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Abstract
Objectives: To study the unsteady magneto-hydro-dynamic 
(MHD) thin layer flow of a fourth-order fluid through a moving and 
oscillating belt. Methods: The well-known analytical technique, 
namely Adomian decomposition method (ADM) is used to solve 
the non-linear partial differential equation for governing equations 
of velocity profile with subjects to initial and boundary conditions 
for both lift and drainage problems. Findings and novelty/
improvements: The solution is found in excellent agreement. The 
basic purpose to study the effect of MHD on velocity field and 
understand the behavior of this physical problem and the effects 
of different non-dimensional parameters the graphical results are 
provided.

Keywords: Unsteady Flow, Thin Films/Layers, Fourth-Order 
Fluid, Magneto-hydro-Dynamics, Non-Newtonian Fluid, Adomian 
Decomposition Method.

1. � Introduction
In researched articles, the various structures of non-Newtonian fluids have been advised 
to modify the research because of the heterogeneous physical nature of these fluids. These 
fluids are divided into three different representative types of non-Newtonian fluids (a) 
differential (b) the rate and (c) the integral types fluid models. But, the (a) and (b) types are 
the most generous and applicable. Therefore, we will study type (a) model in my research 
i.e. the differential type fluids model. Furthermore, these types are categorized into 
different sub-classes, it follows (a) the second-order fluid (b) the third-order fluid (c) the 
fourth-order fluid, etc. The easiest subtype is the second-order fluids also known as grade 2 
fluid by which one can sensibly has an expectation to investigate the solution by analytical 
technique for the predictions of normal stress differences. But it drew back to consider 
the shearing thickness and shearing thinness cases that exclude the many fluids. On the 
contrary, the (b) subtype is also known as grade 3 fluid shows an un-idealistic descriptive 
behavior of these types of fluids. This fluid model can abduct the non-Newtonian behavior 
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for instance normal stresses and shearing thickness or shearing thinness. Moreover, the 
another sub-model of differential type consider as a fourth-order fluid classification or 
model which captures the greatest amount of fluids flow at one time. In Ref. [1], Gul et al. 
investigated the velocity profile of fourth order unsteady thin film fluid flow on a vibrating 
and vertical moving belt. 

They applied the Adomian decomposition method (ADM) and optimal homotopy 
asymptotic method (OHAM) to solve the non-linear differential model and also compared 
the results of these two methods. In Ref. [2], Gul et al. analyzed the transferring of heat 
with magneto-hydro-dynamic (MHD) second grade unsteady flow of thin films on 
a vertical belt. They solved the non-linear differential equation by ADM and OHAM 
techniques. In Ref. [3], Gul et al. studied the third grade unsteady flow of thin films with 
MHD in a medium of porosity on an inclined belt with oscillating movement. The non-
linear differential model has been solved by well-known analytical methods homotopy 
perturbation method (HPM) and OHAM. In Ref. [5], authors examined the heat flowing 
and transferring of mass with Hydrodynamic stability and fourth-order radiative fluid 
past a vertically porous plate which reacts chemically. In Ref. [6], Akinshilo analyzed 
the transferring of heat of third-order non-Newtonian fluid over a porous medium and 
conveyed the heat internally by parallel plates. In Ref. [7], the unsteady MHD with fourth 
grade fluid flow past a porous plate has been examined. In Ref. [8], heat transfer analysis 
of MHD on a vertical belt of a third grade fluid flow of thin films with slipping conditions. 
ADM and OHAM have been applied to solve the differential model.

The main objective of this article is to analyze the unsteady MHD thin film flow of non-
Newtonian fluid through a vertical oscillating and moving belt using ADM. In Ref. [9], 
Gul et al. investigated the flow of third-order thin films fluid model over a belt which is 
vertical with a viscosity that depends on temperature of MHD. They solved the differential 
model by well-known analytical methods ADM and OHAM.  In Ref. [10], Aiyesimi et al. 
analyzed the transferring of heat of unsteady MHD third grade fluid flow of thin films 
in the absence of slipping conditions on boundary down an inclined plane. In Ref. [11], 
Siddiqui et al. analyzed the flow of thin films for a third-order fluid on a moving belt 
the velocity profile and volume flux was computed by traditional perturbation technique 
and HPM. In Ref. [12], Zaman et al. studied the effect of hall current of Couette flow for 
unsteady MHD fourth-order fluid by applying the pressure homotopy technique is used to 
solve the modeled differential equation.

