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Abstract
Objectives: This paper introduces a novel 4D autonomous dynamic 
system with five line equilibria and a smooth nonlinearity. Methods/
statistical analysis: The new model is obtained by adding one 
more freedom degree to the 3D jerk system recently introduced by 
Kengne and Mogue, 2018. To analyze and study the model, Ruth 
criterion principle is used for the stability of different lines equilibria. 
Using traditional dynamics tools such as bifurcation diagrams, phase 
portraits, Poincare section, power spectrum, and Pspice software, 
the dynamic of the system is carried out. Findings: The new 
elegant system has an extremely rich dynamics predominated by 
the phenomenon of extreme multistability. The various sequences 
of coexisting route to chaos (coexisting bifurcation) confirm the 
uncertain destination of our novel elegant system. Note that, for 
the best of author’s knowledge, this is one of the best reproducible 
extreme multistable system because is not a flux control memristor-
based system. Application/improvements: The results obtained in 
this investigation enrich the literature and being used to improve 
the extreme multistability application in many research domains  
such as Random Number Generation (RNG) and image encryption.

Keywords: Five line equilibria, Extreme multistability, Composite 
tanh-cubic nonlinearity, PSpice simulations.

1.  Introduction
In recent years, multistability has been the subject of several research projects [1–8]. This 
complex feature of chaotic systems started attracting scientists’ attention in 1986 [9–10]. 
It is mainly characterized by its extreme sensitivity to initial conditions and noises (any 
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undesirable quantities that can affect the dynamic states of the system). Over the years, 
researchers have developed robust analysis methods (basin of attraction and Lyapunov 
diagram of initial conditions) to characterize this phenomenon in dynamic systems. 
However, some challenges are still to be raised. 

The first step consists in defining an analytical method for predicting multistability 
in a dynamic system which for the moment remains a mystery. The second step consists 
in defining beforehand the maximum number of attractors that a chaotic oscillator 
could generate. So far only the infinity of solution allows limiting the higher number of 
coexisting attractors for a given model. After this analysis, a question comes to our mind: 
how to get a chaotic oscillator so that the dynamics is extremely sensitive to the initial 
conditions? Before going into the work proper, let’s recall a few words the previous works 
whose focus was on extreme multistability. Some Scientists teams focus their works on 
this particular field. This include Kengne team [5,6,8–11], B. Bao team [12–15] just to 
name a few, because of their applications in various domains such as telecommunication, 
Engineering, and neural network [16].

In line with the above-mentioned raison, the paper focuses on the uncertain destination 
of a novel 4D autonomous system with five line equilibria. The work proposes a novel 
4D autonomous dynamics system with five line equilibria which experiences the extreme 
multistability phenomenon. It is important to mention that most of the dynamics system that 
experience the extreme multistability are flux-control memristor-based circuits nowadays 
[12–13,17–20]. Due to the fact that the memristor device presented by HP company in 
2008 is not yet marketable, almost all the above-mentioned extreme multistability dynamic 
systems are achieved using a simulator or emulator of memristor component. Therefore, to 
achieve particular dynamic system experience extreme multistability without memristor 
simulator presents a great advantage over those with memristor simulator or emulator. 
Moreover, the system under investigation has five line equilibria whose stability leads to an 
extremely rich dynamics of our new system. This system is obtained by modifying the jerk 
system with smooth composite tanh-cubic nonlinearity [8] by adding one more dimension 
with a quadratic nonlinearity. Thus, we come out with a new elegant 4D autonomous 
system with two nonlinearity terms. The first nonlinear term tanh-cubic function presents 
five zeros which are clearly represented in Figure 1. Consequently, the elegant extreme 
multistable system under our investigation has five line equilibria. Therefore, we obtained 
a new 4D autonomous chaotic dynamic system with extreme multistability, where the 
circuit implementation is achieved without any memristor simulator or emulator. This 
new elegant extreme multistable system presents certain irrefutable advantages over 
other systems: firstly, it has a smooth nonlinear function; secondly, it offers up to five 
line equilibria presented in the previous Figure 1, and thirdly, the system exhibits the 
phenomenon of extreme multistability. Therefore, our new extreme multistable system 
is useful in many scientists’ domains [21]. This manuscript presents a singular dynamic 
system with five line equilibria which exhibits extreme multistability phenomenon. It is 
important to mention that in the literature, most of the extreme multistability systems 
are reported with no equilibria [6], with three points equilibria, with a line equilibria 
[14,17,22], and so on but never has a singular system with five line equilibria exhibiting 
extreme multistability phenomenon been reported to the best of our knowledge.
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The different parts of this manuscript are presented as follows: in section 2, we present 
the mathematical equations and peculiar properties of the system and its analytical 
analysis. The nature of the system’s rest lines and their stability are established under 
this section. In section 3, the different numerical methods of analysis are presented. 
Figures of bifurcation diagrams under system parameters and under initial conditions are 
presented. Phase portraits and Poincare sections are also plotted, confirming the different 
sequence observed in previous bifurcation diagrams. Section 4 focuses on the analysis 
of the practical feasibility of the model. This is implemented by the PSpice realization of 
the new stylish 4D autonomous extreme system. Finally, conclusion and remarks of our 
contribution constitute section 5. 

