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Abstract
Objectives: This research seeks to explore the concept of enclave domination
in semi total line graphs, semi total point graphs, and to establish the sharp
bounds and key properties of the enclave domination number in these graphs.
Methods: This investigation explores enclave domination in semi-total graphs
by identifying dominating sets that meet the specific requirements of enclave
domination. The process involves determining vertex subsets where each
vertex outside the set is adjacent to at least one vertex within it, with particular
attention to the unique structural characteristics of semi-total graphs. Utilizing
standard definitions, key parameters, and specialized techniques, we achieved
significant results. Findings: Minimum enclave dominating sets in semi-total
graphs have been characterized. Exact values are obtained through the analysis
of lower and upper bounds in different standard graphs. Furthermore, the link
between the enclave domination number in semi-total point graphs and semi-
total line graphswas examined.Novelty : This study introduces newdefinitions
and explanations of enclave domination for semi total graphs, expanding the
field of domination theory. By looking at how these domination parameters
work in semi-total point graphs, these findings provide a new understanding
of their properties and how they relate to other graph parameters.
Keywords: Enclave Dominating Vertex; Enclave Dominating Set; Enclave
Domination Number; Semi-Total Point Graph; Semi-Total Line Graph

1 Introduction
In the realm of graph theory, domination is a vibrant area of investigation. We
concentrate on simple, finite, undirected, nontrivial, and connected graphs. For graph
theoretic terminology, we refer (1). Graphs have various special patterns like path, cycle,
star, complete graph, bipartite graph, complete bipartite graph, regular graph, tree etc.
We refer toHarary (2) for the definitions of all such graphs.The neighborhood of a vertex
𝑢 in 𝐺, denoted by 𝑁𝐺(𝑢) is the set of all vertices adjacent to 𝑢, that is 𝑁𝐺(𝑢) = {𝑣 ∈
𝑉 /𝑢𝑣 ∈ 𝐸}.Theclosed neighborhood of a vertex u inG is denoted by 𝑁𝐺[𝑢], is defined
as𝑁𝐺[𝑢] = {𝑢}∪𝑁𝐺(𝑢). The degree of a vertex 𝑢 , denoted by 𝑑(𝑢) is the number of
vertices in its neighborhood, or equivalently, the number of edges incident to 𝑢 , A
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vertex of degree one is called as a pendant vertex or leaf, whereas a vertex that is adjacent to a leaf is referred to as a supporting
vertex. The minimum and maximum degrees of a vertex in a graph G are denoted 𝛿(𝐺) and △(𝐺) respectively. A path
comprising 𝑛 vertices is denoted by 𝑃𝑛, and its length is defined as the number of edges it contains. The minimum distance
between two vertices u and v denoted by d(u,v), is the length of the shortest path connecting them.The greatest distance between
any two vertices of a connected graphG is called the diameter ofG and is denoted by diam(G).The corona product of two graphs
𝐺 and 𝐻 is 𝐺∘𝐻is defined as the graph obtained by taking one copy of 𝐺 and for each vertex 𝑣 ∈ 𝑉 (𝐺) connecting a disjoint
copy ofH such that v is connected to every vertex of the copy ofH. Given a vertex set S ⊆V in a graphG, a vertex u ∈ S is called
an enclave if N[u] ⊆ S, which is to say that the vertex u has no neighbors in V − S. A set S is called enclaveless if it contains
no enclaves. From (3,4) a vertex cover of G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex
cover in a graph G is called the vertex covering number of G and is denoted by 𝛽(G). From (5), A dominating setD in a graph G
is a subset of vertices where every vertex not inD is adjacent to a vertex inD.That is, for every 𝑣 ∈ 𝑉 , we find 𝑁[𝑣]∩𝐷 ≠ ∅.The
domination number denoted by 𝛾(𝐺) is the minimum cardinality of the dominating set of G. The enclave domination number
was introduced in (6) . A dominating set 𝐸𝑢 ⊆ 𝑉 (𝐺) is said to be an enclave dominating set if the set 𝐸𝑢has exactly one enclave
vertex u in it. And the vertex u is called enclave dominating vertex.Theminimum cardinality on all the enclave dominating sets,
known as enclave domination number of 𝐺It is denoted by 𝛾𝜀(𝐺) The semi-total line graph 𝑇1(𝐺), and the semi-total point
graph 𝑇2(𝐺) of a graph 𝐺 was studied in (7–9) and is defined as follows. For any graph 𝐺 = (𝑉 ,𝐸), The semi-total line graph
𝑇1(𝐺) is the graph whose vertex set is the union of vertices and edges in which two vertices are adjacent if and only if they are
adjacent edges of G or one is a vertex of G and the other is an edge of G incident with it. The semi-total point graph 𝑇2(𝐺) is
the graph whose vertex set is the union of vertices and edges, in which two vertices are adjacent if and only if they are adjacent
vertices of G or one is a vertex and the other is an edge of G incident with it. The study of split and non-split two domination
numbers of semi-total point graphs (8) motivated us to introduce the enclave domination number in semi-total graphs.

2 Methodology
In this work, we define the specific domination parameters studied, such as enclave domination, and outline the conditions
necessary for calculating them. The concept of an enclave dominating set, which includes exactly one enclave dominating
vertex, is introduced and analyzed for semi-total graphs.

3 Enclave Domination Number of Semi-Total Line Graphs
Theorem 3.1.

For any path 𝑃𝑛 with 𝑛 ≥ 2 vertices, 𝛾𝜖(𝑇1(𝑃𝑛)) = {
𝑛+3

2 , 𝑛 𝑖𝑠 𝑜𝑑𝑑
𝑛+2

2 , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
Proof:
Let 𝑃𝑛 be a path with 𝑛 ≥ 2 vertices, 𝑉 (𝑃𝑛) = {𝑢1,𝑢2, ...,𝑢𝑛}, 𝐸(𝑃𝑛) = {𝑒1,𝑒2, ...,𝑒𝑛−1} then 𝑉 (𝑇1(𝑃𝑛)) =

{𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ..., 𝑒𝑛−1}. To prove the equality, we have the following two cases,
Case(i): When 𝑛 is odd
In this case, the vertices𝑢1,𝑢𝑛,𝑢2𝑖(1 ≤ 𝑖 ≤ 𝑛−1

2 ) satisfy the definition of enclave domination and the corresponding enclave
dominating sets are as follows. 𝐸𝑢1

= {𝑢1,𝑢𝑛,𝑒𝑖/1 ≤ 𝑖 ≤ 𝑛−1,𝑖 ≡ 1(𝑚𝑜𝑑2)},
𝐸𝑢𝑛

= {𝑢𝑛,𝑢1,𝑒𝑖/1 ≤ 𝑖 ≤ 𝑛−1,𝑖 ≡ 0(𝑚𝑜𝑑2)}

∣𝐸𝑢1
∣ = ∣𝐸𝑢𝑛∣ = 2+ 𝑛−1

2 = 𝑛+3
2 (1)

𝐸𝑢2𝑖
= {𝑢2𝑖,𝑒2𝑖,𝑒𝑗,𝑒𝑘/1 ≤ 𝑗 < 2𝑖,2𝑖 < 𝑘 ≤ 𝑛−1,𝑗 ≡ 1(𝑚𝑜𝑑2),𝑘 ≡ 0(𝑚𝑜𝑑2)}

|𝐸𝑢2𝑖
| = 2+ 2𝑖

2 + 𝑛−1−2𝑖
2 = 𝑛+3

2 (2)

From Equations (1) and (2) we say that when 𝑛 is odd 𝛾𝜖(𝑇1(𝑃𝑛)) = 𝑛+3
2 .