2. � Basic Equations
The basic equations which govern the problems are continuity and momentum equations 
with the interference of transversely magnetic field which is applied externally are as 
follows,

	 .  0V∇ = 	 (1)

	
 .    DV T g J B
Dt

ρ ρ=∇ + + × 	 (2)
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Here ρ is the density constant, g represents the gravity, V denotes the velocity vector of 

fluid, D
Dt

 is material derivative, and T is a cauchy stress tensor, and the term of body force 

corresponds to MHD flow is the Lorentz force J × B, where B is applied magnetic field and 
J shows the density of current, according to ohm’s law, density of current is given as,

	 ( )  J E V Bσ= + + 	 (3)

Here σ and E are electrical conductivity and electric field of the fluid, the imposed 
magnetic field is denoted by B = B0 + b1 and b1 denotes the magnetic field which is induced. 
Here we also assume E = 0, b1 = 0 and B = B0 (0, B0, 0), where B0  is the magnitude of total 
magnetic field, then (3) reduces to;

	
( )( )2

00, , , 0J B B v x tσ× = 	 (4)

The Cauchy stress tensor T which is define for fourth-order fluid as,

	
3

1 1
I    rr

T p A Sµ
=

= − + +∑ 	
(5)

Here p is pressure, I is an identity tensor while Sr denotes the extra stress tensor define 
as,

	
2

1 1 2 2 1S A Aα α= +  , ( ) ( )2
2 1 3 2 1 2 2 1 3 1 1S A A A A A trA Aβ β β= + + +  , 

          

( ) ( )
( ) ( ) ( ) ( ){ }

2 2 2
3 1 4 2 3 1 1 3 3 2 4 2 1 1 2

2
5 2 2 6 2 1 7 3 8 2 1 1

 S A A A A A A A A A A

trA A trA A trA trA A A

γ γ γ γ

γ γ γ γ

= + + + + +

+ + + +
	 (6)

Where µ  shows the viscosity’s coefficient,  
(α1, α2) (β1, β2, β3) and (γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8) are the material constants of the 

second, third, and fourth-order of fluids. Furthermore, the Rivlin-Ericksen tensor A1, A2, 
A3, and A4 are defined as;

	 0 IA = ,	 (7)

	 ( ) ( )1
TA V V= ∇ + ∇ ,	 (8)

	
( ) ( )1

1 1
Tk

k k k
DA

A A V V A
Dt

−
− −= + ∇ + ∇ , 2, 3, 4k = 	 (9)

3. � Formulation of Lift Problem
We consider two different problems of a wide vertical belt with uniform thickness δ of 
a thin film layer of fourth-order fluid placed in a large bath. On the belt the transversely 
uniform magnetic field is applied. For analysis, we have chosen the Cartesian coordinate 
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system and flow in assumed to be one dimensional in the direction of y where as x is 
normal to it, we suppose that the flow is unsteady and laminar with no pressure gradient 
the gravity is kept balanced by shearing forces of fluid and the thickness of the films does 
not change and by the above conditions the velocity is in y-direction [1]:

	
( )( )0, , ,0V v x t= 	 (10)

Here we consider the flow at t = 0+ on a wide belt which is oscillating and moving 
upward with the velocity U. The belt is dipped into a bath as shown in 

 

Magnetic Field 

 FIGURE 1.  Geometry of lift problem.

