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Abstract
Background/objectives: To study the motion equation under all 
perturbations effect for Low Earth Orbit (LEO) satellite. Predicting 
a satellite’s orbit is an important part of mission exploration. 
Methodology: Using 4th order Runge–Kutta’s method this equation 
was integrated numerically. In this study, the accurate perturbed 
value of orbital elements was calculated by using sub-steps number 
m during one revolution, also different step numbers nnn during 
400 revolutions. The predication algorithm was applied and orbital 
elements changing were analyzed. The satellite in LEO influences 
by drag more than other perturbations regardless nnn through 
semi-major axis and eccentricity reducing. Findings and novelty/
improvement: The results demonstrated that when m for Runge–
Kutta’s method is large; the perturbed value for orbital element 
considers more acceptable. Furthermore, as nnn increases the step 
will reduce.

Keywords: 4th Order Runge–Kutta’s Method, Orbital Elements, 
LEO Satellite, Perturbations, Perturbed Equation of Motion.

1.  Introduction
The satellite orbit is determined by using perturbed equation of motion and perturbation 
effect to match the perturbed orbit with Kepler’s orbit. Predicting a satellite’s orbit is an 
important part of mission exploration, it is the beginning point in preparation whether a 
proposed mission is possible or not and how a satellite is taken in the consideration. The 
problem of calculating the orbits of satellites is not straight forward and unsettled due to a 
large number of perturbations affecting the basic of two-body motion [1–2]. The two-body 
motion considers the Earth is a perfectly symmetrical spherical mass that means the only 
force is centripetal force resulting from satellite motion [3–4]. The given orbital elements 
for a single point at initial time, make the estimation of the future position becomes 
relatively straight forward as the mean anomaly moves uniformly with time [5]. The main 
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perturbations affecting the orbit of a satellite are as follows: the non-spherical of Earth, 
atmospheric drag, the gravitational pull of the Sun and Moon besides the solar radiation 
pressure. There are other effects of perturbations, but not take in the consideration in 
this study such as electromagnetic forces and the gravitational pull of near big plants like 
Jupiter. These perturbations depend on the types of satellite orbits. 

For an example, satellites in LEO are intensely affected by the non-spherical of the Earth 
besides atmospheric drag [6–7]. The effect of these perturbations on a body depends on 
its distance from the center of the Earth. That leads to the model on which Kepler’s orbit 
determination are not precise. It should not be supposed that perturbations are always 
small. For an example, disregarding the effect of the oblateness of the Earth on an artificial 
satellite would produce completely failed in the prediction of its state vectors as the time 
passes [1]. 

2.  Methodology
The following steps are required to design a program and to achieve the requirements of 
this study.

2.1.  The State Vectors Calculation

•	 The position vector is a function of time, r = Xi + Yj + Zk, its magnitude is given by: r 

= 2 2 2(X) (Y) (Z)+ +  [8].

•	 The velocity vector is also a function of time, v = vXi + vYj + vZk, its magnitude is given 

by: v= 2 2 2
X Y Z(v ) (v ) (v )  + +  [8].

2.2.  The Orbital Elements Calculation

•	 The semi-major axis (a) is defined as [8]:

	
122 va

r


 

    
	 (1)

where  µ  is the gravitational constant for the Earth.

•	 The eccentricity (e) is represented as [8]:

	 p ar r
  e  

2a
−

= 	 (2)

where pr  is the distance from perigee, ar  is the distance from apogee.

•	 The inclination (i) is stated as follows [8]:
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2 2
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z

h h
tani  

h

+
= 	 (3)

Where h is angular momentum vector can be stated as [3]:

	 h r v   = × 	 (4)

Hence, x  h yz zy= −  , y z h zx xz,  h xy yx= − = −  

Their magnitude is 2 2 2
x y zh h h h= + +  

•	 The Longitude of Ascending Node (LAN) is [8]:

	 x

y

h
tan LAN

h
=
−

	 (5)

•	 The Argument of Perigee (AP) is defined as [3]: 

	 AP u f = − 	 (6)

Where u is the argument of the latitude can be written as [3]:

	
y x

zhtan u
xh yh

=
− +

	 (7)

f is the true anomaly can be represented as follows [7]:

	 f 1 e Etan  tan
2 1 e 2

+
=

−
	 (8)

where E is the Eccentric anomaly can be obtained by solving Kepler’s equation using 
Newton’s–Raphson Method [9]. 