2.  Mathematical Equations and Peculiar Properties

2.1.  Mathematical Model
The mathematical model of the new autonomous system under our investigation in this 
article is given by the following four coupled first-order nonlinear differential equations: 

 

1 2

2 3 4 3
3

3 1 1 2 3

4 3

2 tanh( )

x x
x x x x

x x x ax bx
x x

=
 = −


= − − −
 = −









 (1)

Where the over dot mentions derivation with respect to time, a and b are system’s 
parameters. This system is obtained by modifying the jerk system recently presented by 

FIGURE 1. Nonlinear function of the system which has five zeros. It clearly appears that 
out of range 13 3x− ≤ ≤  the function is a straight line.
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[8]. We introduce one more freedom degree with a quadratic nonlinearity represented 
by the term x4x3. The second nonlinear term of the system is the tanh cubic function

3
1 1( ) 2 tanh( )g x x= . The curve of this nonlinear function is represented in Figure 1. It is 

important to observe that this function has five zeros and a smooth nonlinear region and 
out of the range 13 3x− ≤ ≤  the function is a straight line. After the above-mentioned 
modifications, we come out with an interesting autonomous chaotic which experiences 
extreme multistability for which the experimental achievement does not require any 
memristor simulator or emulator. Therefore, because of the lack of electronic component 
TiOS2 presented by the HP Company in commercial area [23], our new elegant extreme 
dynamic system can be used in engineering. The new extreme dynamic system obtained 
has certain irrefutable characteristics over other systems: (a) the new 4D system is elegant 
with only two control parameters. (b) The system also has five line equilibria with a great 
contribution under the extreme rich dynamic of the system. (c) The system experiences an 
extreme multistability phenomenon.  

2.2.  Dissipation and Existence of Attractors
Many scientists have shown that nonlinear dissipative systems can experience chaotic 
behavior [24,25]. In order to ensure that the system (1) is chaotic, we consider the 
constraint of dissipativity which is given as: 

 1 2 3 4

31 2 41 d
dt

xx x x
x x x x

υ
υ

+ + +
∂∂ ∂ ∂

Λ = =
∂ ∂ ∂ ∂

  

 (2)

We mention that if Λ is a constant, then the time evolution in phase space is determined 
by 0( ) tetυ υ Λ=  Where 0 ( 0)tυ υ= = . Thus, if 0Λ<  the dynamics of the system is dissipative 
and can experience or present attractors. For 0=Λ , phase space volume is conserved and 
the dynamical system is conservative. If 0Λ >  the volume in phase space expands, and 
hence there exist only unstable fixed points or cycles or possible chaotic behavior [26–27] 
i.e., the dynamics diverges at long term (i.e., for t →∞) if the initial conditions do not lie 
exactly on one of the fixed points or stationary states. Referring to the model in (1), it can 
easily be shown that 0b= − <Λ for all ix : 1,..., 4i = . Since b is a positive parameter system, 
consequently our model is dissipative, thus the system can support the attractor.