Case(ii): When 𝑛 is even
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In this case, the vertices 𝑢1, and 𝑢𝑛 satisfies the definition of enclave domination and the corresponding enclave dominating
sets are, 𝐸𝑢1

= {𝑢1,𝑒𝑖/1 ≤ 𝑖 ≤ 𝑛,𝑖 ≡ 1(𝑚𝑜𝑑2)}, and 𝐸𝑢𝑛
= {𝑢𝑛,𝑒𝑖/1 ≤ 𝑖 ≤ 𝑛,𝑖 ≡ 1(𝑚𝑜𝑑2)}.

|𝐸𝑢1
| = |𝐸𝑢𝑛

| = 1+ 𝑛
2 = 𝑛+2

2 (3)

From Equation (3), we say that when 𝑛 is even 𝛾𝜖(𝑇1(𝑃𝑛)) = 𝑛+2
2 .

Theorem 3.2.
For any cycle 𝐶𝑛 with 𝑛 ≥ 3 vertices, 𝛾𝜖(𝑇1(𝐶𝑛)) = {

𝑛+3
2 , 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛+4
2 , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

Proof:
Let 𝐶𝑛 be a cycle with 𝑛 ≥ 3 vertices, 𝑉 (𝐶𝑛) = {𝑢1,𝑢2, ...,𝑢𝑛}, 𝐸(𝐶𝑛) = {𝑒1,𝑒2, ..., 𝑒𝑛} then𝑉 (𝑇1(𝐶𝑛)) =

{𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ..., 𝑒𝑛}. To prove the equality, we have the following cases,
Case(i): When 𝑛 is oddIn this case, the vertices 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 satisfies the definition of enclave domination and the

corresponding enclave dominating sets are in the following subcases,
Subcase(i)(a): For 𝑖 ≡ 1(𝑚𝑜𝑑2)
𝐸𝑢𝑖

= {𝑢𝑖,𝑒𝑗,𝑒𝑘/1 ≤ 𝑗 < 𝑖, 𝑖 ≤ 𝑘 ≤ 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2),𝑘 ≡ 1(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 1+ 𝑖+1

2 + 𝑛−𝑖
2 = 𝑛+3

2 (4)

Subcase(i)(b): For 𝑖 ≡ 0(𝑚𝑜𝑑2)𝐸𝑢𝑖
= {𝑢𝑖,𝑒𝑗,𝑒𝑘/1 ≤ 𝑗 < 𝑖, 𝑖 ≤ 𝑘 < 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2),𝑘 ≡ 0(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 1+ 𝑖

2 + 𝑛−1−𝑖
2 = 𝑛+3

2 (5)

From Equations (4) and (5) , we say that when 𝑛 is odd 𝛾𝜖(𝑇1(𝐶𝑛)) = 𝑛+3
2

Case(ii): When 𝑛 is even
In this case, the vertices 𝑢𝑖 for 1 ≤ 𝑖 ≤ 𝑛 satisfies the definition of enclave domination and the corresponding enclave

dominating sets are in the following subcases,
Subcase(ii)(a): For 𝑖 ≡ 1(𝑚𝑜𝑑2)

𝐸𝑢𝑖
= {𝑢𝑖,𝑒𝑛,𝑒𝑗,𝑒𝑘/1 ≤ 𝑗 < 𝑖, 𝑖 ≤ 𝑘 ≤ 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2),𝑘 ≡ 1(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 2+ 𝑖−1

2 + 𝑛−𝑖+1
2 = 𝑛+4

2 (6)

Subcase(ii)(b): For 𝑖 ≡ 0(𝑚𝑜𝑑2)
𝐸𝑢𝑖

= {𝑢𝑖,𝑒𝑗,𝑒𝑘}/1 ≤ 𝑗 < 𝑖, 𝑖 ≤ 𝑘 < 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2),𝑘 ≡ 0(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 1+ 𝑛

2 + 𝑛−𝑖+2
2 = 𝑛+4

2 (7)

From Equations (6) and (7), we say that when 𝑛 is even 𝛾𝜖(𝑇1(𝐶𝑛)) = 𝑛+4
2 .

Theorem 3.3 .
For any complete graph 𝐾𝑛 with 𝑛 ≥ 3 vertices, 𝛾𝜖(𝑇1(𝐾𝑛)) = 𝑛.
Proof:
Let 𝑉 (𝐾𝑛) = {𝑢1,𝑢2, ...,𝑢𝑛} be the vertices and 𝐸(𝐾𝑛) = {𝑒1,𝑒2, ....,𝑒 𝑛(𝑛−1)

2
} be the edge set of 𝐾𝑛 then 𝑉 (𝑇1(𝐾𝑛)) =

{𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ...., 𝑒 𝑛(𝑛−1)
2

}. Each vertex 𝑢𝑖 satisfies the enclave domination condition and the enclave dominating set
𝐸𝑢𝑖

will consist of 𝑢𝑖 along with its 𝑛−1 edge neighborhood vertices. The (𝑛−1) edge vertices in 𝐸𝑢𝑖
dominate all vertices in

𝑉 (𝑇1 (𝐾𝑛))−𝐸𝑢𝑖
. Thus 𝐸𝑢𝑖

forms theminimum enclave dominating set of (𝑇1(𝐾𝑛)) with |𝐸𝑢𝑖
| = 1+𝑛−1 = 𝑛.Therefore

𝛾𝜖(𝑇1(𝐾𝑛)) = 𝑛.
Theorem 3.4 .
For any complete bipartite graph 𝐾𝑚,𝑛 with 𝑚+𝑛 vertices, 𝛾𝜖(𝑇1(𝐾𝑚,𝑛)) = 𝑚+𝑛.
Proof:
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Let 𝑉 (𝐾𝑚,𝑛) = {𝑢𝑖,𝑣𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛} denote the vertex set, and 𝐸(𝐾𝑚,𝑛) = {𝑒𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}
denote the edge set of 𝐾𝑚,𝑛. Then the vertex set of 𝑇1(𝐾𝑚,𝑛)) is 𝑉 (𝑇1(𝐾𝑚,𝑛)) = {𝑢𝑖,𝑣𝑗,𝑒𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}.
The vertices 𝑢𝑖,𝑣𝑗 satisfy the enclave domination conditions, and their respective enclave dominating sets given as follows,
𝐸𝑢𝑖

= {𝑢1,𝑢2, ...𝑢𝑚,𝑒𝑖𝑗/1 ≤ 𝑗 ≤ 𝑛}, and 𝐸𝑣𝑗
= {𝑣1,𝑣2, ...𝑣𝑛,𝑒𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚}.