With the boundary conditions

	 ( ), ,      0, v x t U Ucos t at xω= + = 	 (11)

	

( ),
0,     

v x t
at x

x
δ

∂
= =

∂
	 (12)

Where the belt which is oscillating whose frequency is ω.
Using the velocity profile given in equation (10), the continuity equation (1) is identically 

satisfied and the equation of momentum (2) becomes to the form 

	
2

xy o
v T g B v
t x

ρ ρ σ∂ ∂
= − −

∂ ∂
	 (13)

From Equation (5), the component xyT  of Cauchy stress component is

	

( )

( )

32

1 1 2 32

33

1 2 3 4 5 7 83

2

2 3 3

xy
v v v vT
x t x x xt

v v
x t xt

µ α β β β

γ γ γ γ γ γ γ

∂ ∂ ∂ ∂ ∂ ∂     = + + + +     ∂ ∂ ∂ ∂ ∂∂     

∂ ∂ ∂ ∂   + + + + + + +   ∂ ∂ ∂∂    
	 (14)



303 / 315

Mohammad Osama Zaheer, Asif Ali Shaikh and Fozia Shaikh

Indian Journal of Science and Technology� Vol 13(03), DOI: 10.17485/ijst/2020/v13i03/148554, January 2020

Inserting Equation (14) into Equation (13) we get

	

 

 

22 2 2 2

1 1 2 32 2 2 2

23 2 2
2

1 2 3 4 5 7 83 2 2

6

6 3 3 o

v v v v v v
t t x xx x t x

v v v g B v
t xt x x

    

        

                                      
                         	 (15)

Introducing the following non-dimensional variables

	

2

2

2
1 1 1

1 12 2 3 4

 ,  ,   ,  ,       

 ,          ,  ,

t
gv x ut S

U
x t

k
v δ ρ

δ ρδ
α β µ γ µ

α β γ
ρδ δ ρ δ

= = = =

= = =











	

	
( ) ( )

2 2 2 2
2 3 1

2 3 4 5 7 82 4
0

,  ,  3 3  oU B U
M

β β σ δ γ
β γ γ γ γ γ γ γ

µµδ ρδ

+
= = = + + + + +

 	 (16)

Here t  is a non-dimensional time variable, α  is non-dimensional second-order non-
Newtonian variable, 1, β β   are non-dimensional third-order non-Newtonian variable and 

1,γ γ   are non-dimensional fourth grade non-Newtonian variable,  is a stock number, 
and M is a non-dimensional magnetic variable.

On inserting these non-dimensionless parameters in (15) and boundary conditions 
(11) and (12), we get.

	

 

 

22 2 2 2

1 1 2 32 2 2 2

23 2 2
2

1 2 3 4 5 7 83 2 2

6

6 3 3 o

v v v v v v
t t x xx x t x

v v v g B v
t xt x x

    

        

                                      
                        

	 (17)

	 ( ), 1 ,   0,  v x t cos t at xω= + = 	 (18)

	

( ),
0,   1

v x t
at x

x
∂

= =
∂

,	 (19)

4. � Formulation of Drainage Problem
Here we assume the belt is oscillating but not moving and the fluid falls downward direction 
in the presence of gravity, as shown in the geometry of drainage problem See Figure
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Magnetic 
Field 

 
FIGURE 2.  Geometry of drainage problem.

Along with the boundary conditions

	 ( ), ,   0, v x t Ucos t at xω= = 	 (20)

	

( ),
0,   

v x t
at x

x
δ

∂
= =

∂
,	 (21)

All the remaining assumptions are similar to the lift problem but stock number is taken 
positive. Using  xyT the governing equation of drainage problem.

 

 

22 2 2 2 3 2

1 1 2 3 12 2 2 2 3 2

2 2
2

2 3 4 5 7 8 2

 6

6 3 3 o

v v v v v v v
t t x xx x t x t x

v v g B v
t x x

      

       

                                                   

              
	(22)

The non-dimensional form of equation (22) is given by,

	

22 2 2 2

12 2 2 2

23 2 2
2

1 3 2 2

  6

6

t

o

v v v v v vS
t t x xx x t x

v v v g B v
t xt x x

  

   

                                      
                    	 (23)

	 ( ), ,  0,  v x t cos t at xω= = 	 (24)

	

( ),
0,   1

v x t
at x

x
∂

= =
∂

,	 (25)
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5. � Solution Technique
Fundamental concept of ADM

ADM is used to decompose the unknown function ( ),u x t  into a sum of an infinite 
number of components defined the decomposition series.

