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Abstract

Objectives: This research seeks to explore the concept of enclave domination
in semi total line graphs, semi total point graphs, and to establish the sharp
bounds and key properties of the enclave domination number in these graphs.
Methods: This investigation explores enclave domination in semi-total graphs
by identifying dominating sets that meet the specific requirements of enclave
domination. The process involves determining vertex subsets where each
vertex outside the set is adjacent to at least one vertex within it, with particular
attention to the unique structural characteristics of semi-total graphs. Utilizing
standard definitions, key parameters, and specialized techniques, we achieved
significant results. Findings: Minimum enclave dominating sets in semi-total
graphs have been characterized. Exact values are obtained through the analysis
of lower and upper bounds in different standard graphs. Furthermore, the link
between the enclave domination number in semi-total point graphs and semi-
total line graphs was examined. Novelty : This study introduces new definitions
and explanations of enclave domination for semi total graphs, expanding the
field of domination theory. By looking at how these domination parameters
work in semi-total point graphs, these findings provide a new understanding
of their properties and how they relate to other graph parameters.
Keywords: Enclave Dominating Vertex; Enclave Dominating Set; Enclave
Domination Number; Semi-Total Point Graph; Semi-Total Line Graph

1 Introduction

In the realm of graph theory, domination is a vibrant area of investigation. We
concentrate on simple, finite, undirected, nontrivial, and connected graphs. For graph
theoretic terminology, we refer ("), Graphs have various special patterns like path, cycle,
star, complete graph, bipartite graph, complete bipartite graph, regular graph, tree etc.
We refer to Harary® for the definitions of all such graphs. The neighborhood of a vertex
uin G, denoted by N (u) is the set of all vertices adjacent to u, thatis N (u) = {v €
V/uv € E}.The closed neighborhood of a vertex u in G is denoted by N [u], is defined
asNg|u] = {u} U N (u). The degree of a vertex u , denoted by d(u) is the number of
vertices in its neighborhood, or equivalently, the number of edges incident to u , A
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vertex of degree one is called as a pendant vertex or leaf, whereas a vertex that is adjacent to a leaf is referred to as a supporting
vertex. The minimum and maximum degrees of a vertex in a graph G are denoted 6(G) and A(G) respectively. A path
comprising n vertices is denoted by P, , and its length is defined as the number of edges it contains. The minimum distance
between two vertices u and v denoted by d(u,v), is the length of the shortest path connecting them. The greatest distance between
any two vertices of a connected graph G is called the diameter of G and is denoted by diam(G). The corona product of two graphs
G and H is G o His defined as the graph obtained by taking one copy of G and for each vertex v € V(G) connecting a disjoint
copy of H such that v is connected to every vertex of the copy of H. Given a vertex set S C V in a graph G, a vertex u € Sis called
an enclave if N[u] C S, which is to say that the vertex u has no neighbors in V' — S. A set S is called enclaveless if it contains
no enclaves. From % a vertex cover of G is a set of vertices that covers all the edges of G. The minimum cardinality of a vertex
cover in a graph G is called the vertex covering number of G and is denoted by 3(G). From®), A dominating set D in a graph G
is a subset of vertices where every vertex not in D is adjacent to a vertex in D. That is, for every v € V', we find N[v] N.D # (). The
domination number denoted by (G) is the minimum cardinality of the dominating set of G. The enclave domination number
was introduced in® . A dominating set £, C V (G) is said to be an enclave dominating set if the set £/, has exactly one enclave
vertex u in it. And the vertex u is called enclave dominating vertex. The minimum cardinality on all the enclave dominating sets,
known as enclave domination number of G1t is denoted by . (G) The semi-total line graph T} (G), and the semi-total point
graph T, (G) of a graph G was studied in "~ and is defined as follows. For any graph G = (V/, E), The semi-total line graph
T, (G) is the graph whose vertex set is the union of vertices and edges in which two vertices are adjacent if and only if they are
adjacent edges of G or one is a vertex of G and the other is an edge of G incident with it. The semi-total point graph T5(G) is
the graph whose vertex set is the union of vertices and edges, in which two vertices are adjacent if and only if they are adjacent
vertices of G or one is a vertex and the other is an edge of G incident with it. The study of split and non-split two domination
numbers of semi-total point graphs® motivated us to introduce the enclave domination number in semi-total graphs.