Table 1 explains the orbital elements for Cartosat-2B set at epoch obtained from NORD 
that available on Two Line Elements TLE, these are the orbital elements that used in our 
study.

2.3.  Equation of Motion
The equation of motion with perturbation is named Cowell’s equation, which can be 
defined as [6]:

TABLE 1.  Represents the orbital elements for Cartosat-2B

Orbital elements a (km) e i (deg) LAN (deg) AP (deg) f (deg)

Value at epoch 7011.63222 0.0016257 97.9448 207.1202 44.4835 315.6388
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	 p3

µ
r

= − +r r a 	 (9)

Where ap is the sum of all accelerations vectors, can be represented as: 

	 ap = aDrag + aJ2 + aSRP + a3rd-body	 (10)

where aDrag is the atmospheric drag acceleration vector, aJ2 is the non-spherical acceleration 
vector of the Earth, aSRP is the solar radiation pressure acceleration vector, and a3rd-body is 
the third body gravity acceleration due to the Sun and Moon.

2.4.  The Perturbations Types
The used perturbations in this study can be explained as below:

2.4.1.  Atmospheric Drag
It is a perturbation force caused by impact between the particles in the Earth’s upper 
atmosphere and surface of the satellite, atmospheric drag acceleration vector can be stated 
as [10]:

	 Drag D
1 A 2a C v
2 M r

   	 (11)

where CD is the drag coefficient between 2 and 3, the used value is 2.2, A is the area of the 
satellite the used value is 5.1 m2, M is the mass of satellite the used value is 900 kg,  ñ  is 
the air density at satellite altitude, which depends on the satellite’s altitude, that is obtained 
from NLRMSISE-00, and r v  is the relative speed between satellite and the atmosphere.

2.4.2.  Non-Spherical of the Earth (J2)
The Earth, similar to other planets in the solar system has high rotational rates, bulges 
out at the equator. The Earth’s equatorial radius is 21 km larger than the polar radius. This 
flattening at the poles is called oblateness (non-spherical of the Earth), the perturbing 
acceleration vectors effect on a satellite are given as [8,11–12]:

	
2 2

Earth
J2X, Y 23 2

Rì 31 J 1 5   
r 2r r

   
= − + −   

     

X Xr r
a 	 (12)

	
2 2

Earth
J2Z 23 2

Rì 31 J 3 5   
r 2r r

   
= − + −   

     

Z Zr r
a 	 (13)

Their magnitude is given by: ( ) ( ) ( )2 2 2

J2 J2X J2Y J2Z a a a a= + +
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where 2 J  = 0.001082, the other factors of the Earth oblateness like 3 4 5 6J ,  J ,  J ,  J  have small 
effect on the satellite orbit, (REarth) is the mean radius of the Earth, J2Xa  and J2Ya  are 
symmetric due to the equatorial bulge.

2.4.3.  Solar Radiation Pressure (SRP)
It is a force on the satellite caused by momentum flux from the Sun. The perturbing 
acceleration vector can be stated as [11]:

	 sun Sun
SRP R 3

Sun

P r rAa C
4 c M r





	 (14)

where CR is the radiation pressure coefficient the used value 1.3, PSun is the pressure of the 
Sun equal to 4.5 × 10-6 N/m2, A is the area of the satellite, (M) is the mass of the satellite, r 
is the position vector of the satellite, rsun is the position vector of the Sun, rSun is the Earth–

Sun distance, and c is the speed of light. This perturbation depends on A/M, which is a 

dominate factor because ( 3

Sunr
−Sunr r

) has very small variation through the orbit.