2.3.  Fixed Points and Stability
The complexity of the dynamic system strongly depends on the analysis of its fixed points 
[26]. The suggested system possesses five line equilibria given by the following system (3):
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Where ε  is a real number and 1 2 02; 0.7237; 0s s s= ± ≈ ± =  are five zeros of the tanh 
smooth nonlinear function. To come out with the stabilities of those five line equilibria, 
the Jacobian matrix of our system evaluated at any rest line is given in Eq. (4) as follows:

 4

2 2 3
1 1

0 1 0 0
0 0 1 0

1 0
0 0 1 0

6 (1 tanh ( ))

j
x

M
Q a b

with Q x x

 
 − =  − − −
 

−  
= −

 (4a)

  (4b)

The nature of those five rest lines is the keyword to predict the dynamics of this new 
elegant system. It is worth noticing that the function Q  is an odd function; therefore, lines 

1 4L and L  have the same nature, and 2 5L and L also have the same nature. Remaining that 
at any line equilibria, 3

1 12 tanh( )x x= after mathematical manipulation, the eigenvalues of 
the above matrix are solutions of the following characteristic equation (det( ) 0j dM Iλ− = ): 

 4 3 2 1 0
3 2 1 0 0A A A Aλ λ λ λ λ+ + + + =  (5)

Where the coefficients are given by the following equations 
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2

2 4
1 1 1

0

(1 )
36 (1 ) ( 1) 1
2

0

A b
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A x x

A

ε

ε ε ε

=
 = −


= + − + − −


=

 (6)

Based on the Routh stability criterion [26–27], the line equilibria L3 is always unstable.
By replacing the values of coordinates of lines L1 and L4 followed by few mathematical 

manipulations, it shows that equilibria lines L1 and L4 are also unstable. Concerning the 
line equilibria L2, after substitution and mathematical calculation, it is appears that line 
equilibria L2 is stable on the condition 1ε < ; consequently, the line equilibria L5 is also 
unstable. From the above analyses, it is worth mentioning that our five line equilibria 
system always has 3 unstable line equilibria (L1, L4, and L0). 

3.  Numerical Simulation
The way chaos behaviour is defined focuses on the solution of Eq. (3) numerically obtained 
using the fourth-order Runge Kutta method. For each set of system parameter used 
in this scientific exploration, the time step is always chosen as 35 *10τ −∆ = during the 
computation. The set of differential equations of Eq. (3) are simulated for a considerably 
long time. In order to observe the real phenomena without disturbances, the transient time 
has been cast off. In this section, the traditional techniques of dynamic systems analysis 
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such as bifurcation diagrams, Poincare sections, and phase portraits are our elements 
of observation of the system towards a chaotic motion. Moreover, to track the zone of 
coexisting infinity numbers of attractors, the bifurcation diagrams are obtained by varying 
the control parameter in the first case and initial conditions in the second case with the 
same time step to observe whether the system presents a rich and extreme sensitivity 
to initial conditions [17]. Similarly, for a deep tracking method, some phase portraits 
diagrams are programmed with the same conditions as in the bifurcation diagram in order 
to fund confirmation of the different scenarios observed in bifurcations diagrams.

3.1.  Effect of Initial Condition on Bifurcation Diagrams
To make the extreme effect of initial conditions on bifurcation diagrams perceptible,  
Figure 2 shows the bifurcation diagrams of our new system showing local maxima of 
the coordinate 2x  of the attractor in terms of the control parameter a  that is increased 
in tiny in the range 0.5 1a≤ ≤ : (a) corresponds to initial conditions (0,−1.8,0,−1.7), (b) 
corresponds to initial conditions (0,0.1,0,−1.7), and (c) corresponds to initial conditions 
(0,−2,0,−6) with 0.92b = . The diagram in (a), (b), and (c) shows different routes to chaos 
by adjusting initial conditions. As far as on the second system parameter ‘b’, this extreme 
dependence on initial conditions is also observed in Figure 3. Showing bifurcation diagrams 
plotting local maxima of the coordinate 2 ( )x τ  versus control parameter ‘b’ between 
0.15 1.4b≤ ≤  keeping 0.75a =  and  

xi(i=1.3)(0)=(0,0.1,0). By varying only initial conditions 
4 (0)x  graph ( ),( ),( ),( )a b c d  plotted correspond respectively for 4 4(0) 1.7, (0) 3,x x= − = −

4 4(0) 6, (0) 8x x= − = − . We can observe on these different graphs the effect of the single 
initial condition 4 (0)x on the dynamic of the system with various routes to chaos. 