2 Methodology

In this work, we define the specific domination parameters studied, such as enclave domination, and outline the conditions
necessary for calculating them. The concept of an enclave dominating set, which includes exactly one enclave dominating
vertex, is introduced and analyzed for semi-total graphs.

3 Enclave Domination Number of Semi-Total Line Graphs

Theorem 3.1.
ni3 ' pisodd
For any path P, with n > 2 vertices, v (T} (P,,)) = { 2 .
" evlin nL2 - niseven
Proof:

Let P, be a path with n > 2 vertices, V(P,)) = {uqy,uq,....,u,}, E(P,) = {e1,e5,...,,,_1} then V(T}(P,)) =
{uq,ug,...,u, ,€q1,€q,....6, 1 }. To prove the equality, we have the following two cases,

Case(i): When n is odd

In this case, the vertices uy ,u,, , uq,; (1 <4 < 251 ) satisfy the definition of enclave domination and the corresponding enclave
dominating sets are as follows. £, = {uy,u,,,¢;/1 <i<n—1,i=1(mod2)},

E, ={u,,us,e;/1 <i<n—1,i=0(mod2)}

B o

’Eul
2

E,, ={ug;.eq;,€5,e/1 <j<2i,2i <k<n—1,j=1(mod2),k = 0(mod2)}

72+2i+n—1—2iin+3
a 2 2 2

()

B,

From Equations (1) and (2) we say that when n is odd v (7, (P,,)) = 243.
Case(ii): When n is even
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In this case, the vertices u4, and u,, satisfies the definition of enclave domination and the corresponding enclave dominating

setsare, ,, = {uy,e;/1 <i<n,i=1(mod2)},and £, ={u,,e;/1 <i<n,i=1(mod2)}.
n  n+2

From Equation (3), we say that when n is even v (T (P,,)) = 252

Theorem 3.2. 5

nt3 . nisodd
. . — 2

For any cycle C,, with n > 3 vertices, 7. (T4 (C,,)) = { 34 s cven

Proof:

Let C,, be a cycle with n > 3 vertices, V(C,,) = {uq,uq,...,u,}, E(C,) = {ey,eq,...,e,,} thenV(T1(C,,)) =
{uq,ug,...,u, ,€q1,€q,....,e, +. To prove the equality, we have the following cases,

Case(l) When n is oddIn this case, the vertices u; for 1 < i < n satisfies the definition of enclave domination and the
corresponding enclave dominating sets are in the following subcases,
Subcase(i)(a) For i = 1(mod?2)
={u;,ej,e/1 <j<ii <k<n,j=0(mod2),k=1(mod2)}

i+1 n—i1 n+3

E =1 = 4
Bul=1t 5+ 2 @)
Subcase(i)(b): Fori=0(mod2)E, ={u;,e;,e;/1 <j<i,i<k<n,j=1(mod2),k=0(mod2)}
t n—1—-4 n+3
b == 5
By l=1+5+— 5 (5)

From Equations (4) and (5) , we say that when n is odd (T3 (C,,)) = 243
Case(ii): When n is even
In this case, the vertices u; for 1 < i < n satisfies the definition of enclave domination and the corresponding enclave

dominating sets are in the following subcases,
Subcase(ii)(a): For i = 1(mod2)

E, ={u;e,,ej,e,/1 <j<ii<k<n,j=0(mod2),k=1(mod2)}
1 n—i+l n+4

17—
B, |=2 = 6
ol =2t 547 2 (©)

Subcase(ii)(b) For i = 0(mod2)
={u;,ej,e}/1 <j<i,i <k<n,j=1(mod2),k=0(mod2)}

n n—i+2 n+4
By l=1t5+—F—=— ™)

From Equations (6) and (7), we say that when n is even v (T, (C,,)) = 244.

Theorem 3.3 .

For any complete graph K, with n > 3 vertices, 7. (T} (K,,)) = n.