2.4.4.  Third Body Attraction
It refers to any other body in space besides the Earth which could have a gravitational 
influence on the satellite. The equation that describes the perturbing acceleration vector 
due to the Sun can be defined as follows [11]:

	 Sun 3 3

Sun sat. Sun

 µ    
r r−

 − = − −
 
 

Sun Sun
Sun

r r r
a 	 (15)

where µSun is the gravitational constant for the Sun, rSun is the position vector from the Sun, 
r is the position of the satellite, rSun is the Sun distance, and rSun-sat.= rSun -rsat. is the Sun–
satellite distance. There is another equation describes the effect of third body attraction 
due to the Moon can be represented as follows [11]:

	 Moon 3 3

Moon sat. Moon

 µ     
r r−

 − = − −
 
 

Moon Moon
Moon

r r r
a 	 (16)

where µMoon is the gravitational constant for the Moon, rMoon  is the position vector 
from the Moon, r is the position of the satellite, rMoon  is the Moon distance, and  
rMoon-sat.=rMoon-rsat.  is the Moon–satellite distance. The Moon gravitational is more effect 

as comparable to the Sun because ( 3

Moon sat.r −

−Moonr r
) is not always small.
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3.  Numerical Integration Method
Position and velocity vectors are calculated by integrating the perturbed equation of motion 
(Cowell’s equation). To update the state vectors, equation (9) is integrated numerically by 
using 4th order Runge–Kutta’s as [11]:

	 ( )step
X1 Xo 1 2 3 4

h
v v  k 2 k 2 k k

6
= + + + + 	 (17)

where vXo is the initial velocity at epoch, vX1  is the predicated velocity, k1= axo, k2  = 

axo
step

1 3

h
 k ,  k

2
 = axo+ step

2 4

h
  k ,  k

2
 =a xo+ hstep h3,, axo is the acceleration at epoch, 

step
step

t
h i

m
= s the step for the method, P

step

T
t

nnn
= , m is the sub steps number during one 

revolution the used values 10,20,30,40, and 50, TP is the satellite’s orbital period, the used 
value 5317.5 second, and nnn is the step number during 400 revolutions, the used value is 
800,1000,1200,1400,1600, and 1800.

	 ( )step
1 o 1 2 3 4

h
X X  kk 2 kk 2 kk kk

6
= + + + + 	 (18)

where Xo is the initial position at epoch, X1  is the predicated position, kk1= vxo, kk2 = vxo+

step
1 3

h
  kk ,  kk

2
 = vxo+ step

2 4

h
  kk ,  kk

2
 = vxo+hstep kk3. In addition, Equations (17) and (18) 

can be used to calculate the other velocities and positions components by the same way.

4.  Results and Discussion
The input data from Cartosat-2B were used to compare the results, as shown in 
Table 1. Table 2 explains the state vectors results, which shows a good agreement except 
z-component has a big difference. Figures 1–7 represent the behavior of orbital elements 

TABLE 2.  Represents the resulted state vectors for all perturbations

State vectors
Our results Cartosat-2B 

Value at M = 315.769° Value after one period Value at M = 315.769°

X (km) −6234.3849039001 −6235.104328001464 −6231.7560551250
Y (km) −3190.7472894434 −3189.245708400723 −3189.4018492384
Z (km) 14.8132416123476 17.43398632134567 14.8069953230
R (km) 7003.47362579431 7003.465512261280 7000.5204664321
vX (km/s) −0.453647027321500 −0.451110828137282 −0.4537396013
vY (km/s) 0.93989155542660 0.945810508541548 0.9400892912
vZ (km/s) 7.47607565729304 7.476045249616147 7.4776527638
v (km/s) 7.54856914657543 7.548592701106507 7.5500161545
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and orbital period during one revolution and for all perturbations; the period of this 
revolution is about 5317.5 second, each step represents 5.3 second. hstep for Range Kutta’s 
solution equals to 5.3/m, which was used to determine the accurate perturbed value. 

According to Figure 1, the semi-major axis has a periodic variation behavior and one 
peak, as (m) increasing leads to small amplitude, it changes between about (6584.69–
6584.71) km, as compared to other (m) their changing is larger. Eccentricity has a secular 
variation behavior with too slight value, constant, and identical for all (m). In this figure, 
one can note the eccentricity has not noticeable changing in one revolution, because it 
is too small. Inclination and Longitude of Ascending Node have a periodic variation 
behavior, and two peaks, as (m) increasing makes the amplitude become too small that 
considers more appropriate. Argument of Perigee has a secular variation behavior, and 
constant, but not identical, as (m) increasing this value be more suitable as compared 
to the ideal value. The true anomaly, which represents the motion of the satellite with 
respect to the Earth; it grows frequently from (0–360)°. Figure 2 shows the orbital period 
(Tp) variation for the satellite between about (88.6245–88.6264) minute, as (m) increasing 
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FIGURE 1.  Represents the orbital elements variations for a satellite in LEO.
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orbital period is more stable. Table 3 gives the orbital elements at the beginning and the 
end of orbital period; the variations are very small less than 0.00002 km for semi-major 
axis, the difference for eccentricity is not noticeable during one revolution, 0.0000001° for 
inclination and Longitude of Ascending Node, and 0.00000001° for argument of perigee. 