In order to confirm the different scenarios presented by those bifurcation diagrams, 
Figure 4 shows phase space trajectories (left) and corresponding double side Poincare 
section (right) confirming the sequence of the bifurcation in Figure 2c by varying parameter 
“a” while keeping at 0.92b = : (a) Period-1 for 0.9a = , (b) Period-2 for 0.79a = , (c) single-
band chaos for 0.7a = , and (d) double-band chaos for 0.6a = . We can effectively confirm 
that attractors occur in a rhythm predicted by the bifurcation diagram in Figure 2c with 
the same initial conditions (0, 2,0, 6)− − .

3.2.  Occurrence of Infinite Number of Attractors
Extreme multistability phenomenon as earlier said is a capability for a dynamic system 
to produce an infinity number of attractors under initial condition influences [22]. 
Therefore, to show the extreme multistability characteristic of our new 4D system, 
bifurcation diagrams versus initial conditions are the best tool for that. In this case, 
Figure 5 shows bifurcation as a sequence showing local maxima of the coordinate 4x
versus initial state 4 (0)x : ( )a plotted in the range 416 (0) 0x− ≤ ≤  while keeping 0.75a = , 

0.2b = (1,2,3)(0) (0,0.1,0)ix = = , ( )b plotted in the range 48 (0) 0x− ≤ ≤  while keeping 
0.9a = , 0.55b = (1,2,3)(0) (0, 0.2,0)ix = = − , and ( )c plotted in the range 414 (0) 0x− ≤ ≤  

while keeping 0.6a = , 0.92b = (1,2,3)(0) ( 0.1,0.8, 0.2)ix = = − − . These bifurcations diagrams 
effectively show that our new 4D system exhibits extreme multistability phenomenon. 
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FIGURE 2. Bifurcation diagrams of the system showing local maxima of the coordinate 

2x  of the attractor in terms of the control parameter a  that is increased in tiny in the range 
0.5 1a≤ ≤ : (a) correspond of initial conditions (0, −1.8,0, −1.7) while (b) correspond of initial 
conditions (0,0.1,0,-1.7). (c) correspond of initial conditions (0, −2,0,−6) with 0.92b = . The 
diagram in (a), (b), and (c) shows different routes to chaos by adjusting initial conditions.
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To confirm the sequence phenomenon under initials conditions, Figure 6 shows sample 
phase portraits (left) and corresponding time series (right), showing the occurrence 
of infinity many attractors in the system obtained for different values of 4 (0)x  with

(1,2,3)(0) (0, 0.2,0)ix = = − , the control parameter being fixed at 0.9a = , 0.55b =  as in Figure 
5b: (a) period-1 cycle for 4 (0) 8x = − , (b) period-2 cycle 4 (0) 6x = − , (c) period-4 cycle 

4 (0) 5.2x = − ,(d) two-band chaos 4 (0) 4.9x = − , (e) single scroll chaos for 4 (0) 3.2x = − , and 
(f) double scroll chaos for 4 (0) 1.85x = − . In order the observe some the strange attractors 
that can produce for a fixed system parameters and initial conditions, Figure 7 shows two-
dimensional views of the attractors obtained for 0.6, 0.92a b= = , with initial conditions 
xi(i=1.4)(0)=(1,0.0,0.0,–9). Note that there is synchronization between the state vector’s 
components 2 4x and x .

4.  Pspice Simulation
This section aims at investigating the practical feasibility of this novel 4D autonomous 
system with appropriate technics [28–30]. As previously stated, our new system 
exhibits coexistence of infinity numbers of attractors; therefore, it is interesting to look 

 

 
FIGURE 3. Bifurcation diagrams showing local maxima of the coordinate 2( )x τ  versus 
control parameter b between 0.15 1.4b≤ ≤  keeping 0.75a =  and xi(i=1.3)(0)=(0,0.1,0). 
By varying only initial conditions 4 (0)x  graph ( ),( ),( ),( )a b c d  plotted correspond respec-
tively for: 4 4(0) 1.7, (0) 3,x x= − = − 4 4(0) 6, (0) 8x x= − = − . We can observe on the different 
graphs the effect of the single initial condition 4 (0)x on the dynamic of the system with 
various routes to chaos.
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for the practical feasibility. This will be carried out by analog calculator using PSpice 
implementation of the proposed system. Taking support on the system (1), we obtained 
Figure 8 representing the analog equivalent circuit of our dynamic system in which part 
(a) is the screen capture of PSpice simulation model of our new system and part (b) the 
equivalent circuit of tanh function as model in [8]. Using KVL and KCL we come out 
with the following differential equations system giving relationship among different state 
variables (υCi(1.4))of the equivalent analog circuit of our new elegant model. 