Proof:

Let V(K,,) = {uqy,usq,...,u, } be the verticesand F(K,,) = {eq,eq, oy €ntn1) } be the edge set of K, then V(T (K,,)) =
{Uq,Ug, .y Uy €1, €0, s En Aty }+. Each vertex u,; satisfies the enclave domination condition and the enclave dominating set

E,, will consistofu, along withitsn— 1 edge neighborhood vertices. The (n — 1) edge verticesin F,, dominate all vertices in
Vv (T1 (K,))—E,, . Thus E,,. forms the minimum enclave dominating set of (7} (K, )) with |E,, | = 1+ n—1=n. Therefore
Ye (Tl (Kn)) =n.

Theorem 3.4 .

For any complete bipartite graph K, ,, with m +n vertices, v, (T} (K,, ,)) = m+n.

Proof:
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Let V(K,, ,.) = {u;,v J/1<z<m1<J<n}denotethevertexset and E(K,, ,,) = {e;;/1 <i<m,1 <j<n}
denotetheedgesetofK n- Then the vertex set of Ty (K, ,,)) is V(T (K,, ))—{uz, vj,e,/1<i<m,1<j<n}
The vertices u;,v j satisfy the enclave domination conditions, and their respectlve enclave dominating sets given as follows,
B, ={uj,ug,..up,,€;;/1<j<n},and E, f{vl,v% Vp,€5/1 <i <mj}.

Clearly By, | = |Evj\ =m+n. Thus v (T} (Km’n)) m+n.

Theorem 3.5 .

For any star K; ,, with n+ 1 vertices, v, (T} (K; ,,)) =n+1

Proof:

Let V(K ,) = {wuq,ug,.uy,}, E(Kq,) = {ej,eq,..,e,} then the vertex set of T5(Ky ,)
is{u,uy,Ug,..., U, ,€1,Eq,...,e, }. The vertices u,u, satisfy the enclave domination conditions, the corresponding enclave
dominating sets are as follows, £, = {u,eq,¢€5,...,, },and E,, = {e;,u;,us,...,;u,, }. Clearly |E, | = |E, | =n+ 1. Hence
Ve(Ty(Ky ) =n+1.

Theorem 3.6 .

For any bistar B,,, ,, withm,n>1,v.(Ty(B,, ,)) =m+n+1

Proof:

Let V(B,, ,,) = {u,v,u;,v;/1 <i <m,1 < j < n} be the vertex set, and the edge set £(B,, ,,) = {e,e;,e /1<i<

m,1 <j< n} where the edge e adjacent with vertices u, v the edge e; ad]acent with the vertices u,u,, and the edge ¢’ e; adjacent

with the vertices v,v;. Then the V(T (B, ,,)) = {u,v,e,u;,v;,e;,€5/1 <i <m,1 < j <n}. The vertices uz,vj satlsfy the
enclave domination conditions and the corresponding enclave dommatmg setsare B, = {€;,U,Ug, s Uy, €l €h, et
and B, = {€},e1,€9,..,€,,,V1,Vg, ;0 }.

Clearly|Eu|—|Ev |=m+n+1, 9 (T1(B,, ) =m+n+1

Theorem 3.7 .

4, n=3
For any wheel W,,,n > 3,~ (T, (W,,)) = 5 . n =
n = e n ntd  pisodd, n>4

ﬁ7 niseven, n >4

Proof:

Let w,uq, Ugs oo un be vertices of the wheel W, with deg(u) = n, and the 2n edges are denoted by
€15€0;- eq,e5,...,er, where e, is the edge on the outer cycle, €/, is the edge adjacent with w and u,. Then V(T (W,,)) =
{u,u,,e;,ei /1 <i< n} For T, (W,,) the enclave dominating sets are in the following cases,

Case(i): Whenn =3

In this case the vertices u,uq,us,us are enclave dominating vertices and their corresponding enclave dominating sets are,
E, ={ue),ep,e5},F, ={uj, e}, ex,e3}, B, ={ug,en,e1,e5},and B, = {ug,e3,e5,e3}. The cardinality of all these
sets are equal to 4. Hence v (T} (W3)) =4

Case(ii): Whenn =4

In this case the vertices u,u; (1 < i < 4) are enclave dominating vertices, their corresponding enclave dominating sets are,

E,= {uae/laeéve:/%eil}’ Eul = {u17e/17617€37e4}’

Eu2 = {u2,6/27€1,€2,64}, Eu3 = {US7€é,€1,62,63}, and £, Uy { 4762762763764}'

The cardinality of all these sets are equal to 5. Hence . (T7 (W,)) = 5.