Clearly |𝐸𝑢𝑖
| = |𝐸𝑣𝑗

| = 𝑚+𝑛. Thus 𝛾𝜖(𝑇1(𝐾𝑚,𝑛)) = 𝑚+𝑛.
Theorem 3.5 .
For any star 𝐾1,𝑛 with 𝑛+1 vertices, 𝛾𝜖(𝑇1(𝐾1,𝑛)) = 𝑛+1
Proof:
Let 𝑉 (𝐾1,𝑛) = {𝑢,𝑢1,𝑢2, ....,𝑢𝑛}, 𝐸(𝐾1,𝑛) = {𝑒1,𝑒2, ...,𝑒𝑛} then the vertex set of 𝑇2(𝐾1,𝑛)

is{𝑢,𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ...,𝑒𝑛}. The vertices 𝑢,𝑢𝑖 satisfy the enclave domination conditions, the corresponding enclave
dominating sets are as follows, 𝐸𝑢 = {𝑢,𝑒1,𝑒2, ...𝑒𝑛}, and 𝐸𝑢𝑖

= {𝑒𝑖,𝑢1,𝑢2, ...,𝑢𝑛}. Clearly |𝐸𝑢| = |𝐸𝑢𝑖
| = 𝑛 + 1. Hence

𝛾𝜖(𝑇1(𝐾1,𝑛)) = 𝑛+1.
Theorem 3.6 .
For any bistar 𝐵𝑚,𝑛 with 𝑚,𝑛 ≥ 1, 𝛾𝜖(𝑇1(𝐵𝑚,𝑛)) = 𝑚+𝑛+1
Proof:
Let 𝑉 (𝐵𝑚,𝑛) = {𝑢,𝑣,𝑢𝑖,𝑣𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛} be the vertex set, and the edge set 𝐸(𝐵𝑚,𝑛) = {𝑒,𝑒𝑖,𝑒′

𝑗/1 ≤ 𝑖 ≤
𝑚,1 ≤ 𝑗 ≤ 𝑛} where the edge 𝑒 adjacent with vertices 𝑢,𝑣 the edge 𝑒𝑖 adjacent with the vertices 𝑢,𝑢𝑖, and the edge 𝑒′

𝑗 adjacent
with the vertices 𝑣,𝑣𝑗. Then the 𝑉 (𝑇1(𝐵𝑚,𝑛)) = {𝑢,𝑣,𝑒,𝑢𝑖,𝑣𝑗,𝑒𝑖,𝑒′

𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}. The vertices 𝑢𝑖,𝑣𝑗 satisfy the
enclave domination conditions and the corresponding enclave dominating sets are 𝐸𝑢𝑖

= {𝑒𝑖,𝑢1,𝑢2, ...,𝑢𝑚,𝑒′
1,𝑒′

2, ..., 𝑒′
𝑛},

and 𝐸𝑣𝑗
= {𝑒′

𝑗,𝑒1,𝑒2, ...,𝑒𝑚,𝑣1,𝑣2, ...,𝑣𝑛}.
Clearly |𝐸𝑢𝑖

| = |𝐸𝑣𝑗
| = 𝑚+𝑛+1, ∴𝛾𝜖(𝑇1(𝐵𝑚,𝑛)) = 𝑚+𝑛+1.

Theorem 3.7 .

For any wheel 𝑊𝑛, 𝑛 ≥ 3, 𝛾𝜖(𝑇1(𝑊𝑛)) =
⎧{
⎨{⎩

4, 𝑛 = 3
5, 𝑛 = 4

𝑛+5
2 , 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑛 > 4

𝑛+6
2 , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛, 𝑛 > 4

Proof:
Let 𝑢,𝑢1,𝑢2, ...,𝑢𝑛 be vertices of the wheel 𝑊𝑛 with 𝑑𝑒𝑔(𝑢) = 𝑛, and the 2𝑛 edges are denoted by

𝑒1,𝑒2, ...,𝑒𝑛,𝑒′
1,𝑒′

2, ..., 𝑒′
𝑛 where 𝑒𝑖 is the edge on the outer cycle, 𝑒′

𝑖 is the edge adjacent with 𝑢 and 𝑢𝑖. Then 𝑉 (𝑇1(𝑊𝑛)) =
{𝑢,𝑢𝑖,𝑒𝑖,𝑒′

𝑖/1 ≤ 𝑖 ≤ 𝑛}. For 𝑇1(𝑊𝑛) the enclave dominating sets are in the following cases,
Case(i): When 𝑛 = 3
In this case the vertices 𝑢,𝑢1,𝑢2,𝑢3 are enclave dominating vertices and their corresponding enclave dominating sets are,

𝐸𝑢 = {𝑢,𝑒′
1,𝑒′

2,𝑒′
3},𝐸𝑢1

= {𝑢1,𝑒′
1,𝑒2,𝑒3},𝐸𝑢2

= {𝑢2,𝑒′
2,𝑒1,𝑒2}, and 𝐸𝑢3

= {𝑢3,𝑒′
3,𝑒2,𝑒3}. The cardinality of all these

sets are equal to 4. Hence 𝛾𝜖(𝑇1(𝑊3)) = 4.
Case(ii): When 𝑛 = 4
In this case the vertices 𝑢,𝑢𝑖(1 ≤ 𝑖 ≤ 4) are enclave dominating vertices, their corresponding enclave dominating sets are,
𝐸𝑢 = {𝑢,𝑒′

1,𝑒′
2,𝑒′

3,𝑒′
4}, 𝐸𝑢1

= {𝑢1,𝑒′
1,𝑒1,𝑒3,𝑒4},

𝐸𝑢2
= {𝑢2,𝑒′

2,𝑒1,𝑒2,𝑒4}, 𝐸𝑢3
= {𝑢3,𝑒′

3,𝑒1,𝑒2,𝑒3}, and 𝐸𝑢4
= {𝑢4,𝑒′

4,𝑒2,𝑒3,𝑒4}.
The cardinality of all these sets are equal to 5. Hence 𝛾𝜖(𝑇1(𝑊4)) = 5.
Case(iii): When 𝑛 > 4,𝑛 is odd
In this case the vertices 𝑢𝑖(1 ≤ 𝑖 ≤ 𝑛) are enclave dominating vertices, their corresponding enclave dominating sets are in

the following subcases,
Subcase(iii)(a): For 𝑖 is odd
𝐸𝑢𝑖

= {𝑢𝑖,𝑒𝑖,𝑒′
𝑖,𝑒𝑗,𝑒𝑘/1 ≤ 𝑗 < 𝑖, 𝑖 < 𝑘 ≤ 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2),𝑘 ≡ 1(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 3+ 𝑛−𝑖

2 + 𝑖−1
2 = 𝑛+5

2 (8)

Subcase(iii)(b): For 𝑖 is even
𝐸𝑢𝑖

= {𝑢𝑖,𝑒𝑖,𝑒′
𝑖,𝑒𝑗,𝑒𝑘/1 ≤ 𝑗 < 𝑖, 𝑖 < 𝑘 ≤ 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2),𝑘 ≡ 0(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 3+ 𝑖

2 + 𝑛−𝑖−1
2 = 𝑛+5

2 (9)
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From Equations (8) and (9) we get that when 𝑛 > 4 and odd, 𝛾𝜖(𝑇1(𝑊𝑛)) = 𝑛+5
2 .

Case(iv): When 𝑛 > 4,𝑛 is even
In this case the vertices 𝑢𝑖(1 ≤ 𝑖 ≤ 𝑛) are enclave dominating vertices, their corresponding enclave dominating sets are in

the following subcases,
Subcase(iv)(a): For 𝑖 is odd

𝐸𝑢𝑖
= {𝑢𝑖,𝑒′

𝑖,𝑒𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 2+ 𝑛+2

2 = 𝑛+6
2 (10)

Subcase(iv)(b): For 𝑖 is even
𝐸𝑢𝑖

= {𝑢𝑖,𝑒′
𝑖,𝑒𝑖−1,𝑒𝑗/1 ≤ 𝑗 < 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2)}

|𝐸𝑢𝑖
| = 3+ 𝑛

2 = 𝑛+6
2 (11)

From Equations (10) and (11) we get that when 𝑛 > 4 and even, 𝛾𝜖(𝑇1(𝑊𝑛)) = 𝑛+6
2 .