Figures 3–9 show the behavior of orbital elements and orbital period during 400 
revolutions. The semi-major axis in Figure 3 has a secular behavior. It reduces about 6 km 
for nnn = 1800; it’s dropping too slowly as compared to small (nnn). The reducing of the 
orbit continues as the time passes. From Figure 4, one can note the eccentricity has also 
a secular behavior with too slight values, for nnn = 1800 the eccentricity has a stable and 
slight dropping with noticeable changing as compared with one revolution that produces 
a shrinking in the orbit shape. Inclination in Figure 5 has a periodic variation behavior, 
and one peak, in case of nnn = 1800, the amplitude becomes too small. It is changed 
about 0.0012°, while others have a variation more than 0.0012° they are considered as 
unacceptable variation. According to Figure 6, Longitude of Ascending Node has a secular 
variation behavior, the dropping is too slow for nnn = 1800. It changes about 0.005°. The 
Argument of Perigee, which has a secular variation behavior, it grows suddenly from 
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FIGURE 2.  Shows the orbital period variations.

TABLE 3.  Illustrates the orbital elements during one revolution (m = 50)

Orbital elements Unperturbed value Perturbed value (initial) Perturbed value 
(finial)

a (km) 6584.697230840900 6584.697271 6584.697255
E 0.001 0.001 0.001
i (deg) 63.5 63.5000118 63.5000117
LAN (deg) 20 19.999977 19.9999769
AP (deg) 120 120.02165342 120.02165353
f (deg) 359.6 0 359.6392791036885
Tp (min) 0–88.6264
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(120–131)°, as shown in Figure 7. In general, the behavior of perturbed orbital elements 
becomes more stable as nnn increases. The true anomaly in Figure 8 grows from (0–360)°. 
Finally, Figure 9 represents the variation of satellite’s orbital period. That has a secular 
variation behavior when nnn increasing leads to the satellite’s dropping too slowly, it 
reduces about (0.1) minute as compared to others. 
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FIGURE 3.  Illustrates the semi-major axis variations.
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FIGURE 4.  Shows the eccentricity variations.
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FIGURE 5.  Clarifies the inclination variations.
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FIGURE 6.  Represents the longitude of ascending node variations.
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FIGURE 7.  Shows the argument of Perigee variations.
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FIGURE 8.  Represents the true anomaly variations.
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5.  Conclusions
From this research, we can conclude the following:

1.	 The results clearly showed the satellite at LEO is more affected by the drag more than 
other perturbations through the decaying of semi-major axis and the eccentricity that 
described the shape and the size of the orbit. The variation of orbital elements affected 
on the coordinates system of the satellite, which in turn led to lose the satellite.

2.	 As (m) of Runge–Kutta’s solution for one revolution became too large the value of 
orbital element was more stable. The semi-major axis, inclination, longitude of ascend-
ing node and time period behave periodically through the time passing, but their 
magnitudes were different. Eccentricity and argument of perigee behaved secularly 
with time and also their magnitudes were different, while true anomaly grows from 
(0–360)°. 

4.	 By (nnn) increasing the step it would reduce and the value of perturbed orbital ele-
ments which became more stable. Besides, the lifetime of the satellite, the semi-major 
axis, eccentricity, longitude of ascending node, argument of perigee, and time period 
behaved secularly with time while inclination behaved periodically as the time passing. 
The true anomaly remains in its path from (0–360)°.
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FIGURE 9.  Illustrates the orbital period variations.
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5.	 The proposed method such as 4th order Runge–Kutta’s predicates the future state vec-
tors that can be replaced by another numerical method to test the more accurate values.
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