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Abstract
Objectives: This study aims two main goals; one is to provide 
complete notions relevant to sentiment analysis by SA mechanisms, 
its categorization, and its techniques. The second goal is to make 
a comprehensive study of supervised learning techniques used 
in SA classification to summarize the different works conducted 
in this area and track the recent developments. Methods: To 
achieve the first goal, several important survey studies, including 
modern and relevant works presented would be analyzed for 
full concepts around SA. As for the second objective of the study, 
the most important reports would be investigated, analyzed, 
and compared in the use of supervised learning techniques in 
SA from the previous to the recent researches till 2019. Findings: 
This study also made a comprehensive research of the supervised 
machine learning classifiers used in SA, its recent techniques and 
enhancement methods and the suggestion future works. There are 
still some open challenges in this area such as mining the complex 
reviews and implicit aspect identification. The sentiment language 
is also a challenge; thus, addressing each language according to 
its attributes is a difficult task and so the sentiment domain issue. 
Application/improvements: The information provided is used in 
assessing opinions and analyzing sentiment that could be used by 
researchers and institutions, and to identify different trends besides 
recommending the future research directions.

Keywords: Sentiment Analysis (SA), Opinion Mining (OM), 
Machine Learning, Supervised Learning, Sentiment Classification.

1. Introduction
Generally, textual information is available in two categories, target data that just contains 
realities, target articulation about elements or occasions and subjective information that 
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shows a person’s sentiment or opinion about an event or object [1]. People’s opinions, 
to a considerable degree, show their perception of reality and belief. Conclusions and 
ideas identified with estimations, frames of mind and feelings have become the subject 
of investigation of slant examination and sentiment mining [2]. Sentiment analysis 
applied for subjective statements. The rapidly rising popularity of various kinds of private 
publishing services indicates that sentiment documents will become a significant feature 
of the web’s textual information [3]. Before sentiment, analysis discussed; the definition of 
“sentiment” first needs to agree on. We can represent the term sentiment as “an individual 
impression or private state associated with a specific goal”. This perspective based on 
experiences, observations, concepts, and beliefs. Sentiment articulation contains every 
one of the individuals’ administrations, assessments, examinations, mentalities, and 
feelings about substances. The world has recognized the important role that opinionated 
social media posts have played in the restructuring of companies in recent years. The 
public sentiment and opinions have a deep impact on our community and party-political 
system [4]. For instance, placements have organized the masses to make enormous party-
political changes, as has occurred in some Arabic republics in 2011 and Trump’s election 
victory in 2016. Prior to the web, assessments got physically; if an individual was to 
choose, he collected related opinions by asking other people around him. To obtain public 
opinion, companies mostly conducted surveys through focus groups and hiring external 
consultants; however, these methods were costly and arduous. Currently, World Wide 
Web (www) furnishes these data easily and almost no expense. The Internet has become 
an abundance of conclusions with a huge number of sites, gatherings, and tweets, social 
sites offering a colossal volume of refreshed data yet this web information is for the most 
part unstructured content that cannot be legitimately utilized for information portrayal, 
hence an automated opinion summarization model is needed to perform these tasks. The 
field breaking down a sentence of content to decode its estimations is called Sentiment 
examination (SA) or opinion mining (OM) [5–6], “OM is an ongoing control at the 
junction of data recovery, content mining and computational etymology which attempts 
to recognize the conclusions communicated in common language writings” [7]. The terms 
slant investigation and feeling mining, for the most part, utilized reciprocally in scholarly 
zones. Liu states that the term “sentiment analysis” investigation originally showed up 
in the study [8], and “opinion mining” term first appear in research [9]. Estimation 
investigation field characterized as a mix of data recovery, AI, natural language processing 
(NLP), and computational phonetics. As it were, it normally attempts to remove and assess 
individual’s opinions from their composition. In writing, assessment examination has 
numerous names and somewhat various errands, for example, subjectivity investigation, 
conclusion mining, audit mining, feeling extraction, slant mining, evaluation extraction, 
influence examination, and feeling.