	 ( ) ( )
0

, ,  n
n

u x t u x t
∞

=

=∑ 	 (26)

The decomposition method is used to find the components

	 ( ) ( ) ( )0 1 2, , , , ,u x t u x t u x t …
	

separately. The Determination of these components can be obtained through simple 
integrals. To give a clear overview of ADM, we consider the partial differential equation in 
an operator form as

	 ( ) ( ) ( ) ( ) ( ), , , , ,t xL u x t L u x t Ru x t Nu x t g x t+ + + = 	 (27)

	 ( ) ( ) ( ) ( ) ( ), , , , ,t xL u x t g x t L u x t Ru x t Nu x t= − − − 	 (28)

where 
2

2xL
x
∂

=
∂

 and tL
t
∂

=
∂

 are used in partial differential equation as linear operators 

and simply invertible, ( ),  g x t  is a term of source, ( ) ,Ru x t  is a residual linear term, and 
( ),Nu x t is analytical term which is non-linear and can be expanded in the nA  that is A 

domian polynomials.
After applying the inverse operator 1

xL−  to both sides of Equation (28), we write 

	 ( ) ( ) ( ) ( ) ( )1 1 1 1 1 ,  ,  ,   , ,x t x x t x xL L u x t L g x t L L u x t L Ru x t L Nu x t− − − − −= − − − 	 (29)

	 ( ) ( ) ( ) ( ) ( )1 1 1, , , , ,x t x xu x t f x t L L u x t L Ru x t L Nu x t− − −= − − − 	 (30)

Here the function ( ),f x t  shows the terms arising form ( )1 ,  xL g x t− after using the 
condition and the inverse operator ( )1

.
*x

xL dxdx− = ∫∫  which is used for second-order 
partial differential equation (P.D.E)

The series of this method ( ),u x t  is defined as:

	
( ) ( )

0

, ,n
n

u x t u x t
∞

=

=∑ 	 (31)

	 ( ) ( ) ( ) ( ) ( )1 1 1

0 0 0 0

, , , , ,  n x t x x
n n n n

u x t f x t L L u x t L R u x t L N u x t
∞ ∞ ∞ ∞

− − −

= = = =

= − − −∑ ∑ ∑ ∑ 	 (32)

The term expanded which is non-linear in Adomian decomposition polynomials as:
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( )( )

0

,  n
n

N v x t A
∞

=

=∑ 	 (33)

Where the components ( ) ( ) ( )0 1 2, , , , ,u x t u x t u x t …  are periodically derived as:

	

( ) ( ) ( )
( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( )

0 1 2
1

0 1 2

1
0 1 2

1
0 1 2

, , ,

, , , ,

, , ,
x t

x

x

u x t u x t u x t

f x t L L u x t u x t u x t

L R u x t u x t u x t

L N A A A

−

−

−

+ + +…

= − + + +…

− + + +…

− + + +…

	 (34)

To govern the components of the series ( ) ( ) ( )0 1 2, , ,u x t u x t u x t+ + +… , it is significant 
to note that ADM proposes that the zeroth module of ( )0 ,u x t  is usually distinct by the 
function ( ) ,f x t  describes as:

	 ( ) ( )0 , , ,u x t f x t= ( ) ( )( ) ( )( ) ( )1 1 1
1 0 0 0, , ,x t x xu x t L L u x t L R u x t L N A− − −= − − −

	
( ) ( )( ) ( )( ) ( )1 1 1

2 1 1 1, , ,x t x xu x t L L u x t L R u x t L N A− − −= − − −
	

	
( ) ( )( ) ( )( ) ( )1 1 1

3 2 2 2, , ,    x t x xu x t L L u x t L R u x t L N A− − −= − − − 	 (35)

And so on.