 

1
2

1 1

2
3 4 3

3 2 2 2

3
1 2 3

4 3 5 3 3 3

4
3

6 4

1

1 1

1 1 1 1

1

C
C

C
C C C

C
C B C C

a b

C
C

d
dt R C

d
dt R C R C

d
dt R C R C R C R C

d
dt R C

υ
υ

υ
υ υ υ

υ
υ υ υ υ

υ
υ


=




= −


 = − − −


 = −


 (7)

We build this equivalent circuit in PSpice using TL084 OP Amp type with a symmetric
15v± voltage source. According to Eq. (7), resistors and capacitors have been set to be in 

the range of system’s parameters. More precision is given in Table 1. 
We first chose to present the practical feasibility of infinity numbers of coexistent 

attractors by varying the initial conditions of the capacitor c4 (representing the state 
variable x4(0) in our new system). For this purpose, using system (7), different values of 
initials conditions x4(0) leads to various routes to chaos presented in Figure 9 in which 

 
FIGURE 4. Phase space trajectories (left) and corresponding double side Poincare section 
(right) confirming the sequence of the bifurcation in Figure 2c for varying a while keeping 

0.92b = : (a) Period-1 for 0.9a = , (b) Period-2 for 0.79a = , (c) single-band chaos for a=0.7, 
and (d) double-band chaos for 0.6a = . Attractors occur in rhythm describe by Figure 2c 
with the same initial conditions (0, 2,0, 6)− − .
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FIGURE 5. Bifurcation like sequence showing local maxima of the coordinate 4x ver-
sus initial state 4 (0)x : (a) plotted in the range 416 (0) 0x− ≤ ≤  while keeping 0.75a =
, 0.2b = (1,2,3)(0) (0,0.1,0)ix = = , (b) plotted in the range 48 (0) 0x− ≤ ≤  while keeping 

0.9a = , 0.55b = (1,2,3) (0) (0, 0.2,0)ix = = − , (c) plotted in the range 414 (0) 0x− ≤ ≤  
while keeping 0.6a = , 0.92b = (1,2,3)(0) ( 0.1,0.8, 0.2)ix = = − − .
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FIGURE 6. Sample phase portraits (left) and corresponding power spectrum (right), 
showing the occurrence of infinity many attractors in the system obtained for different 
values of 4 (0)x with (1,2,3)(0) (0, 0.2,0)ix = = − . The control parameter being fixed at 0.9a = , 

0.55b =  as in Figure 5b: (a) period-1 cycle for 4 (0) 8x = − , (b) period-2 cycle 4 (0) 6x = − , 
(c) period-4 cycle 4 (0) 5.2x = − , (d) two-band chaos 4 (0) 4.9x = − , (e) single scroll chaos for 

4 (0) 3.2x = − , and (f ) double scroll chaos for 4 (0) 1.85x = − .

TABLE 1. Values of electronic components used for PSpice simulations

Parameters Significations Values

Ri(i=1.10) Resistances 10 kΩ
Ci(i=1.4) Capacitors 10 nF

aR Tunable resistance 20 kΩ

bR Tunable resistance 20 kΩ

( 1,2,3)i iM = Ideal analog multiplier Unit gain

1 2,T T Amplifiers transistors Q2N2222

ccV DC voltage source 15 V
Ui(i=1.8) Operational amplifiers TL084
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both periodic and multiple chaotic attractors with different topological structures are 
plotted. For different values of initial conditions 4 (0)X  with Xi(i=1.3)(0)= (0.0 ,0.0 ,0.01 )V V V ,  
the parameters being fixed as 20aR k= Ω, 16.666bR k= Ω , ( )1..9 10iR i k= = Ω , and 
Ci(i=1.4)=10nf

 
the scenarios of routes to chaos are in perfect agreement as in Figure 6: 