Subjectivity arrangement implies undertakings that order a book (terms, sentences, or 
report) as abstract, containing conclusion words that help decide the supposition about 
the substance, or target terms, the subsequent emotional sentences (opinioned term), 
additionally delegated communicating positive or negative sentiments, which is called 
extremity grouping [10].
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Sentiments analyses focus on three fundamental segments, the conclusion holder or 
wellspring of the sentiment, the article about which the supposition is communicated and 
the assessment articulation [11[. The term object O, sometimes called entity, represents 
the intended target of the opinion expression. It is related with a couple, O (T, A), where 
T is a chain of importance of segments (or parts), sub-segments, etc., and A will be a set 
of characteristics of O. Every part or subcomponent likewise has its own arrangement of 
characteristics. Liu characterizes a supposition as a quintuple (ei, aij, oijkl, hk, tl), where ei 
is the name of a substance, aij is a part of ei, oijkl is the sentiment on the perspective aij of 
element ei, hk is the feeling holder and the time, when the conclusion is communicated. 
A substance is the objective object of a supposition; it is an item, administration, subject, 
individual, or occasion. The perspectives speak to parts or traits of a substance (some 
portion of-connection). The assessment is sure, negative, unbiased, or communicated 
with force levels. The records i, j, k, l show that the things in the definition must compare 
to each other. Sentiment study considered a classification procedure as exemplified in  
Figure 1. It has been examined mostly at three levels; first, known as the document level 
which aims to find the author’s general sentiment (a positive or negative) in an opinionated 
document, document level assumes that each document associates with a single object 
and opinions from a single holder [12]. The second, a sentence level, is at times a solitary 
archive containing various feelings even about similar substances. The assignment at 
this level goes to the sentences and decides if each sentence communicated a positive, 
negative, or nonpartisan sentiment, however, before investigating the extremity of the 
sentences, we should decide whether the sentences are abstract or objective and just take 
the emotional sentences. The two past levels are appropriate when either the entire archive 
or every individual sentence alludes to a solitary element. In any case, as a rule, individuals 
talk about substances that have numerous perspectives (characteristics) and they have an 

FIGURE 1. Sentiment analysis process.
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alternate conclusion about every one of the angles. This regularly occurs in audits about 
items or in discourse discussions committed to explicit item classes (for example, autos, 
cameras, cell phones, and even pharmaceutical medications), so this level spotlights on 
their insight of all estimation articulations inside a given record and the angles to which 
they allude [13]. The angle level prior called the element level [14]. It will probably find 
opinions on substances as well as their perspectives. For instance, the sentence “this camera 
can take high-quality photos, but its battery life is short.” Here, the sentiment evaluates two 
aspects of the target or entity Camera is positive, the camera quality and the other aspect 
is negative, the battery life of camera. In the aspect level sentiment classification, from the 
already extracted aspects, opinion is determined [15]. Besides, the feeling of the content 
can be expressed or understood. On the off chance that express, a book legitimately gives 
a feeling, for example, (It is a great car) while if certain; the content infers a sort of opinion 
like the charger labors for multi week.

Data classification accomplish in two stages, one is the learning process where the 
training data are analyzed by a classification technique (a classification model is learned) 
and the other stage is a classification process where the test data are used to predict class 
labels for the given data (Figure 2). Since the class name of each preparation tuple is given, 
this progression is otherwise called directed learning (i.e., the learning of the classifier 
is “managed” in that it is advised to which class each preparation tuple has a place). It 
appears differently in relation to solo learning (or grouping), in which the class mark of 
each preparation tuple not known, and the number or set of classes to learn may not know 
ahead of time.