Case(iii): When n > 4,n is odd

In this case the vertices u,; (1 < ¢ < n) are enclave dominating vertices, their corresponding enclave dominating sets are in
the following subcases,

Subcase(iii) (a): For 7 is odd

={uy,eehe e, /1 <j<iyi <k <n,j=0(mod2),k=1(mod2)}
t 1—1 n+d

n—
— — 8
B, | =3+ 5+ 3 5 (8)

Subcase(iii) (b): For 11is even
E, ={u;e;eje;e,/1 < j<ii<k<n,j=1(mod2),k=0(mod2)}

R B 37

i nmn—i—1 n+5
E, |=34+-+— =% 9
| ui' 3+2+ 2 2 ®)
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From Equations (8) and (9) we get that when n > 4 and odd, . (7} (W,,)) = 245.

Case(iv): When n > 4,n is even

In this case the vertices u; (1 < ¢ < n) are enclave dominating vertices, their corresponding enclave dominating sets are in
the following subcases,

Subcase(iv)(a): For i is odd

E, ={u;e}e;/1<j<n,j=1(mod2)}

n+2 n+6
|E, | =24+ ——=—— (10)
i 2
Subcase(iv)(b): For i is even
Eui = {ui7e;‘,7ei71aej/l < .7 < nvj = O(m0d2)}
n  n+6
1Byl =3+5 == (11)
From Equations (10) and (11) we get that when n > 4 and even, (T} (W,,)) = 24S.
Theorem 3.8 .
Edge vertices in T} (G) are not enclave dominating vertices.
Proof:

We will prove this theorem by contradiction. Assume that in 7' (G) the edge vertex (say) e, ; adjacent to the original
vertices u,,u; is an enclave dominating vertex. Let E, . represent the enclave dominating set corresponding to the vertex
e, j- According to the definition of 7' (G), we have Nu,;] C Nle;;] € E. ,and N[v;] C Ne;;] € E,_ . This implies that the
enclave dominating set F, - contains more than one enclave vertex, which contradicts the definition of enclave dominating set.
Therefore, in T (G) the edge vertices cannot serve as the enclave dominating vertices.

Theorem 3.9 .

For any graph G we have v(G) <. (T} (G))

Proof:

Since every enclave dominating set of T} (G) is a dominating set of T, (G), we have y(T (G)) < v.(T; (G)). Additionally,
the cardinality of every minimum dominating set of G is less than or equal to the cardinality of a minimum dominating set of
T,(G),ie,v(G) <~v(T;(Q)). From these inequalities, we get 7(G) < v.(T; (G)).

4 Enclave Domination Number of Semi-Total Point Graphs

Theorem 4.1 .
ni3 ' pisodd
For any path P,, with n > 2 vertices, y.(T5(P,,)) = { 2 3
" € " nL2 - niseven
Proof:

Let P, be a path with vertices {uq,us, ..., u,, }-edges{e1,€q,....,€,,_1 }and V(T5(P,,)) = {u1,Ug,...;Up,,€1,€0, ... €pp_1 }-
To prove the equality, we consider the following two cases,

Case(i): When n is odd

Here, the vertices ¢;,(1 < i <n—1) in T,(P,,) are the enclave dominating vertices and their corresponding enclave
dominating sets are as follows,

Subcase(i)(a): For i = 0(mod2)

E, ={e;}U{u,/1 <p<i,p=0(mod2)}U{u,/i <q<n,q=1(mod2)}

t n—i+1 n+3
E |=14-4—"-=2"<

(12)
Subcase(i)(b): For i = 1(mod2)

E, ={e;}U{u,/1 <p<i,p=1(mod2)}U{u,/i<g<n,q=0(mod2)}
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1 n—i 3
Bl =1+ =+ =2

2 2 2 (13)

Case(ii): When n is even
Here the vertices e; such that 1 < i < n and i = 0(mod2) satisfies the enclave domination conditions and the corresponding
enclave dominating set is,