Theorem 3.8 .
Edge vertices in 𝑇1(𝐺) are not enclave dominating vertices.
Proof:
We will prove this theorem by contradiction. Assume that in 𝑇1(𝐺) the edge vertex (say) 𝑒𝑖𝑗 adjacent to the original

vertices 𝑢𝑖,𝑢𝑗 is an enclave dominating vertex. Let 𝐸𝑒𝑖𝑗
represent the enclave dominating set corresponding to the vertex

𝑒𝑖𝑗. According to the definition of 𝑇1(𝐺), we have 𝑁[𝑢𝑖] ⊂ 𝑁[𝑒𝑖𝑗] ⊆ 𝐸𝑒𝑖𝑗
, and 𝑁[𝑣𝑗] ⊂ 𝑁[𝑒𝑖𝑗] ⊆ 𝐸𝑒𝑖𝑗

. This implies that the
enclave dominating set 𝐸𝑒𝑖𝑗

contains more than one enclave vertex, which contradicts the definition of enclave dominating set.
Therefore, in 𝑇1(𝐺) the edge vertices cannot serve as the enclave dominating vertices.

Theorem 3.9 .
For any graph 𝐺 we have 𝛾(𝐺) ≤ 𝛾𝜖(𝑇1(𝐺))
Proof:
Since every enclave dominating set of 𝑇1(𝐺) is a dominating set of 𝑇1(𝐺), we have 𝛾(𝑇1(𝐺)) ≤ 𝛾𝜖(𝑇1(𝐺)). Additionally,

the cardinality of every minimum dominating set of 𝐺 is less than or equal to the cardinality of a minimum dominating set of
𝑇1(𝐺), i.e., 𝛾(𝐺) ≤ 𝛾(𝑇1(𝐺)). From these inequalities, we get 𝛾(𝐺) ≤ 𝛾𝜖(𝑇1(𝐺)).

4 Enclave Domination Number of Semi-Total Point Graphs
Theorem 4.1 .

For any path 𝑃𝑛 with 𝑛 ≥ 2 vertices, 𝛾𝜖(𝑇2(𝑃𝑛)) = {
𝑛+3

2 , 𝑛 𝑖𝑠 𝑜𝑑𝑑
𝑛+2

2 , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
Proof:
Let𝑃𝑛 be a pathwith vertices {𝑢1,𝑢2, ...,𝑢𝑛}, edges {𝑒1,𝑒2, ...,𝑒𝑛−1} and𝑉 (𝑇2(𝑃𝑛)) = {𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ...,𝑒𝑛−1}.

To prove the equality, we consider the following two cases,
Case(i): When 𝑛 is odd
Here, the vertices 𝑒𝑖(1 < 𝑖 < 𝑛 − 1) in 𝑇2(𝑃𝑛) are the enclave dominating vertices and their corresponding enclave

dominating sets are as follows,
Subcase(i)(a): For 𝑖 ≡ 0(𝑚𝑜𝑑2)
𝐸𝑒𝑖

= {𝑒𝑖}∪{𝑢𝑝/1 < 𝑝 ≤ 𝑖,𝑝 ≡ 0(𝑚𝑜𝑑2)}∪{𝑢𝑞/𝑖 < 𝑞 ≤ 𝑛,𝑞 ≡ 1(𝑚𝑜𝑑2)}

|𝐸𝑒𝑖
| = 1+ 𝑖

2 + 𝑛−𝑖+1
2 = 𝑛+3

2 (12)

Subcase(i)(b): For 𝑖 ≡ 1(𝑚𝑜𝑑2)

𝐸𝑒𝑖
= {𝑒𝑖}∪{𝑢𝑝/1 ≤ 𝑝 ≤ 𝑖,𝑝 ≡ 1(𝑚𝑜𝑑2)}∪{𝑢𝑞/𝑖 < 𝑞 < 𝑛,𝑞 ≡ 0(𝑚𝑜𝑑2)}
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|𝐸𝑒𝑖
| = 1+ 𝑖+1

2 + 𝑛−𝑖
2 = 𝑛+3

2 (13)

Case(ii): When 𝑛 is even
Here the vertices 𝑒𝑖 such that 1 < 𝑖 < 𝑛 and 𝑖 ≡ 0(𝑚𝑜𝑑2) satisfies the enclave domination conditions and the corresponding

enclave dominating set is,

𝐸𝑒𝑖
= {𝑒𝑖}∪{𝑢𝑝/1 < 𝑝 ≤ 𝑖,𝑝 ≡ 0(𝑚𝑜𝑑2)}∪{𝑢𝑞/𝑖 < 𝑞 < 𝑛,𝑞 ≡ 1(𝑚𝑜𝑑2)}

|𝐸𝑒𝑖
| = 1+ 𝑖

2 + 𝑛−𝑖
2 = 𝑛+2

2 (14)

From Equations (12), (13) and (14) the equality proved.
Theorem 4.2 .
For any cycle 𝐶𝑛, with 𝑛 ≥ 3 vertices 𝛾𝜖(𝑇2(𝐶𝑛)) = {

𝑛+3
2 , 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛+4
2 , 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

Proof:
Let 𝐶𝑛 be a cycle with vertices {𝑢1,𝑢2, ...,𝑢𝑛}, edges {𝑒1,𝑒2, ...,𝑒𝑛} and 𝑉 (𝑇2(𝐶𝑛)) = {𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ...,𝑒𝑛}.

To prove the equality we have the following cases,
Case(i): When 𝑛 is odd
In this case, the vertices 𝑒𝑖 for 1 ≤ 𝑖 ≤ 𝑛 satisfy the enclave domination condition, and the corresponding enclave dominating

sets are as follows in the subcases,
Subcase(i)(a): Suppose 𝑖 ≡ 0(𝑚𝑜𝑑2)
𝐸𝑒𝑖

= {𝑒𝑖,𝑢𝑖}∪{𝑢𝑝/1 ≤ 𝑝 < 𝑖,𝑝 ≡ 1(𝑚𝑜𝑑2)}∪{𝑢𝑞/𝑖 < 𝑞 < 𝑛,𝑞 ≡ 0(𝑚𝑜𝑑2)}
Subcase(i)(b): Suppose 𝑖 ≡ 1(𝑚𝑜𝑑2)𝐸𝑒𝑖

= {𝑒𝑖,𝑢𝑖}∪{𝑢𝑝/1 ≤ 𝑝 < 𝑖,𝑝 ≡ 0(𝑚𝑜𝑑2)}∪{𝑢𝑞/𝑖 < 𝑞 < 𝑛,𝑞 ≡ 1(𝑚𝑜𝑑2)}From
the above two subcases,

|𝐸𝑒𝑖
| = 𝑛−𝑖

2 + 𝑖−1
2 +2 = 𝑛−𝑖+𝑖−1+4

2 = 𝑛+3
2 (15)

Case(ii): When 𝑛 is even
In this case, the vertices 𝑒𝑖 for 1 ≤ 𝑖 < 𝑛 satisfies the definition of enclave domination and the corresponding enclave

dominating sets are in the following subcases,
Subcase(ii)(a): Suppose 𝑖 ≡ 0(𝑚𝑜𝑑2)
𝐸𝑒𝑖

= {𝑒𝑖,𝑢𝑖}∪{𝑢𝑝/1 ≤ 𝑝 < 𝑛,𝑝 ≡ 1(𝑚𝑜𝑑2)}
Subcase(ii)(b): Suppose 𝑖 ≡ 1(𝑚𝑜𝑑2)
𝐸𝑒𝑖

= {𝑒𝑖,𝑢𝑖}∪{𝑢𝑝/1 ≤ 𝑝 < 𝑛,𝑝 ≡ 0(𝑚𝑜𝑑2)}From the above two subcases,

|𝐸𝑒𝑖
| = 𝑛

2 +2 = 𝑛+4
2 (16)

From Equations (15) and (16) the equality proved.
Theorem 4.3 .
For any complete graph 𝐾𝑛 with 𝑛 vertices, 𝛾𝜖(𝑇2(𝐾𝑛)) = 𝑛.
Proof:
Let 𝑉 (𝐾𝑛) = {𝑢1,𝑢2, ...,𝑢𝑛} be the vertices and 𝐸(𝐾𝑛) = {𝑒𝑖𝑗/1 ≤ 𝑖,𝑗 ≤ 𝑛,𝑖 ≤ 𝑗} be the edge set of 𝐾𝑛 then