FIGURE 2. General approach for building the classification model.
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Sentiment classification applied in various spaces. The most well-known spaces are 
motion picture surveys and client audits in a market area. Much inquire about has done 
in these regions [16]. News is another area examined by analysts [17–18]. The kind of 
information utilized in conclusion characterization contrasts starting with one space then 
onto the next, just as from language to language. At the end of the day, an estimation 
investigation framework that functions admirably for film surveys may not fill in too for 
client audits [19]. This issue originates from the assorted variety of the estimation starting 
with one space then onto the next. Subsequently, slant characterization is a very space 
explicit issue [18]. In [21,22] current years, a big number of surveys have conducted on 
SA and its related task. Most of these studies presented topics on sentiment analysis such 
as web data extraction and analysis, polarity and subjectivity, feature selection [23–24], 
sentiment analysis of comparative sentences, opinion search and retrieval exploration 
techniques, different classification methods and machine learning techniques for various 
emotion analysis tasks and finally, fake reviews or spam detection [25–28]. Schouten 
and Frasinca conducted comprehensive survey relevant to aspect-level sentiments [29], 
a survey on methods for selecting features and classifying sentiments and it outlined the 
depiction of the component choice techniques and posted a depth discussion on strategies 
of classification and related articles [30]. Fifty-four papers summarized citation the 
function performed, the area, the algorithm used, the polarity, the data range, the data 
source, and the type of language [31]. The researchers’ major concern is to analyze the 
methods used in the articles surveyed conducted a survey of multiple emotion analysis 
aspects for the period 2002–2014; he noted some intelligent technologies such as random 
forests, evolutionary calculation, association mining, mysterious rule-based schemes, 
miners, and Conditional Random Field (CRF) theory. The proper idea analysis, neural 
network of radial foundation functions (RBFNN), and online learning algorithms have 
not optimized in SA. Furthermore, logic, online learning algorithms and ontology can all 
be very useful, especially in large data cases [32]. Ayyoub et al. provide an overview of the 
research on Arabic SA (ASA) so far. The research groups have published papers focused on 
SA-related issues they discuss and are attempting to identify the gaps for future studies in 
this area [33]. Research on sentiment analysis relies on the six main topics. 1- The problem 
of sentiment study, formalized by introducing the basic definition, concepts, and issues. 
2- Sentiment and subjectivity classification, which regards supposition examination as 
content arrangement issue, in subjects; two sub-themes that have widely contemplated 
subjectivity and polarity. 3- Aspect-based sentiment analysis; this model looks for opinion 
targets (objects) and their components (attributes and features). 4- Sentiment analysis 
of near sentences. Here the assessment of an item can done in two principle ways, an 
immediate supposition that gives a sentiment about the article without referencing some 
other comparable objects (e.g., the resolution of this screen is good) and comparison 
which compares the objects with other similar objects (e.g., the resolution of this screen 
is better than that of screen-x). 5- Feeling search and recovery, conclusion search is in 
this way a mix of data recovery and notion investigation. 6- Opinion spam, which alludes 
to the counterfeit feeling that attempts to delude peruses or the robotized framework by 
giving under serving sentiments to some objective items to advance the articles or harm 
their notoriety. 
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The contribution of this survey offers a detailed categorization according to the methods 
used in a significant number of recent works. This methodology can permit scientists 
who know about specific systems to utilize them in the field of SA and to pick the fitting 
procedure for a specific application. In addition, these studies provided an overview of 
the importance of feature selection in refining the presentation of sentiment classification 
algorithms, particularly in machine-learning techniques.

This review is structured as follows: Section 2 covers sentiment analysis approaches, 
defines the techniques of supervised machine learning. Section 3 describes current 
research gaps and key challenges of sentiment classification. Finally, the conclusion and 
future trend in research tackled in Section 4.

2. Sentiment Analysis Approaches
The approaches that manipulate SA can be categorized into three approaches; machine 
learning, which contains supervised and unsupervised learning, lexicon-based, which 
depends on the discovery and the opinion lexicon. There are two techniques in this 
methodology [34]. Word reference based and corpus-based methodology, in certain 
conditions the half breed approach, which consolidates AI with the vocabulary-based 
methodology and increases a moderately better presentation [35]. Figure 3 illustrates the 
classification approaches. The lexicon-based methodology begins with a little arrangement 
of seed supposition words reasonable for the current space. This arrangement of words at 
that point extended through the use, afterward looks the lexicon for their equivalent words 
and antonyms [36] whereby the corpus-based methodology starts with a seed rundown 
of feeling words, and afterward finds other conclusion words in a huge corpus to help 
discover sentiment words with setting explicit directions. This could do by utilizing factual 
or semantic strategies.

2.1. Lexicon-Based Approach
Sentiment lexicon contains arrangements of words and expressions used to express people’s 
abstract emotions and conclusions. Vocabulary based Sentiment Analysis procedures are 

FIGURE 3. Sentiment analysis approaches.
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unaided learning in light of the fact that the order of information does not require earlier 
preparing. Approaches based on the lexicon use a lexicon to describe opinions by counting 
and measuring words related to sentiments. There are two main approaches used. One 
of them is the lexicon put together an approach that depends with respect to social affair 
an underlying arrangement of expressions of supposition and afterward looking in the 
word reference for their equivalent words and antonyms to grow this set. The other is the 
corpus-based methodology, which utilizes many expressions of supposition with known 
extremity, and afterward recognizes different expressions of opinion in a huge corpus to 
group directions.