E, ={e;}U{u,/1 <p<i,p=0(mod2)}U{u,/i<q<n,q=1(mod2)}

i n—i n+2
el =115+75 2 (14
From Equations (12), (13) and (14) the equality proved.
Theorem 4.2 . 5
n+3 " jfnisodd
. . . 32,
For any cycle C,,, with n > 3 vertices v, (75 (C,,)) = { 34, if niseven
Proof:

Let C,, be a cycle with vertices {u,uy,...,u,, }, edges {e1,€5,...,e,,} and V(T5(C,,)) = {tq,Ug, ..., Uy, €1,€5, ..., }-
To prove the equality we have the following cases,

Case(i): When n is odd

In this case, the vertices e, for 1 <+ < n satisfy the enclave domination condition, and the corresponding enclave dominating
sets are as follows in the subcases,

Subcase(i)(a): Suppose i = 0(mod2)

E, ={e;u;}U{u,/1 <p<i,p=1(mod2)}U{u,/i <q<n,q=0(mod2)}

Subcase(i)(b): Suppose i = 1(mod2)E, = {e;,u;}U{u, /1 <p <i,p=0(mod2)}U{u,/i <q<n,q=1(mod2)}From
the above two subcases,

n—i i—1 n—i+i1—14+4 n+3
‘Eei‘: + +2= =

15
2 2 2 2 (15)

Case(ii): When n is even

In this case, the vertices e; for 1 < i < n satisfies the definition of enclave domination and the corresponding enclave
dominating sets are in the following subcases,

Subcase(ii)(a): Suppose i = 0(mod2)

E, ={e;u;}U{u,/1 <p<n,p=1(mod2)}

Subcase(ii) (b): Suppose i = 1(mod2)

E, ={e;u;}U{u,/1 <p <n,p=0(mod2)}From the above two subcases,

n n+4
[Be,l =5+ 5 (16)
From Equations (15) and (16) the equality proved.
Theorem 4.3 .
For any complete graph K, with n vertices, v, (T5(K,,)) = n.
Proof:

Let V(K,,) = {uq,usz,...,u,,} be the vertices and E(K,,) = {e;;/1 <4,j < n,i < j} be the edge set of K, then
V(T5(K,)) ={us,e5/1 <d,j<n,i<j}

The edge vertices ¢, ; will satisfy the enclave domination condition and the enclave dominating set E, - will have the edge
vertex e, ; and its adjacent vertices u, , u ; then to satisfy the enclave domination conditions the set will have any other (n—3)u; s
from the vertex set of K,,. Therefore \E% | =3+n—3=n.Hencev . (T5(K,)) =n.

Theorem 4.4 .

For any complete bipartite graph K,,, ,, with m +n vertices, v (T5(K,, ,)) = min(m,n) + 2.

Proof:

https://www.indjst.org/ 676


https://www.indjst.org/

Priya & Bibi / Indian Journal of Science and Technology 2025;18(9):671-681

Let the vertex set of K,,, ,, be V(K ,,) = {u;,v;/1 <i<m,1 <j<n} and the edge set be

E(K,, ,)={e;;/1<i<m,1 <j< n} then V(T,(K,, ,)) = {u;,v;,e;;/1 <i<m,1<j<n} Theedge verticese,
satisty the enclave domination conditions, and the corresponding enclave dominating sets are outlined in the following cases,

Case(i): If m < n then

Ee- = {eijvvjaup/l Spgm}

7 17
’Eeij =m+2 (17
Case(ii): If n < m then Ee” = {e”, iU /1 <g<n}
|E,, | =n+2 (18)
From Equations (17) and (18) , we get |Eeij | = min(m,n) + 2. Thus, the equality holds.
Theorem 4.5.
For any star Ky ,, with n+ 1 vertices, 7. (T5 (K ,,)) does not exist.
Proof:

Let V(K; ,) = {wuq,ug,...;u,}, E(K;,) = {ej,es,...,e,} then the vertex set of T,(K; ,) is
{Uytq,Ug, .Uy, €1, €9, ...,e, }. If the enclave dominating set for any vertex in the graph is found, it will contain more
than one enclave vertex, which contradicts the definition, showing that the enclave domination number does not exist for

T2 (Kl,n)'

Theorem 4.6 .