𝑉 (𝑇2(𝐾𝑛)) = {𝑢𝑖,𝑒𝑖𝑗/1 ≤ 𝑖,𝑗 ≤ 𝑛,𝑖 ≤ 𝑗}.
The edge vertices 𝑒𝑖𝑗 will satisfy the enclave domination condition and the enclave dominating set 𝐸𝑒𝑖𝑗

will have the edge
vertex 𝑒𝑖𝑗 and its adjacent vertices𝑢𝑖,𝑢𝑗 then to satisfy the enclave domination conditions the set will have any other (𝑛−3)𝑢′

𝑖𝑠
from the vertex set of 𝐾𝑛. Therefore |𝐸𝑒𝑖𝑗

| = 3+𝑛−3 = 𝑛. Hence 𝛾𝜖(𝑇2(𝐾𝑛)) = 𝑛.
Theorem 4.4 .
For any complete bipartite graph 𝐾𝑚,𝑛 with 𝑚+𝑛 vertices, 𝛾𝜖(𝑇2(𝐾𝑚,𝑛)) = 𝑚𝑖𝑛(𝑚,𝑛)+2.
Proof:
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Let the vertex set of 𝐾𝑚,𝑛 be 𝑉 (𝐾𝑚,𝑛) = {𝑢𝑖,𝑣𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛} and the edge set be
𝐸(𝐾𝑚,𝑛) = {𝑒𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛} then 𝑉 (𝑇2(𝐾𝑚,𝑛)) = {𝑢𝑖,𝑣𝑗,𝑒𝑖𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}. The edge vertices 𝑒𝑖𝑗

satisfy the enclave domination conditions, and the corresponding enclave dominating sets are outlined in the following cases,
Case(i): If 𝑚 < 𝑛 then

𝐸𝑒𝑖𝑗
= {𝑒𝑖𝑗,𝑣𝑗,𝑢𝑝/1 ≤ 𝑝 ≤ 𝑚}

∣𝐸𝑒𝑖𝑗
∣ = 𝑚+2 (17)

Case(ii): If 𝑛 < 𝑚 then 𝐸𝑒𝑖𝑗
= {𝑒𝑖𝑗,𝑢𝑖,𝑣𝑞/1 ≤ 𝑞 ≤ 𝑛}

|𝐸𝑒𝑖𝑗
| = 𝑛+2 (18)

From Equations (17) and (18) , we get |𝐸𝑒𝑖𝑗
| = 𝑚𝑖𝑛(𝑚,𝑛)+2. Thus, the equality holds.

Theorem 4.5.
For any star 𝐾1,𝑛 with 𝑛+1 vertices, 𝛾𝜖(𝑇2(𝐾1,𝑛)) does not exist.
Proof:
Let 𝑉 (𝐾1,𝑛) = {𝑢,𝑢1,𝑢2, ....,𝑢𝑛}, 𝐸(𝐾1,𝑛) = {𝑒1,𝑒2, ...,𝑒𝑛} then the vertex set of 𝑇2(𝐾1,𝑛) is

{𝑢,𝑢1,𝑢2, ...,𝑢𝑛,𝑒1,𝑒2, ...,𝑒𝑛}. If the enclave dominating set for any vertex in the graph is found, it will contain more
than one enclave vertex, which contradicts the definition, showing that the enclave domination number does not exist for
𝑇2(𝐾1,𝑛).

Theorem 4.6 .
For any bistar 𝐵𝑚,𝑛 with 𝑚,𝑛 ≥ 1, 𝛾𝜖(𝑇2(𝐵𝑚,𝑛)) = 3
Proof:
Let 𝑉 (𝐵𝑚,𝑛) = {𝑢,𝑣,𝑢𝑖,𝑣𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}, 𝐸(𝐵𝑚,𝑛) = {𝑒,𝑒𝑖,𝑒′

𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛} where the edge 𝑒
adjacent with vertices 𝑢,𝑣 the edge 𝑒𝑖 adjacent with the vertices 𝑢,𝑢𝑖, and the edge 𝑒′

𝑗 adjacent with 𝑣,𝑣𝑗 then 𝑉 (𝑇2(𝐵𝑚,𝑛)) =
{𝑢,𝑣,𝑒,𝑢𝑖,𝑣𝑗,𝑒𝑖,𝑒′

𝑗/1 ≤ 𝑖 ≤ 𝑚,1 ≤ 𝑗 ≤ 𝑛}. For bistar we get a unique enclave dominating set with respect to the vertex 𝑒 is
𝐸𝑒 = {𝑒,𝑢,𝑣}. Hence 𝛾𝜖(𝑇2(𝐵𝑚,𝑛)) = 3.

Theorem 4.7 .
For any wheel 𝑊𝑛, 𝑛 ≥ 3, 𝛾𝜖(𝑇2(𝑊𝑛)) = 3+⌈ 𝑛−2

2 ⌉
Proof:
Let 𝑢,𝑢1,𝑢2, ...,𝑢𝑛 be vertices of the wheel 𝑊𝑛 with 𝑑𝑒𝑔(𝑢) = 𝑛, and the 2𝑛 edges are denoted by

𝑒1,𝑒2, ...,𝑒𝑛,𝑒′
1,𝑒′

2, ..., 𝑒′
𝑛 where 𝑒𝑖 is the edge adjacent with 𝑢 and 𝑢𝑖, 𝑒′

𝑖 is the edge on the outer cycle. Then 𝑉 (𝑇2(𝑊𝑛)) =
{𝑢,𝑢𝑖,𝑒𝑖,𝑒′

𝑖/1 ≤ 𝑖 ≤ 𝑛}.
For𝑇2(𝑊𝑛) the vertices 𝑒𝑖,𝑒′

𝑖(1 ≤ 𝑖 ≤ 𝑛)will be the enclave domination vertex and their corresponding enclave dominating
sets are in the following cases,

Case(i): When 𝑛 = 3
𝐸𝑒𝑖

= {𝑒𝑖,𝑢,𝑢𝑖,𝑒′
𝑖+1} for 𝑖 = 1,2, 𝐸𝑒3

= {𝑒3,𝑢,𝑢3,𝑒′
1}, and 𝐸𝑒′

𝑖
= {𝑒′

𝑖,𝑢1,𝑢2,𝑢3}. ∣𝐸𝑒𝑖
∣ = ∣𝐸𝑒3

∣ = ∣𝐸𝑒′
𝑖
∣ = 4. So

𝛾𝜖(𝑇2(𝑊3)) = 4.
Case(ii): When 𝑛 = 4
Subcase(ii)(a):𝑖 is odd
𝐸𝑒𝑖

= {𝑒𝑖,𝑢,𝑢𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2)}, 𝐸𝑒′
𝑖

= {𝑒′
𝑖,𝑢𝑖,𝑢𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2)}

Subcase(ii)(b):𝑖 is even
𝐸𝑒𝑖

= {𝑒′
𝑖,𝑢,𝑢𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2)}, 𝐸𝑒′

𝑖
= {𝑒′

𝑖,𝑢𝑖,𝑢𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2)}Thus 𝛾𝜖(𝑇2(𝑊4)) = 4.
Case(iii): when 𝑛 is odd, 𝑛 ≥ 5
Subcase(iii)(a):𝑖 is odd
𝐸𝑒′