2.1.1. Dictionary-Based Approach
This technique starts by using a minor usual set of seed view words and web dictionaries, 
for example, WordNet. The technique first collects a minor set of opinion terms manually 
with established alignments and then increases it by looking for their substitutes and 
antonyms in the WordNet or thesaurus; the novel words added to the list of seeds until 
there are no more new words. Manual inspection can performed after the process has 
completed to remove or correct the errors. A significant shortcoming of the dictionary-
based method and the view terms derived from it is it does not find words of opinion from 
different fields and meaning orientations, which is quite usual. For example, silent, it is 
typically negative for a speakerphone. However, quiet is good for a vehicle. This problem 
can address by the corpus-based approach.

2.1.2. Corpus-Based Approach
The corpus-put together approach based with respect to the likelihood that a supposition 
word may happen related to a positive or negative arrangement of words via looking for 
enormous marked preparing information. Unlike the dictionary approach, the Corpus 
approach can help find domain-specific words of opinion and their orientations.

2.2. Hybrid Approach
The hybrid method combines machine knowledge and lexicon-based approaches to 
improve performance in sentiment classification. Its main advantage is obtaining the best 
of both approaches, high precision from an efficient supervised learning algorithm, and 
lexicon-based method stability.

2.3. Machine Learning-Based Approach
The machine learning method in assumption arrangement depends on the use of celebrated 
AI strategies on the content information to utilize the experience to make a calculation to 
improve the exhibition of the framework. It is functional as it completely programmed and 
can deal with huge assortments of information. AI-based assumption arrangement can be 
isolated into three primary classes: regulated, solo and semi-directed learning techniques 
(Figure 2).
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2.3.1. Unsupervised Learning
Unsupervised learning is close to learning by observation; it conducts clustering. 
Unsupervised learning applied when there is just input information and no comparing 
yield factors are accessible. Its point is to show the hidden structure or appropriation in the 
information to become familiar with the information. Unsupervised learning issues can 
also group into clustering and association issues. There are some unsupervised learning 
algorithms commonly used in sentiment analysis (see Figure 2), such as k-means for 
clustering algorithms, mixture model, and hierarchical clustering. 

2.3.2. Semi-Supervised Learning 
Semi-supervised learning considers the classification problem when there are fewer 
corresponding labels only for a small subset of observations. These issues are of significant 
practical interest in a wide range of applications where unlabeled data are accessible, but 
it is expensive or impossible to obtain class labels for the entire data set. The key idea 
behindhand semi-supervised approach is unlabeled data holds a lot of class information, 
but it contains information on joint distribution over classification features.

2.3.4. Supervised Learning
Supervised learning based on the labeled dataset, so during the process the labels given to 
the framework. These labeled datasets trained when experienced during decision-making 
to produce appropriate outputs. Supervised learning classification based on the four-
categories، linear classification، rule-based classification، probabilistic classification and 
decision tree concepts. To solve the classification problem, ML includes two stages; initial, 
pre-named preparing corpora utilized to gain proficiency with a “classifier” model utilizing 
a built up managed learning system and afterward once a classifier has been created, it tends 
to be applied to characterize the inconspicuous information [37]. So, one of ML’s main 
issues is to fit a good generalization capability model to a set of training data. Traditionally, 
over-fitting mentions to a model that fits the training data too well but generalize poor to 
testing data, while under fitting refers to a model that can neither fits the training data nor 
generalize to testing data. A few machine learning methods have received to group the 
surveys in conclusion investigation. Support Vector Machine (SVM), Naïve Bayes (NB), 
Maximum Entropy (ME), Artificial Neural Network (ANN), and Decision Tree (DT) 
classifiers. Some different less generally utilized calculations are LR, K Nearest Neighbor 
(KNN), RF, and Bayesian Network (BN). Other less commonly used algorithms are LR, 
K Nearest Neighbor (KNN), RF, and Bayesian Network (BN). This article contributes to 
a deep understanding of machine learning in sentiment analysis especially, supervised 
machine learning. To accomplish this, the rest of the article offers more details about some 
important algorithms supervised learning approach uses in sentiment analysis.