For any bistar B,,, ,, withm,n > 1,~.(T5(B,, ,)) =3

Proof:

Let V(B,, ,,) = {w,v,u;,v;/1 <i <m,1 <j<n}, BE(B,, ,)={ee;e /1 <1< m,1 <j<n} where the edge e
adjacent with vertices u, v the edge e, adjacent with the vertices u, u,, . and the edge e adjacent with v, v; then V(75 (B,, ,,)) =
{u,v,6,u;,v;,€;,€; e’./1 <i<m,1 < j<n}. For bistar we get a unique enclave domlnatlng set with respect to the Vertex eis
B, = {e,u,0}. Hence 7, (Ty(B,, ,)) = 3.

Theorem 4.7 .

For any wheel W,,,n > 3,7, (T, (W,,)) =3+[ 252 ]

Proof:

Let Uty U ...,un be vertices of the wheel W, with deg(u) = n, and the 2n edges are denoted by
€1,€0, -, eq,e,...,er, where e, is the edge adjacent with v and u,, €/ is the edge on the outer cycle. Then V (T5(W,,)) =
T e 1 1<)

For T, (W,,) the vertices e, €/, (1 < i < n) will be the enclave domination vertex and their corresponding enclave dominating
sets are in the following cases,

Case(i): Whenn =3

E, = {ei,u,ui,e;ﬂ} fori=12FE, = {es,u,ugz,€l}, and Ee; = {e;,ul,u2,u3}. ‘Ee‘ = ‘Ees‘ = ‘Ee; =
Ve(To(W3)) =4

Case(ii): Whenn =4

Subcase(ii)(a):i is odd

E, ={e;u,u;/1<j<n,j=1(mod2)}, E,, = {e},u

Subcase(u)(b) 1is even

E, ={ej,u,u;/1<j<n,j=0(mod2)}, B, = {e},u;,u;/1 < j<n,j=1(mod2)}Thus v, (T5(Wy)) =

Case(iii): when nisodd,n > 5

Subcase(iii)(a):7 is odd

E, = {ei uug, uy g, upy,u,/1<p
<1,p
=1(mod2), i+1
<g<n,q
=0(mod2)}
Subcase(iii) (b):i is even

u;/1<j<mn,j=0(mod2)}

(2 ’L’
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Ee; = {6;au7ui7ui+1aupauq/l <p
<i,p

=0(mod2), i+1

<gqg<n,q

= 1(mod2)}

Case(iv): When n is even, .n > 6.

In this case, only the edge vertex e, (1 < i < n) will be the enclave domination vertex. The enclave dominating sets are as
follows,

Subcase(iv)(a):7 is odd

E, ={e;u,u;/1 < j<n,j=1(mod2)}

Subcase(iv)(b):i is even

E. ={e;,u,u;/1 <j<n,j=0(mod2)}In all the cases

|Eei| = |Ee;| =3+ |—nT_2-|ThuS 75(T2(Wn)) =3+ [nT_Q-‘

Theorem 4.8 .

For any graph G we have, v(G) < v.(T5(G))

Proof:

As every enclave dominating set of 75 (G) is a dominating set of 7%, (G), we obtain v(T5(G)) < 7. (T5(G)). Furthermore,
the cardinality of any minimum dominating set of G is less than or equal to the cardinality of a minimum dominating set of
T5(G), ie,v(G) <v(T5(G)). Combining these inequalities, we conclude that v(G) < v_(T5(G)).

Theorem 4.9 .

In‘® For any graph G, v, (G) # n. where n is the order of the graph.

Theorem 4.10 .

In a graph suppose a vertex u, with deg(u) = 2 and it is adjacent with v and w. If v and w are adjacent vertices then v and
w will not be the enclave domination vertex.

Proof:

Let u be a vertex in G such that deg(u) = 2. Let v, w are adjacent vertices of v and there is an edge e = vw. If E,, E, are
enclave dominating sets then N[u] C N[v] C E,,, N[u] C N[w] C E,,. Thus, the sets F,,, E,, has more than one enclave vertex
in it. So, v and w will not be the enclave domination vertex.