𝑖
= {𝑒′

𝑖,𝑢,𝑢𝑖, 𝑢𝑖+1,𝑢𝑝,𝑢𝑞/1 ≤ 𝑝
< 𝑖,𝑝
≡ 1(𝑚𝑜𝑑2), 𝑖+1
< 𝑞 ≤ 𝑛,𝑞
≡ 0(𝑚𝑜𝑑2)}
Subcase(iii)(b):𝑖 is even
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𝐸𝑒′
𝑖

= {𝑒′
𝑖,𝑢,𝑢𝑖,𝑢𝑖+1,𝑢𝑝,𝑢𝑞/1 ≤ 𝑝

< 𝑖,𝑝
≡ 0(𝑚𝑜𝑑2), 𝑖+1
< 𝑞 ≤ 𝑛,𝑞
≡ 1(𝑚𝑜𝑑2)}
Case(iv): When n is even, .𝑛 ≥ 6 .
In this case, only the edge vertex 𝑒𝑖(1 ≤ 𝑖 ≤ 𝑛) will be the enclave domination vertex. The enclave dominating sets are as

follows,
Subcase(iv)(a):𝑖 is odd
𝐸𝑒𝑖

= {𝑒𝑖,𝑢,𝑢𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 1(𝑚𝑜𝑑2)}
Subcase(iv)(b):𝑖 is even
𝐸𝑒𝑖

= {𝑒𝑖,𝑢,𝑢𝑗/1 ≤ 𝑗 ≤ 𝑛,𝑗 ≡ 0(𝑚𝑜𝑑2)}In all the cases
|𝐸𝑒𝑖

| = |𝐸𝑒′
𝑖
| = 3+⌈ 𝑛−2

2 ⌉Thus 𝛾𝜖(𝑇2(𝑊𝑛)) = 3+⌈ 𝑛−2
2 ⌉.

Theorem 4.8 .
For any graph 𝐺 we have, 𝛾(𝐺) ≤ 𝛾𝜖(𝑇2(𝐺))
Proof:
As every enclave dominating set of 𝑇2(𝐺) is a dominating set of 𝑇2(𝐺), we obtain 𝛾(𝑇2(𝐺)) ≤ 𝛾𝜖(𝑇2(𝐺)). Furthermore,

the cardinality of any minimum dominating set of 𝐺 is less than or equal to the cardinality of a minimum dominating set of
𝑇2(𝐺), i.e., 𝛾(𝐺) ≤ 𝛾(𝑇2(𝐺)). Combining these inequalities, we conclude that 𝛾(𝐺) ≤ 𝛾𝜖(𝑇2(𝐺)).

Theorem 4.9 .
In (6) For any graph 𝐺,𝛾𝜖(𝐺) ≠ 𝑛. where 𝑛 is the order of the graph.
Theorem 4.10 .
In a graph suppose a vertex 𝑢, with 𝑑𝑒𝑔(𝑢) = 2 and it is adjacent with 𝑣 and 𝑤. If 𝑣 and 𝑤 are adjacent vertices then 𝑣 and

𝑤 will not be the enclave domination vertex.
Proof:
Let 𝑢 be a vertex in 𝐺 such that 𝑑𝑒𝑔(𝑢) = 2. Let 𝑣,𝑤 are adjacent vertices of 𝑢 and there is an edge 𝑒 = 𝑣𝑤. If 𝐸𝑣,𝐸𝑤 are

enclave dominating sets then 𝑁[𝑢] ⊆ 𝑁[𝑣] ⊂ 𝐸𝑣, 𝑁[𝑢] ⊆ 𝑁[𝑤] ⊂ 𝐸𝑤.Thus, the sets 𝐸𝑣, 𝐸𝑤 hasmore than one enclave vertex
in it. So, 𝑣 and 𝑤 will not be the enclave domination vertex.

Theorem 4.11 .
In 𝑇2(𝐺), 𝑛−vertices which originated from 𝐺 will not be the enclave dominating vertex.
Proof:
The proof follows from the above theorem.
Theorem 4.12 .
In 𝑇2(𝐺), enclave domination exists if 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) ≥ 2.
Proof:
Let us prove this theorem by contradiction. Suppose 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) = 1 and |𝑉 (𝑇2(𝐺))| = 𝑛. Assume the vertex 𝑢 be

the enclave dominating vertex, then its respective enclave dominating set 𝐸𝑢 will have the vertices adjacent with 𝑢. Since
𝑑𝑖𝑎𝑚(𝑇2(𝐺)) = 1, the largest path between any two vertices will be 1. So, |𝐸𝑢| = |𝑉 (𝑇2(𝐺))| = 𝑛 which is a contradiction to
theorem.4.9. Thus 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) ≠ 1, hence 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) ≥ 2.

Theorem 4.13 .
For any graph 𝐺, if 𝑒 is the pendant edge in 𝐺 then 𝑒 will not be the enclave dominating vertex in its semi-total point graph

𝑇2(𝐺).
Proof:
Let 𝐺 be any graph, and 𝑒 = 𝑢𝑣 be any pendant edge in 𝐺, where 𝑢 is the pendant vertex, 𝑣 is the support vertex in 𝐺. In

𝑇2(𝐺), 𝑒 is the edge vertex, 𝑢 and 𝑣 are its adjacent vertices such that 𝑑(𝑒) = 𝑑(𝑢) = 2,𝑑(𝑣) ≥ 2. Suppose 𝐸𝑒 is the enclave
dominating set then 𝑁[𝑢] ⊆ 𝑁[𝑒] ⊆ 𝐸𝑒. Which contradicts our definition. So, the pendant edge 𝑒 will not be the enclave
dominating vertex in 𝑇2(𝐺).

Note:
The graph 𝑇2(𝐾1,𝑛) is an example for the above theorem.
Theorem 4.14 .
If 𝑇2(𝐺) has diameter 2 or 3, then 𝛾𝜖(𝑇2(𝐺)) = 3.
Proof:
Let 𝑇2(𝐺) be any graph with diameter 2 or 3.
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Case(i): Let 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) = 2.
By theorem 4.11. the edge vertices will be the enclave dominating vertex. Let us choose one edge vertex say 𝑒1 then the

enclave dominating set 𝐸𝑒1
has 𝑒1 and its neighborhoods say 𝑢1,𝑢2. Since the diameter of 𝑇2(𝐺) is 2, distance of 𝑒1 to all

other vertices in 𝑉 (𝑇2(𝐺)) − 𝐸𝑒1
is 2 and distance of 𝑢1,𝑢2 to all other vertices in 𝑉 (𝑇2(𝐺)) − 𝐸𝑒1

is 1. Hence the set
𝐸𝑒1

= {𝑒1,𝑢1,𝑢2} is the minimum enclave dominating set. Thus 𝛾𝜖(𝑇2(𝐺)) = 3.
Case(ii): Let 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) = 3.
Choose the vertex say 𝑒1 such that 𝑑(𝑒1,𝑒𝑖) = 2 where 𝑒𝑖 represents all other remaining edge vertices in 𝑇2(𝐺). Then

the enclave dominating set 𝐸𝑒1
will be {𝑒1,𝑢1,𝑢2} where 𝑢,𝑢2 are adjacent vertices of 𝑒1. Since 𝑑(𝑒1,𝑒𝑖) = 2, the vertices

𝑢1,𝑢2 dominate all the edge vertices in 𝑇2(𝐺). Then by the definition of 𝑇2(𝐺), all the vertices also dominated by 𝑢1,𝑢2.The
minimum enclave dominating set is 𝐸𝑒1

= {𝑒1,𝑢1,𝑢2}. Thus 𝛾𝜖(𝑇2(𝐺)) = 3.
Conversely, suppose 𝑇2(𝐺) be a graph such that 𝛾𝜖(𝑇2(𝐺)) = 3 we know that only edge vertex will be the dominating

vertex in 𝑇2(𝐺). Suppose 𝑒𝑖 be the enclave dominating vertex and (say) 𝑢𝑖,𝑢𝑗 are its adjacent vertices then 𝐸𝑒𝑖
= {𝑒𝑖,𝑢𝑖,𝑢𝑗}.