2.3.4.1. Naïve Bayes (NB)
The Naïve Bayes model is the most direct and least requesting to gather a classifier for the 
substance course of action framework; it subject to Bayson’s theory with a supposition of 
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self-governance among the markers. In [38] direct terms, a Naïve Bayes classifier expects 
that the proximity of a particular component in a class is immaterial to the closeness 
of some other segment. The effortlessness of this presumption makes the calculation of 
Naïve Bayes classifier unquestionably increasingly productive. Bayesian classifiers have 
additionally shown high exactness and speed when applied to huge databases. To order as 
the most likely class c* for another component x, it figures:

 c* = argmaxc P(c|x) 

As indicated by Bayes’ hypothesis, the likelihood that we need to process P(c|x) can 
be communicated regarding probabilities P(c), P(x|c), and P(x) as the accompanying 
condition:

 ( )1 2 nP(c |x) P x |c P(x |c) . P(x |c)= × ×… ×
 

Above,

•	 P(c|x) is the back probability of class (c, target) given indicator (x, highlights). 
•	 P(c) is the earlier probability of class. 
•	 P(x|c) is the probability which is the probability of indicator given class. 

( ) ( ) ( )
( )

P x|c P c
P c|x

P x
=

•	 P(x) is the earlier probability of indicator 
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( ) ( ) ( )

( )

im n x
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P(x) assumes no job in choosing c*. To evaluate the term P(x|c), Naïve Bayes disintegrates 
it by accepting the contingent autonomy of highlights fi’s given x’s class.

Pang and Lee [39] improve the accuracy of the Naïve Bayes classifier from 82.8 to 86.4 
percent by combining it with the recognition of subjectivity. In Ref. [40], Narayanan et 
al. made study that suggested Adapted Naïve Bayes (ANB) to obtain information from 
new domain in order to solve the domain problem in SA, the study getting the farthest 
use of old domain and the unlabeled new domain data. Test results show that the method 
suggested enhances the base classifier. In Ref. [41], Dhande and Patnaik  published a 
study showing how the suitable feature selection increase the precision of the Naïve Bayes 
classifier, they obtained a precision of 88.80%, but only examined a single ranker, mutual 
information. In Ref. [42], Bilal et al. conducted a study that combined both of NB and 
NN classifier for sentiment classification, experimental results show that the accuracy of 
sentiment analysis increased to 80.65%. A proposed model [43] applied to Roman Urdu 
sentiment. The training dataset used in this model contains 150 positive Roman-Urdu 
opinions and 150 negative that extracted from a Blogs. The study used three classification 
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methods NB, DT, and KNN, results show that NB classifier is the best, which compared to 
DT and KNN in terms of accuracy, precision, and value of F-measure.

2.3.4.2. Support Vector Machine (SVM)
The support vector machine (SVM) is a factual order technique. It is dependent on the 
basic hazard minimization guideline from the computational learning hypothesis. SVM is 
a discriminative classifier; it can build a direct or non-straight choice surface to isolate the 
preparation information that focuses on two classes [44–45]. The key in such classifiers 
is to decide the ideal limits between the various classes and use them for the motivations 
behind the arrangement. An isolating hyperplane composed as:

 W*X + b = 0, 

where W = {w1, w2, w3, … ,wn}. wn is well-defined as mass vector of n characteristics. b is 
well-defined as bias.

The good ways from the isolating hyperplane to any point on H1 is 1/|W| and the 
equivalent to any point on H2 

is 1/|W|. In this way, the extreme edge is 2/|W|. On the off chance that the hyperplane 
esteem > 0, at that point +ve class, if the hyperplane esteem < 0, at that point −ve 
classification; in the event that hyperplane esteem = 0, at that point all focuses are opposite 
to W. In the event that the estimation of the edge is huge, at that point an enormous 
punishment allotted to mistakes/edge blunders. On the off chance that the estimation of 
the edge is little, at that point, a few points become edge mistake and the direction of 
hyperplane is changed

 W = ∑j αjcjdj , αj ≥ 0 

Let c(1,−1) is class (positive, negative) for article d.
In Ref. [46], Alotaibi addressed the Political tendency classification of Twitter users by 