Theorem 4.11 .

In T, (G), n—vertices which originated from G will not be the enclave dominating vertex.

Proof:

The proof follows from the above theorem.

Theorem 4.12.

In T, (G), enclave domination exists if diam (T (G)) > 2.

Proof:

Let us prove this theorem by contradiction. Suppose diam(T5(G)) = 1 and |V(T5(G))| = n. Assume the vertex u be
the enclave dominating vertex, then its respective enclave dominating set £/, will have the vertices adjacent with w. Since
diam(T5(G)) = 1, the largest path between any two vertices will be 1. So, |E,,| = |V (T (G))| = n which is a contradiction to
theorem.4.9. Thus diam(T5(G)) # 1, hence diam(T5(G)) > 2.

Theorem 4.13 .

For any graph G, if e is the pendant edge in G then e will not be the enclave dominating vertex in its semi-total point graph
T, (G).

Proof:

Let GG be any graph, and e = uv be any pendant edge in G, where u is the pendant vertex, v is the support vertex in G. In
T,(G), e is the edge vertex, u and v are its adjacent vertices such that d(e) = d(u) = 2,d(v) > 2. Suppose E, is the enclave
dominating set then N[u] C Nle] C E,. Which contradicts our definition. So, the pendant edge e will not be the enclave
dominating vertex in T4 (G).

Note:

The graph T (K ,, ) is an example for the above theorem.
Theorem 4.14 .

If T (G) has diameter 2 or 3, then . (T5(G)) = 3.

Proof:

Let T, (G) be any graph with diameter 2 or 3.
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Case(i): Let diam(T5(G)) = 2.

By theorem 4.11. the edge vertices will be the enclave dominating vertex. Let us choose one edge vertex say e; then the
enclave dominating set £/, has e, and its neighborhoods say u, ,u,. Since the diameter of T, (G) is 2, distance of e, to all
other vertices in V(T5(G)) — E, is 2 and distance of u,uy to all other vertices in V(75(G)) — E, is 1. Hence the set
E. ={eq,uq,uy} is the minimum enclave dominating set. Thus v, (75(G)) = 3.

Case(ii): Let diam(T5(G)) = 3.

Choose the vertex say e; such that d(eq,e;) = 2 where e, represents all other remaining edge vertices in T5(G). Then
the enclave dominating set £, will be {e,u;,u5} where u u, are adjacent vertices of e;. Since d(e;,e;) = 2, the vertices
Uy, Uy dominate all the edge vertices in T, (G). Then by the definition of T, (G), all the vertices also dominated by 4, u5.The
minimum enclave dominating setis ', = {eq,uy,us}. Thus 7. (T5(G)) = 3.

Conversely, suppose T5(G) be a graph such that v, (T, (G)) = 3 we know that only edge vertex will be the dominating
vertex in 75 (G). Suppose e, be the enclave dominating vertex and (say) u;,u ; are its adjacent vertices then F, = {e;,u;,u
Since v, (T5(G)) = 3, the set E, is the enclave dominating set and it domlnates all the vertices in G. Thus, all the Vertlces
in V(TQ(G)) B, will be adjacent to either u; or u; or both. Let us assume the following, v; is the vertex adjacent with
u;, v} is the vertex adjacent with u;, w;, is the vertex adjacent with both. Clearly d(v;,v}) = 3 and d(v;,v;) = d(v},v}) =
d(wl w;) =d(v;,w}) =d(v,w,;) =2. Thus diam(T5(G)) = 3. If the vertex u,;,u; adjacent to only one vertex say u,, then
diam(T5(G)) = 2.

Note:

The above theorem does not exist only if G = C'5 0 K

Theorem 4.15 .

For any graph G we have [

'ug

T | € 7e(T(G)) <n+1
Proof:

Let |V(G)| = n, |E(G)| = m then |V (T5(G))| = n+m. From® we have [121?5)
vertices in G and by theorem 4.8. we have 7(G) < 7. (T5(G)). Thus, we get the lower bound as [%—‘ <v.(Ty(G)). By

theorem 4.11. only the edge vertices in T, (G) will be the enclave dominating vertex. Let e; be any edge vertex in 75 (G) and
E, be the corresponding enclave dominating set. E, = e, UV (G) is the maximum set Wthh satisfies the enclave dominating
cond1t10ns And |E, | =n+1 thus we get the upper bound as 7. (T5(G)) <n+1.