Since 𝛾𝜖(𝑇2(𝐺)) = 3, the set 𝐸𝑒𝑖
is the enclave dominating set and it dominates all the vertices in 𝐺. Thus, all the vertices

in 𝑉 (𝑇2(𝐺)) − 𝐸𝑒𝑖
will be adjacent to either 𝑢𝑖 or 𝑢𝑗 or both. Let us assume the following, 𝑣𝑖 is the vertex adjacent with

𝑢𝑖, 𝑣′
𝑖 is the vertex adjacent with 𝑢𝑗, 𝑤𝑖 is the vertex adjacent with both. Clearly 𝑑(𝑣𝑖,𝑣′

𝑖) = 3 and 𝑑(𝑣𝑖,𝑣𝑖) = 𝑑(𝑣′
𝑖,𝑣′

𝑖) =
𝑑(𝑤𝑖,𝑤′

𝑖) = 𝑑(𝑣𝑖,𝑤′
𝑖) = 𝑑(𝑣′

𝑖,𝑤𝑖) = 2. Thus 𝑑𝑖𝑎𝑚(𝑇2(𝐺)) = 3. If the vertex 𝑢𝑖,𝑢𝑗 adjacent to only one vertex say 𝑢𝑘 then
𝑑𝑖𝑎𝑚(𝑇2(𝐺)) = 2.

Note:
The above theorem does not exist only if 𝐺 ≅ 𝐶3 ∘𝐾1
Theorem 4.15 .
For any graph 𝐺 we have ⌈ 𝑛+𝑚

1+△(𝐺) ⌉ ≤ 𝛾𝜖(𝑇2(𝐺)) ≤ 𝑛+1
Proof:
Let |𝑉 (𝐺)| = 𝑛, |𝐸(𝐺)| = 𝑚 then |𝑉 (𝑇2(𝐺))| = 𝑛 + 𝑚. From (5) we have [ 𝑛+𝑚

1+△(𝐺) ] ≤ 𝛾(𝐺) where 𝑛 is the number of
vertices in 𝐺 and by theorem 4.8. we have 𝛾(𝐺) ≤ 𝛾𝜖(𝑇2(𝐺)). Thus, we get the lower bound as ⌈ 𝑛+𝑚

1+△(𝐺) ⌉ ≤ 𝛾𝜖(𝑇2(𝐺)). By
theorem 4.11. only the edge vertices in 𝑇2(𝐺) will be the enclave dominating vertex. Let 𝑒𝑖 be any edge vertex in 𝑇2(𝐺) and
𝐸𝑒𝑖

be the corresponding enclave dominating set. 𝐸𝑒𝑖
= 𝑒𝑖 ∪𝑉 (𝐺) is the maximum set which satisfies the enclave dominating

conditions. And |𝐸𝑒𝑖
| = 𝑛+1 thus we get the upper bound as 𝛾𝜖(𝑇2(𝐺)) ≤ 𝑛+1.

5 Enclave Domination Number of 𝑇1(𝑇 ) and 𝑇2(𝑇 )
Theorem 5.1.

For any tree 𝑇 , 𝛾𝜖(𝑇 ) = 𝛽(𝑇 )+1
Proof:
Let 𝑇 be any tree, 𝐴 be the minimum vertex cover set of 𝑇 and |𝐴| = 𝛽(𝑇 ). Let 𝑝 be any pendant vertex in T, and its

corresponding minimum enclave dominating set is 𝐸𝑝. From (4)𝛾(𝑇 ) = 𝛽(𝑇 ), and so 𝐸𝑝 = 𝐴 ∪ {𝑝}, clearly the set 𝐴 must
have all the support vertex in 𝑇 . |𝐸𝑝| = |𝐴|+1, thus 𝛾𝜖(𝑇 ) = 𝛽(𝑇 )+1.

Theorem 5.2.
Let 𝑇 be any tree with 𝑛 vertices then 𝑝 +1 ≤ 𝛾𝜖(𝑇1(𝑇 )), where 𝑝 is the number of pendant edges in 𝑇 . The equality holds

if every vertex in 𝑇 is either a pendant vertex or adjacent to exactly one pendant vertex.
Proof:
Let 𝑇 be any tree with 𝑛 vertices, and 𝑝 be the number of pendant edges in 𝑇 . Any pendant vertex (say) 𝑢 in 𝑇 are enclave

dominating vertex in 𝑇1(𝑇 ). And the enclave dominating set 𝐸𝑢 of 𝑇1(𝑇 ) must have all the pendant edge vertices, and one
pendant vertex (say) 𝑢 as enclave vertex. This implies, 𝑝 + 1 < 𝛾𝜖(𝑇1(𝑇 )). If every vertex in 𝑇 is either a pendant vertex or
adjacent to exactly one pendant vertex then 𝐸𝑢 will be the minimum enclave dominating set of 𝑇1(𝑇 ). And |𝐸𝑢| = 𝑝+1, thus
𝑝 +1 = 𝛾𝜖(𝑇1(𝑇 )).

From the above inequalities we conclude that 𝑝 +1 ≤ 𝛾𝜖(𝑇1(𝑇 )).
Theorem 5.3.
Let 𝑇 be any tree with 𝑛 vertices then 𝑠 + 1 = 𝛾𝜖(𝑇2(𝑇 )), if every vertex in 𝑇 is either a pendant vertex or adjacent to at

least one pendant vertex. Otherwise 𝑠+2 < 𝛾𝜖(𝑇2(𝑇 )), where 𝑠 is the number of support vertex in 𝑇 .
Proof:
Let 𝑇 be any tree with 𝑛 vertices, and 𝑠 be the number of support vertices in 𝑇 . In 𝑇2(𝐺) the edge vertices are enclave

dominating vertex. The pendant edge vertex (say) 𝑝 is the enclave dominating vertex in 𝑇2(𝑇 ). If every vertex in 𝑇 is either
a pendant vertex or adjacent to at least one pendant vertex then 𝐸𝑝 will be the minimum enclave dominating set of 𝑇2(𝑇 ).
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And |𝐸𝑝| = 𝑠+1 thus 𝑠+1 = 𝛾𝜖(𝑇2(𝑇 )). If some vertex in 𝑇 is neither a pendant vertex nor adjacent to at least one pendant
vertex then the enclave dominating set 𝐸𝑝 will have 𝑝 and its neighborhood 2 vertices, in which one vertex is the support
vertex, other is the pendant vertex in 𝑇 . The set 𝐸𝑝 will have all the support vertex of 𝑇 . Thus |𝐸𝑝| > 3 + 𝑠 − 1 = 𝑠 + 2. So,
𝑠+2 < 𝛾𝜖(𝑇2(𝑇 )).

Theorem 5.4.
For any tree 𝑇 with 𝑛 ≥ 4 vertices, 3 ≤ 𝛾𝜖(𝑇2(𝑇 )) ≤ 𝑛+1
Proof:
Let 𝑇 be a tree such that |𝑉 (𝑇 )| = 𝑛 and |𝐸(𝑇 )| = 𝑛−1 then |𝑉 (𝑇2(𝑇 )| = 2𝑛−1
Case(i): Let 𝑇 be a tree with 𝑛 = 4 vertices, then |𝑉 (𝑇2)| = 7. If we choose the edge vertex which is adjacent with Δ(𝑇 )

and its adjacent vertices will satisfy the enclave domination condition. Hence 𝛾𝜖(𝑇2(𝑇 )) ≥ 3.
Case(ii): Let 𝑇 be a tree with 𝑛 > 4 vertices.𝑇2(𝑇 ) has 𝑛 − 1 closed paths, in-order to satisfy the enclave domination we

need to choose the edge vertex which is adjacent with Δ(𝑇 ) and its adjacent vertices. So, one closed path is selected. Out of the
remaining 𝑛−2 closed path we can choose at most two vertices so that enclave condition is satisfied. Thus, in each 𝑛−2 closed
path, there is one vertex that does not belong to the enclave dominating set.