used WEKA5 exactly an SVM-based approach. In Ref. [47], Tan and Zhang created Arabic 
Corpus with three polarities (positive, negative, and natural) consist of 6267 documents 
and 33,870 sentences to use in classification problem. Different ML classifiers investigated 
during this task including Multinomial Naïve Bayes (MNB), Support Vector Machine 
(MNB) with linear kernel, and Neural Networks (NNs). SVM achieved the best results for 
all classification types. In Ref. [48], Manek et al. used MI, IG, CHI, and DF feature selection 
with a set of classification methods SVM, NB, K-nearest neighbor, winnow classifier and 
winnow classifier to progress a study of sentiment classification on Chinese documents. 
The Chinese sentiment dataset used in this study consists of 1021 documents. The result is 
that SVM produces the best performance for the others four classification methods. In Ref. 
[49], Hutto and Gilbert conducted a study based on using a suitable feature selection Gini 
Index to enhance the SVM classifier, the experiments emphasis that the method increases 
the SVM accuracy. In [50] present study that exercise TF-IDF, TF-CHI, TF-RF, and TF-OR 
feature selection with n-gram tokenization to improve SVM classifier, among all feature 
selection used, the results show that TF-IDF has the highest performance. In study [34], the 
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authors researched the sentiment of Movie reviews; they integrated various preprocessing 
strategies such as stop words erase, negation treatment and stemming, the feature election 
methods (FF, TF-IDF, and FP) are used to calculate three different feature matrices and 
then they used chi-squared technique to filter the unimportant features. Lastly, they 
applied SVM for classified and experimental results show that a good preprocessing leads 
to enhancement in classification methods.

2.3.4.3. Rule-Based Classifier
In a standard-based classifier, a lot of Conditional “if ... at that point ...” style rules is 
normally built to decide a specific blend of examples that are in all likelihood identified 
with the various classes. Each standard comprises of two sections: the forerunner part 
and the ensuing part. The predecessor part compares to a word design and the ensuing 
part to a class name. Rule-based classifiers provide an advantage, as they are easily 
understandable by non-experts in the case of decision tree classifiers and that explanations 
can create easily. Arrangement controls additionally speak to each class by disjunctive 
ordinary structure (DNF). A k-DNF articulation is of the structure: (X1∧X2∧… ∧Xn) ∨ 
(Xn+1∧Xn+2∧… X2n) ∨ … ∨ (X(m-1)n+1∧X(m-1)n+2∧… ∧Xmn), where m is the quantity of 
disjunctions, n is the quantity of conjunctions in every disjunction, and Xn is characterized 
over the letters in order X1, X2,… , Xj∪ ~X1, ~X2, … ,~Xj. The standard-based classifier 
intends to manufacture the littlest guideline set that is advantageous with the preparation 
information [51–52]. Adding extra systems to avoid over-fitting of the preparation 
information improved standard based arrangement. The study [53] present VADER 
model, a basic rule-based model for general opinion analysis, and compare its efficacy with 
Eleven benchmarks, including LIWC, ANEW, General Inquirer, SentiWordNet, Naïve 
Bayes, Maximum Entropy, and Support Vector Machine (SVM) algorithms, the results 
find that VADER outperforms individual human raters, F1 Classification Accuracy = 0.96 
and 0.84, respectively [54] they combines the rule-based classifier and the SVM classifier 
To enhance the performance of SVM classifier. They used the rule-based classifier to verify 
the “neutral” SVM forecast, so the applied rule-based classifier for each “neutral” extracted 
from the of SVM classifier, although they do not obtain the best accurate, the results show 
that a rule-based classification can actually debug the SVM’s predictions. Provided a study 
[55] on the use of rule-based machine learning to applied sentiment analysis on online 
books dataset and political reviews, they use SentiWordNet to create seven classes from 
strong positive to strong negative, results show this model achieved 97.4 % accuracy and 
minimize error average.

2.3.4.4. Decision Tree (DT)
The choice tree groups the preparation information by arranging tests in the informational 
index contingent upon highlights. DT classifier sorted out decay progressively of the 
preparation information utilizing highlights. The idea is to follow the edges of a tree, 
starting from the root, where each non-leaf node represents a test, for example, the value 
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of a feature. Depending on the result of the test, one of the child nodes chosen as the next 
node. Nodes visited this way until a leaf node reached, which tells what class the instance 
should classified as. The decision tree is useful because of its simplicity, but it is also 
quite powerful since the different sub-trees spanned by the children can differ depending 
on what tests considered the best with the knowledge acquired on the way to the node. 
Despite these features, decision trees tend to have issues handling linear relationships 
between variables [56]. The interaction effects of variables have also problems with 
logistical regression. For example, the FICUS construction algorithm presented by 
research [57], this algorithm gets as information a set of ordered items, a set of traits, 
and a detail for a set of constructor capacities to deliver a set of produced highlights 
that can utilized by standard idea students to make improved classifiers. ID3 is a one-
approach assignment to make all conceivable choice trees that appropriately arrange the 
preparation set and to choose the least difficult of them. The system of this methodology 
repeated, it haphazardly picks a sub-set of preparing information called the window to 
shape a choice tree, which splendidly characterizes every one of the items in the window. 
In the event that the tree offers the right response for every one of these articles, at that 
point it is appropriate for finishing the preparation information, and the iterative closures. 
If not, a determination of the inaccurately arranged items added to the window and the 
activity proceeds [58]. The DT technique [59] used to detect the scope of the negation 
by dynamic determinants, which use contextual information, and static determinants, 
which are unambiguous words. These determinants are useful in complex sentences 
such that only the sentences that contain negation are considered. Experimental rules 
concentrate on cases where polar statements precede grammatical forms that specifically 
precede negative words, leading to polar expression being unique in it applied the DT 
technique with some other machine learning techniques [54] to classify the opinions 
of patients in one of the English hospitals through a point-based evaluation scale. The 
purpose of this analysis is to forecast the satisfaction of the patient with the hospital in 
terms of cleanliness and respect. 