6. � The ADM Solution of Lift Problem
Rewrite Equation (17) in the L operator form of ADM, we get

	

( )
2

2

22 2

1 2 2

23 2 2

1 3 2 2

,

6

6

x t
v vL v x t S Mv
t t x

v v v
x xt x

v v v
t xt x x

α

β β

γ γ

 ∂ ∂ ∂
= + + −   ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂   − −       ∂ ∂∂ ∂     
 ∂ ∂ ∂ ∂ ∂ − −     ∂ ∂∂ ∂ ∂  

	 (36)

Using the inverse operator 1
xL− , we get

	

 
2

2

22 2

1 2 2

23 2 2

1 3 2 2

,

6

6

x t
v vL v x t S Mv
t t x

v v v
x xt x

v v v
t xt x x



 

 

   
         

                      
                 

	 (37)
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 
2

1
0 1

0 0

1 1 1
1

0 0 0

1 1
1

0 0

,
2

6

6

t x n
n n

x n x n x n
n n n

x n x n
n n

xv x t b b x S ML v

L A L B L C

L D L E

  

 

 


 

  
  

  

 
 

 

 
      

 
     

       
          
   

    
      

 

  

  	 (38)

ere ,, , ,  and n n n n nA B C D E  are adomian polynomials and define as,
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∑ ∑ ∑
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The components of velocity profile are obtained by comparing both side of equation 
(40)

Zeroth component problem:

	
( )

2

0 0 1,
2t
xv x t b b x S= + + 	 (41)

Solution of zeroth component problem using boundary conditions given in equation 
(18) and (19) is:

	
( ) ( ) ( ) 2
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2 2
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First component problem:
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	 (43)
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The first component problem solution using boundary conditions given in Equations 
(18) and (19)
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	 (44)

Second component problem:
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−
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−   

	 (45)

The first-order analytical result has been computed while graphical solutions are 
provided up to second order due to massive calculation (Error! Reference source not 
found.).

7. � The ADM Solution of Drainage Problem
The model for drainage problem is the same as for the lift problem. The only difference 
in this problem is that the belt is only oscillating and due to the draining of thin film, 
stock number is positively mentioned in Equation (23). After rewriting equation (23) in 
L operator form of ADM, then using boundary conditions Equations (24) (25) we get the 
components of the problem are

Zeroth component problem:

	
( )

2

0 0 1,
2t
xv x t b b x S= + − 	 (46)

The zeroth component problem solution using boundary conditions which is given in 
Equations (24) and (25) is

	
( ) ( ) ( ) 2
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2 2
t tS S

v x t t t x xω ω
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   

	 (47)
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First component problem: 
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The first component problem solution by using boundary conditions which is given in 
Equations (24) and (25)
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Second component problem: 

	

( ) ( )1 1 11
2 1 1

1 1 1 1
1 1 1 1 1 1

,

6 6

x x x

x x x x

v
v x t L ML v L A

t
L B L C L D L E

α

β β γ γ

− − −

− − − −

∂ 
= + −     ∂ 
− − − −               	 (50)

The first-order analytical result has been computed while graphical solutions are 
provided up to second order due to massive calculation (Error! Reference source not 
found.).

8. � Effects of Non-dimensional Parameters

8.1. � Results and Discussion
The analytical solutions are examined for unsteady MHD thin layer flow of fourth-order 
fluid through a vertical belt which is oscillating and also moving. The arrived non-linear 
partial differential equations of both drainage and lift problems are solved by using the 
ADM and results are also shown by graphically. 

Figure show the geometry of lift and drainage problems, respectively. Figure 1 and 
Figure 2 show the graphical results for the velocity profile of both lift and drainage 
problems respectively at altered values of the inserted parameters. Whereas the effects of 
other physical parameters t, st, α, β, γ and M on velocity field for both lift and drainage 
problems are examined in Figures 3–10. All the results are computed in the x − coordinate 
only for a certain domain 0,1 x∈   . In Figure 3 and Figure 4 showing the effect of β  on 
lift and drainage velocities respectively in both cases we noticed that the velocity profile 
increases as the value of β  increases. In general, the Newtonian fluid shows much thinner 
boundary film than non-Newtonian fluid due to the reduced apparent viscosity. The 
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outward viscosity of the fluid become more bulky (domination of viscous forces) due to 
the increment in fourth-order parameters then the flow will adjust simultaneously to the 
driving force which is present and closely oscillate with the congruent phase in the whole 
domain of flow. Therefore, increment in non-Newtonian parameters α, β, γ, β1, and γ1, 
of second, third, and fourth-order fluids causes more thickening of the boundary layer. 
So increment in these parameters increases the field of velocity for both lift and drainage 
problems shown in Figure 3, Figure 4, Figure 5, Figure 6. The effects of  tS are shown 
in Figure 7 and Figure 8 on lift and drainage velocities, respectively. From Figure 7, we 
perceived that the lift velocity decreases by increasing the value of ,tS  whereas in Figure 8 

