1. � Donor Polarizability
For a hydrogenic donor, in a spherically symmetric state, the exact value of polarizability 
is given by

	 α = 4.5 a*3	 (3)

where a* is the orbit size of the donor electron given by 
2

2*
*
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Here we are interested in estimating the polarizability values as a function of magnetic 
field. In the presence of an externally applied strong field the Hamiltonian becomes [31].
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, we choose the following wave function for 

computing the energies of the ground state (A1 state)
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Treating a and b as variational, parameters, the values of the energies obtained together 
with the variational parameters are provided in Table 2. The value of the magnetic field 
corresponding γ-1 is 154.22T in Si. The trial function given in Eq. (5) corresponds to the 
strong field case and is not the hydrogenic ground state function. The above function has 

TABLE 2.  The ionization energy and variational parameters for a donor in a magnetic 
field

γ a b R Eion (Rya)

0.2 0.4050 0.4147 0.3710 1.0314
0.5 0.6083 0.6325 0.5599 1.2502
0.8 0.7000 0.7616 0.6542 1.4242
1 0.7280 0.8246 0.6890 1.5238
5 0.9000 1.3340 0.9320 2.6150
10 0.9382 1.6278 1.0240 3.3320
25 0.9849 2.0976 1.1570 4.5700

aR is the radius of a spherical charge distribution obtained by R = (3/4a2b)1/3.
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been specifically chosen to take into account the spheroidal symmetry introduced in the 
charge distribution in a strong field [27,32]. 

An interesting observation from Table 2 is that as γ increases the orbit sizes a and b also 
increase. It is tempting to assume that as the magnetic field increases the orbit sizes in the 
direction of magnetic field increases while that in the xy-plane decreases due to strong 
localization Table 2 reveals a different trend. This can be explained as below. In a strong 
field, the coulomb energy is only a small perturbation and the electron behaves almost like 
a free particle. As the intensity of the magnetic field increases the freedom for the donor 
electron from coulomb potential enhances. Hence, in the computation of polarizability 
for various magnetic fields one should not use the hydrogenic formula; instead treat the 
system as a harmonic oscillator and use the corresponding expression for polarizabilities. 
A simple text book exercise [31] for the polarizability of a harmonic oscillator leads to 

2

2

e
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α = . In the above expression eB
m c

ω ∗= , the cyclotron frequency, where m* is the 

effective mass of electron. Hence the polarizability of a harmonic oscillator in a Magnetic 
field becomes.
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The computed values of polarizability for different values of B are given in Figures 1 
and 2. 

2.2. � Diamagnetic Susceptibility
The diamagnetic susceptibility of a hydrogenic donor is given by the Langevin formula 
[33]

FIGURE 1.  Donor polarizability versus magnetic field.
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where ρ2 = x2 + y2. For a spherically symmetric state 2ρ  may be replaced by 2
3

2r . In 

this work, we are interested in computing the diamagnetic susceptibility in the different 
valley – orbit split states as a function of electric field.

We choose the following wave functions for the different states. 
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In the expressions obtained for energy coefficients of the E2 term give. The results 
obtained are given in Figures 3 and 4.

3. � Results and Discussion
From Figure 1, we find that the donor polarizability decreases as the magnetic field 
increases. Physically, this corresponds to the situation where the localization is enhanced 
in a magnetic field. The result for γ = 0 does not follow from Figure 1. 

This is because the wave function used in the magnetic field case (Eq. (5)) does not 
reduce to the hydrogenic case when γ approaches zero. On the other hand, if we replace a 
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FIGURE 2.  Polarizability of a shallow donor in Si in A1, T2, and E states.
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spheroidal charge distribution in a magnetic field to an effective spherical charge distribution 
such that a2b = a*3, the magnetic field increase a* values also increase indicating enhanced 
polarizability in a magnetic field which is in contradiction to expectations. In Figure 2, we 
have given this value of α for the three states. The enhancement of polarizability values is 
evident 

Figure 3 gives the variation of χdia with electric field. We find that χdia values increase 
with electric field linearly. As expected the susceptibility values increase for any electric 
field as we go from the ground state of A1 symmetry to the excited states.

FIGURE 3.  Variation of χdia of a shallow donor in Si with applied electric field.

FIGURE 4.   Variation of │χdia│of a shallow donor in Si with energy. The three points cor-
respond to A1, T2, and E states.
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In Figure 4, we have plotted the magnitude of χdia for the three states in two different 
electric fields. Appreciable enhancement of the susceptibility values in the excited states is 
obvious. Experimentally, χdia and α are shown to diverge at MIT [7,34] is approached under 
heavy doping. We have not considered the effect of different donors on the ionization 
energy. Instead, we have demonstrated that as the donor electron is taken to the different 
excited states. The enhancement in χdia and α values occur. Actually, in the presence of 
either an electric field (or) a magnetic field the symmetry of the donor system reduces 
to D3 point group from the original Td. In such a case, the 3-fold degenerate triplet state 
(T3) should be split into A1 and E states. In such a situation, the above results for T3 states 
become unphysical. 

An electric dipole transition from A1 to E state is forbidden. However, a transition is from 
A1 to T2 and T2 to E are allowed. Hence, in any physical process such as photo ionization 
or MIT, the electron may be thought of taken from A1 to T2 and from T2 to E states, 
before entering into other excited states such as 2Po,2P , etc. Hence the demonstration of 
divergences in α and χdia values in the excited states is justified.

4. � Conclusions
The electric field dependent diamagnetic susceptibilities and magnetic field dependent 
electronic polarizabilities of a shallow donor in the different valley-orbit split states of 
Si have below computed. The values of these two physical quantities have been shown 
to enhance appreciably as the donor electron is taken away from the ground state of A1 
symmetry to the excited states T2 and E. These results clearly lend support to the observation 
of divergences at Metal-Insulator transition, widely studied under heavy doping. 
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