2.3.4.5. A Neural Network (NN)
NN content classifier is a system of units, where the info units speak to terms, the yield unit(s) 
speak to the classification or classes of intrigue and the loads on the edges associating units 
speak to reliance relations. For characterizing a test record dj, its term loads wkj are stacked 
into the information units; the enactment of these units engendered forward through the 
system, and the estimation of the yield unit(s) decides the classification decision(s). A 
study [60] presented that used the deep convolutional NN in order to extract information 
at the character level and then the sentence to classify short sentences of sentiments. This 
approach applied on two datasets and the approach demonstrated increased classification 
accuracy in each one based on neural networks, where they analyzed the reviews of Arab 
hotels using long short-term memory LSTM with aspect opinion target expressions 
OTEs. Results show that both applications progressed enhancement of 39 percent for 
the extraction of aspect-OTEs and 6 percent for the polarity classification task of aspect 
sentiment.



261 / 268

Nuha Elamin, Samani A.Talab and Ahmed Khalid

Indian Journal of Science and Technology Vol 13(03), DOI: 10.17485/ijst/2020/v13i03/148900, January 2020

2.3.4.6. The Maximum Entropy Classifier
The most extreme entropy classifier applies the popular MaxEnt standard to parameter 
estimation. The fundamental thought is that the classifier changes over marked capabilities 
to vectors utilizing an encoding. This encoded vector at that point used to compute loads 
for each component that can then joined to decide the in all probability mark for a list of 
capabilities. The Max Entropy classifier can utilize to explain a huge assortment of content 
arrangement issues, for example, language identification, point grouping, assessment 
examination, and more [61]. Malouf depicted the analyses looking at the exhibition of 
various calculations for evaluating the parameters of a contingent ME mode [62]. The 
outcome shows that the standardly utilized iterative scaling calculations perform very 
pitifully in contrast with the others; besides, the limited memory variable metric algorithm 
[63] beats different calculations by a significant edge. ME classifier gauge of P(c | d) accepts 
the exponential structure as:

 
( ) ( ) ( )ME i,ci

1P c|d  exp( F d,c )
Z d iλ= ∑

 

where, PME (c|d) is the probability of example d existence in class c,
iλ  denotes a feature weight parameter, 

Z (d) is a standardization function,
Fi, c denotes a feature/class function for an extracted feature fi and class c, as given in eq:
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Unlike Naïve Bayes, the ME classifier presents the best performance because it varieties 
no expectations about the associations between the features. A study [46] presented that 
uses the maximum entropy classifier for political tendency classification based on the 
Spanish Twitter data set this model achieved good results in the experimental test. In 
another study [64], the authors use a set of maximum entropy classifiers to classified the 
polarity for Spanish Twitter data, If all the classifiers decided on a category, the total value 
for the corresponding score was allocated, otherwise, the positive, negative, and objective 
score values are corresponding to the number of classifiers assigning the word to each 
category

2.3.4.7. Bayesian Network (BN)
The Bayesian Network (BN) assumes, unlike Naïve Bayes, that all features are completely 
dependent. A BN-coordinated non-cyclic chart whose hubs speak to irregular, every hub 
in the diagram speaks to an arbitrary variable, while the edges between the hubs speak to 
probabilistic conditions among the comparing irregular factors. In another depiction, BN 
speaks to a joint multivariate likelihood conveyance for a lot of irregular factors. Give us 
a chance to have a progression of sentences s(1),s(2),...,s(T); each speaks to a progression 
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of words so that s(t) = (x1(t), x2(t),..., xL(t)), where L is the length of sentence s(t). Along 
these lines, the likelihood of a word p(xi(t)) pursues the dissemination :

p(xi(t)) = P(xi(t)|(x1(t), x2(t), (1) ..., xi-1 (t)), (s(1),s(2),...,s(t −1)) 

The BN dissects the likelihood of hub articulations into a result of restrictive probabilities 
by accepting the freedom of the non-relative hubs, given their folks.