FIGURE 7. Two dimensional views of the attractors obtained for 0.6, 0.92a b= = , with 
initial conditions 

 
xi(i=1.4)(0)=(1,0.0,0.0,–9). Notice that there is synchronization between the 

state vector’s components 2 4x and x .
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FIGURE 8. Circuit implementation for model of novel 4D autonomous extreme multi-
stable system (2): (a) circuit diagram of the system and (b) electronic equivalent circuit of 
tanh function.
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                                  (a)                                                                (b)

                                  (c)                                                                (d)

                                   (e)                                                                (f)
FIGURE 9. PSpice-based simulation of both periodic and multiple chaotic attractors 
with different topological structures for different initial conditions 4 (0)X with Xi(i=1.3)

(0)= (0.0 ,0.0 ,0.01 )V V V , the parameters being fixed as 20aR k= Ω , 16.666bR k= Ω , 
Ri(i=1.9)=10kΩ and Ci(i=1.4)=10nf as in Figure 6: (a) period-1 cycle for 4 (0) 0.055X V= − , (b) 
period-2 cycle for 4 (0) 0.0527X V= − , (c) period-4 cycle for 4 (0) 0.05X = − , (d) double-band 
chaos for 4 (0) 0.01X = − , (e) mono scroll chaos for 4 (0) 0.0X = , and (f ) multi-scroll chaos 
for 4 (0) 0.03X = .
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                                   (a)                                                                (b)

      
                               (c)                                                                  (d)

(e)

FIGURE 10. Two dimensional views of the attractors in PSpice, parameters are those 
in Figure 3 with initial conditions Xi(i=1.4)=(0V,–2V,0V,–6V)

 
by varying aR  and keeping 

10869bR = Ω: (a) period-1 cycle for 12658.23aR = Ω, (b) period-2 cycle for 13658.23aR = Ω, 
(c) period-4 cycle for 13858.23aR = Ω, (d) mono scroll band chaos for 14658.23aR = Ω, and 
(e) multi-scroll band chaos 17658.23aR = Ω.
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(a) period-1 cycle for 4 (0) 0.055X V= − , (b) period-2 cycle for 4 (0) 0.0527X V= − ,  
(c) period-4 cycle for 4 (0) 0.05X = − , (d) double-band chaos for 4 (0) 0.01X = − , (e) mono 
scroll chaos for 4 (0) 0.0X = , and (f) multi-scroll chaos for 4 (0) 0.03X = . Therefore, it is clear 
that the analog equivalent circuit of our new elegant circuit exhibits extreme multistability 
phenomenon without any memristor simulator or emulator. These results confirm the 
numerical results in previous sections.

Secondly, the practical feasibility of the scenario of route to chaos base on one 
parameter system is presented in the analog equivalent circuit. For the system parameter 

10869bR = Ω corresponding to 0.92b =  keeping fixe, two-dimensional views of the 
attractors in PSpice, parameters are those in Figure 4 are plotted in Figure 10 with 
initial conditions Xi(i=1.4)=(0V,–2V,0V,–6V). By varying aR , the following scenario are 
observed: (a) period-1 cycle for 12658.23aR = Ω, (b) period-2 cycle for 13658.23aR = Ω ,  
(c) period-4 cycle for 13858.23aR = Ω, (d) mono scroll band chaos for 14658.23aR = Ω,  
and (e) multi-scroll band chaos 17658.23aR = Ω.Those phase portraits are in total 
accordance with those in Figure 4. These results also confirm the numerical results in the 
previous sections.

5.  Concluding Remarks
This investigation was based on the new 4D autonomous dynamic system with five line 
equilibria and a smooth nonlinearity. The new model is obtained adding one more freedom 
degree to the 3D jerk system recently introduced by. We apply Routh criterion principle 
for the stability of different lines of equilibria. The new elegant system has an extremely 
rich dynamic predominated by the phenomenon of extreme multistability. Note that to 
the best of authors’ knowledge, this is one of the best reproducible extreme multistable 
systems because its analog equivalent circuit works without any memristor simulator or 
emulator. This rich dynamics has been shown using traditional tools such as bifurcation 
diagrams, phase portraits, Poincare section. Finally, PSpice implementation of the analog 
equivalent circuit of our new model has been realized to proof the practical feasibility 
of our new model. The PSpice results fully agree with  numerical results. To the best of 
author’s knowledge, the results of this investigation represent the first report of the striking 
and interesting phenomenon of extreme multistability in such dynamic systems and merit 
dissemination.
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