 

 FIGURE 3.  ADM technique for velocity profile of lift problem by taking . ω = 5, α = 0.02, β 
= 0.4, γ = 2.0, β1 = 0.1, St = 0.2, γ1 = 0.01, t =3, M =0.5.

 

 FIGURE 4.  ADM technique for drainage velocity profile by using ω = 5, α = 0.02, β = 0.4,  
γ = 2.0, β1 = 0.3, St = 0.2, γ1 = 0.04, t = 3, M = 0.5.
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increasing in the value of tS  drainage velocity increases. This relates to the frictional force 
that causing the effect of gravity and it appears to be smaller near to the belt. While towards 
the free surface it gradually increases. In Figure 9 and Figure 10 showing the variation of 
the magnetic parameter M on the lift and drainage velocity profiles Increase in magnetic 

 

 FIGURE 5.  Influence of third-order parameter β  of velocity profile on lift problem when 
α = 0.2, ω = 5, γ = 2.0, β1 = 0.7, St = 0.2, γ1 = 0.2, t = 3, M = 0.5. 

 

FIGURE 6.  Influence of third-order parameter β  of velocity profile on Drainage problem 
when ω = 5, α = 0.2, γ = 2.0, β1 = 0.7, St = 0.2, γ1 = 0.2, t = 3, M = 0.5 .
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parameter increases the velocity profile in lift problem but in drainage problem, it is clear 
that the boundary layer thickness is reciprocal to the transverse magnetic field and velocity 
decreases as flow progresses towards the surface of the fluid are Figures 11 and 12. 

 

 FIGURE 7.  Effect of fourth-order parameter γ on lift velocity profile when ω = 5, α = 0.2, β 
= 0.1, β1 = 0.7, St = 0.2, γ1 = 0.2, t = 3, M = 0.5.

 

 FIGURE 8.  Effect of fourth-order parameter γ on drainage velocity profile when ω = 5, α 
= 0.2, β = 0.4, β1 = 0.7, St = 0.2, γ1 = 0.2, t = 3, M = 0.5.
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FIGURE 9.  Influence of stock number St on lift velocity profile when ω = 5, α = 0.2, β = 0.4, 
β1 = 0.3, γ = 2.0, γ1 = 0.3, t = 3, M = 0.5.

 

 
FIGURE 10.  Influence of stock number St on drainage velocity profile when ω = 5, α = 0.2, 
β = 0.4, β1 = 0.3, γ = 0.5, γ1 = 0.3, t = 5, M = 0.5.



Analysis of Unsteady MHD Thin Layer Flow of Fourth-Order Fluid Through a Vertical Belt

314 / 315 Indian Journal of Science and Technology� Vol 13(03), DOI: 10.17485/ijst/2020/v13i03/148554, January 2020

9. � Conclusion
The analytical solutions for unsteady MHD thin layer flow of fourth-order fluid through 
an oscillating and moving vertical belt is obtained. The belt is translating and oscillating for 
lift velocity distribution while the belt is only oscillating for drainage velocity profile. The 

 

FIGURE 11.  Effect of magnetic parameter M on lift velocity profile when ω = 5, α = 0.2, β 
= 0.2, β1 = 0.3, γ = 2.0, γ1 = 0.3, t = 3, St = 0.2.

 

FIGURE 12.  Effect of magnetic parameter M on drainage velocity profile when ω = 5, α = 
0.2, β = 0.4, β1 = 0.3, γ = 2.0, γ1 = 0.3, t = 3, St = 0.2.
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non-linear partial differential equations are modeled for both drainage and lift problems 
and solved by using analytical technique ADM. The graphical results of velocity profile 
and the effects of physical parameters have been provided and discussed.
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