 
( ) ( )i,a

1

P X|S,  θ p xi |ai ,  θ
i

N

i=

=∏
 

where p(xi |ai ,θi,ai) means the restrictive likelihood of hub articulation xi given its 
parent hub articulations ai, and θi, ai signifies the most extreme likelihood (ML) gauge 
of the contingent probabilities. Figure 4 delineates the state space of a Gaussian Bayesian 
system (GBN) at time moment t where every hub xi (t) is a word in the sentence s (t). 
For more information review. BN occasionally used in text mining because of its 
computational complexity and high cost. To research a genuine issue wherein the creator’s 
mentality portrayed by three extraordinary (yet related) target factors. This instrument 
can aggregate the diverse objective factors in a similar grouping errand to profit by the 
conceivable measurable relations between them. Experimental results show that this 
approach outperforms the most common Sentiment Analysis approaches and is useful 
for improving the identification rates for this problem, in addition, author claim that 
this methodology could considered for solving future Sentiment Analysis problems. BN 
additionally utilized by [65] to propose a Bayesian profound convolutional conviction 
arrange BCDBN to Subjectivity by utilizing Bayesian systems to separate high ML ideas 
and word themes from the information and use them to pre-train the model grouping. This 
new approach accomplished very nearly 5–10% improvement in expectation precision 
contrasted with past approaches and it was multiple times quicker [66,67]. Bayesian 
networks and fuzzy recurrent NN used to enhance the extreme learning machine ELM 
for subjectivity detection, as the advantages of both networks used in the improvement of 
the ELM traditional. The results demonstrated the ability of the proposed system to detect 
subjectivity.

FIGURE 4. State space of deferent Bayesian models.
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3. Challenges and Issues in SA
Following are a portion of the difficulties in the territory of assumption investigation, for 
example, nullification taking care of, area speculation, pronoun goals, language speculation, 
and world information. Opinion text could be in a different language, therefore, each 
language tackled according to its orientation, which is a formidable task. The direction of 
the view words could be dissimilar, from positive to negative, according to the situation, 
so an opinion word that is positive in one situation may consider negative in another. As 
the reviewer comments in free format, opinions may include abbreviations, symbols, and 
short words. To deal with it requires a lot of work to mine opinion. Most surveys have 
distinctive composition, positive and negative in same sentence, which is simple for people 
to see, however, increasingly hard for a PC [68]. The direction of feeling words could be 
diverse as indicated by their situation in the sentence; for instance, the descriptor “little” 
can be utilized in a positive or negative sense, in this way, to distinguish the extremity of 
a similar modifier words in various circumstances is likewise a difficult assignment [69]. 
Assessment spamming can even be terrifying as they can twist feelings and influence clients’ 
understanding. It protected to state that as suppositions progressively utilized practically 
speaking, sentiment spamming will turn out to be increasingly wild and refined, which 
exhibits a significant test for their recognition [47]. Since web clients are settling on choices 
as indicated by web audits, it is vital that the surveys be high caliber and dependable along 
these lines, OM experiences the nature of audits issues; in any case, just constrained work 
has led on supposition quality assurance. Additionally displaying an enormous test despite 
OM is the accessibility and availability of a standard dataset. Scarcely any information is 
right now accessible to encourage the arrangement, benchmarking and investigation of the 
inferred content. At last, some other composing styles, for example, incongruity, mockery, 
or nullified sentences could carry more difficulties to estimation examination [70].

4. Summary and Conclusion
This study reviewed the classification techniques using supervised learning machine and 
what tools are available for sentiment analysis. More specifically, we considered the trend 
of improving the classification algorithm by using appropriate feature selection methods. 
There are still some open challenges in this area such as mining the complex reviews and 
implicit aspect identification. The sentiment language is also a challenge; thus, addressing 
each language according to its attributes is a difficult task and so the sentiment domain 
issue. Concatenating the conceptual approaches with the power of machine learning, 
improving the feature selection methods and applying some of the intelligent techniques in 
sentiment analysis may lead to good and efficient solutions for the future work to enhance 
the performance of sentiment analysis for the challenges mentioned above. 
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