Hence 𝛾𝜖(𝑇2(𝑇 )) ≤ 2𝑛−1−(𝑛−2) = 2𝑛−1−𝑛+2 = 𝑛+1.
From the above cases, we get 3 ≤ 𝛾𝜖(𝑇2(𝑇 )) ≤ 𝑛+1.
Theorem 5.5.
For any tree T with 𝑛 ≥ 2 vertices, 2 ≤ 𝛾𝜖(𝑇1(𝑇 )) ≤ 𝑛
Proof:
Let 𝑇 be a tree such that |𝑉 (𝑇 )| = 𝑛 and |𝐸(𝑇 )| = 𝑛−1 then |𝑉 (𝑇1(𝑇 )| = 2𝑛−1
Case(i): Let 𝑇 be a tree with 𝑛 = 2 vertices, then |𝑉 (𝑇1(𝑇 ))| = 3. If we choose the edge vertex and its one adjacent vertex

will satisfy the enclave domination condition. Hence 𝛾𝜖(𝑇1(𝑇 )) ≥ 2.
Case(ii): Let 𝑇 be a tree with 𝑛 > 2 vertices. By theorem 3.8. the edge vertices not be the enclave dominating vertex. Let us

construct the enclave dominating set 𝐸𝑢𝑖
with respect to any vertex 𝑢𝑖 in T. Suppose the set 𝐸𝑢𝑖

have all the edge vertices then
the domination condition will be satisfied. If we choose the vertex 𝑢𝑖 belongs to the set, then 𝐸𝑢𝑖

= {𝑢𝑖,𝑒1,𝑒2, ..., 𝑒𝑛−1} will
be the satisfy the enclave domination condition. Hence 𝛾𝜖(𝑇1(𝑇 )) ≤ 1+(𝑛−1) = 𝑛.

From the above cases, we have 2 ≤ 𝛾𝜖(𝑇1(𝑇 )) ≤ 𝑛
Theorem 5.6.
Let 𝑇 be any tree then 𝛾𝜖(𝑇 ) ≤ 𝛾𝜖(𝑇2(𝑇 )). The equality holds if every vertex in 𝑇 is either a pendant vertex or adjacent to

at least one pendant vertex.
Proof:
Let us prove the inequality by the following two cases,
Case(i): Suppose every vertex in 𝑇 is either pendant vertex or adjacent to at least one pendant vertex.
Let 𝑆 be the set of all support vertices in T, |𝑆| = 𝑠. By theorem 5.1. 𝛾𝜖(𝑇 ) = 𝛽 + 1. In this case 𝛽 = |𝑆| = 𝑠. Thus

𝛾𝜖(𝑇 ) = 𝑠+1. By theorem 5.5. for this case, we have 𝑠+1 = 𝛾𝜖(𝑇2(𝑇 )). From the two equalities, we get 𝛾𝜖(𝑇 ) = 𝛾𝜖(𝑇2(𝑇 )).
Case(ii): Suppose there exist a vertex in 𝑇 that is neither pendant vertex nor adjacent to pendant vertex.
Let 𝐴 be the set of minimum vertex cover in T, |𝐴| = 𝛽. The minimum enclave dominating set of 𝑇 is 𝐸𝑢 = 𝐴 ∪ {𝑢}

where 𝑢 is any pendant vertex in T. And |𝐸𝑢| = |𝐴|+1, 𝛾𝜖(𝑇 ) = 𝛽 +1. In 𝑇2(𝑇 ) any support edge vertex (say) 𝑒 is the enclave
dominating vertex and itsminimal enclave dominating set is 𝐸𝑒 = 𝑁[𝑒]∪𝐴. Clearly, there exists exactly one vertex in 𝑁[𝑒]∩𝐴.
And so |𝐸𝑒| = |𝐴|+2 thus 𝛾𝜖(𝑇2(𝑇 )) = 𝛽 +2. From the two equlaites, we get 𝛾𝜖(𝑇 ) < 𝛾𝜖(𝑇2(𝑇 )).

From the above cases, we get 𝛾𝜖(𝑇 ) ≤ 𝛾𝜖(𝑇2(𝑇 )).
Theorem 5.7.
Let 𝑇 be any tree then 𝛾𝜖(𝑇2(𝑇 )) ≤ 𝛾𝜖(𝑇1(𝑇 )).The equality holds if 𝑇 ≅ 𝑃𝑛, or if every vertex in 𝑇 is either pendant vertex

or adjacent to exactly one pendant vertex.
Proof:
Let us prove the inequality from the following cases,
Case(i) If 𝑇 ≅ 𝑃𝑛By theorem 3.1. and theorem 4.1. we say that 𝛾𝜖(𝑇2(𝑃𝑛)) = 𝛾𝜖(𝑇1(𝑃𝑛)).
Case(ii): Assume that every vertex in 𝑇 is either pendant vertex or is adjacent to at least one pendant vertex.
In this case, for 𝑇2(𝑇 ) every support vertex, one pendant edge vertex and its corresponding pendant vertex in T are included

in the enclave dominating set. For 𝑇1(𝑇 ), all the pendant edge vertices and any one pendant vertex in T belong to the enclave
dominating set. Furthermore, the cardinality of minimum enclave dominating sets in both graphs are equal.

Therefore 𝛾𝜖(𝑇2(𝑇 )) = 𝛾𝜖(𝑇1(𝑇 )).
Case(iii): Assume that some vertex in 𝑇 is neither pendant vertex nor is adjacent to the pendant vertex.
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Let 𝐴 and 𝐵 be the set of all support vertex and support edges in 𝑇 respectively. Clearly for this case |𝐴| ≤ |𝐵|.Theminimum
enclave dominating set of 𝑇2(𝑇 ) must have all the support vertex in 𝑇 , whereas the minimum enclave dominating set in 𝑇1(𝑇 )
must have all the support edge vertex in 𝑇 . Also for the enclave vertex in 𝑇2(𝑇 ),𝑁[𝑒] = 3, whereas in 𝑇1(𝑇 ),𝑁[𝑢] = 2. And
by the adjacency conditions specified in 𝑇1(𝐺) and 𝑇2(𝐺) we get 𝛾𝜖(𝑇2(𝑇 )) < 𝛾𝜖(𝑇1(𝑇 )).

From the above cases, we conclude that 𝛾𝜖(𝑇2(𝑇 )) ≤ 𝛾𝜖(𝑇1(𝑇 )).
Theorem 5.8.
For any tree 𝑇 , 𝛾𝜖(𝑇 ) ≤ 𝛾𝜖(𝑇2(𝑇 )) ≤ 𝛾𝜖(𝑇1(𝑇 )). The equality holds if every non-pendant vertex in T is adjacent to exactly

one pendant vertex.
Proof:
The inequalities follow from theorem (5.6.) and (5.7.)

6 Conclusion
This paper presents a study on enclave dominating sets and explores the enclave domination number of semi-total graphs
𝑇1(𝐺), 𝑇2(𝐺) associated with certain standard and special graphs. And we characterize the enclave dominating sets in
semi-total line graphs and semi-total point graphs. Future research aims to develop algorithms for determining the enclave
domination number and examine potential applications of this concept.
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