] < 4(G) where n is the number of

5 Enclave Domination Number of 7, (T") and T,(T))

Theorem 5.1.

For any tree T, v.(T) = (T) + 1

Proof:

Let T be any tree, A be the minimum vertex cover set of 7" and |A| = S(T'). Let p be any pendant vertex in T, and its
corresponding minimum enclave dominating set is £,,. From @~(T) = B(T), and so E, = AU{p}, clearly the set A must
have all the support vertex in 7'. | E )| = |A| + 1, thus 7. (T') = B(T') + 1.

Theorem 5.2.

Let T be any tree with n vertices then p+ 1 < (T} (T)), where p is the number of pendant edges in 7. The equality holds
if every vertex in 1’ is either a pendant vertex or adjacent to exactly one pendant vertex.

Proof:

Let T be any tree with n vertices, and p be the number of pendant edges in 7. Any pendant vertex (say) v in 1" are enclave
dominating vertex in T4 (7). And the enclave dominating set E,, of T; (T') must have all the pendant edge vertices, and one
pendant vertex (say) w as enclave vertex. This implies, p+1 < . (T;(T)). If every vertex in T is either a pendant vertex or
adjacent to exactly one pendant vertex then E,, will be the minimum enclave dominating set of T} (T'). And |E,,| = p+ 1, thus
p+1 =, (Ty(T)).

From the above inequalities we conclude that p+1 <~ (T} (T)).

Theorem 5.3.

Let T be any tree with n vertices then s+ 1 = (T (T)), if every vertex in T is either a pendant vertex or adjacent to at
least one pendant vertex. Otherwise s +2 < . (T5(T')), where s is the number of support vertex in 7.

Proof:

Let T be any tree with n vertices, and s be the number of support vertices in 7. In T, (&) the edge vertices are enclave
dominating vertex. The pendant edge vertex (say) p is the enclave dominating vertex in T, (7). If every vertex in T is either
a pendant vertex or adjacent to at least one pendant vertex then £, will be the minimum enclave dominating set of 75 (7).
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And |E,| = s+1thus s +1=~.(T5(T)). If some vertex in T' is neither a pendant vertex nor adjacent to at least one pendant
vertex then the enclave dominating set £, will have p and its neighborhood 2 vertices, in which one vertex is the support
vertex, other is the pendant vertex in 7'. The set £, will have all the support vertex of T". Thus |E, [ > 3+s—1 = s+ 2. So,
542 <7, (Ty(T)).

Theorem 5.4.

For any tree T' with n > 4 vertices, 3 <y (T5(T)) <n+1

Proof:

Let T be a tree such that |V(T)| =nand |[E(T)| =n—1then |V(T5(T)| =2n—1

Case(i): Let T be a tree with n = 4 vertices, then |V (T, )| = 7. If we choose the edge vertex which is adjacent with A(T")
and its adjacent vertices will satisfy the enclave domination condition. Hence v, (T5(T")) > 3.

Case(ii): Let T be a tree with n > 4 vertices.T,(T") has n — 1 closed paths, in-order to satisfy the enclave domination we
need to choose the edge vertex which is adjacent with A(7") and its adjacent vertices. So, one closed path is selected. Out of the
remaining n — 2 closed path we can choose at most two vertices so that enclave condition is satisfied. Thus, in each n — 2 closed
path, there is one vertex that does not belong to the enclave dominating set.

Hence v, (T5(T)) <2n—1—(n—2)=2n—1—n+2=n+1.

From the above cases, we get 3 < v, (T5(T')) <n+1.

Theorem 5.5.

For any tree T with n > 2 vertices, 2 <~ (71 (T)) <n

Proof:

Let T be a tree such that |V(T')| =nand |[E(T)| =n—1 then |V(T,(T)| =2n—1

Case(i): Let T' be a tree with n = 2 vertices, then |V (T} (T"))| = 3. If we choose the edge vertex and its one adjacent vertex
will satisfy the enclave domination condition. Hence (77 (7)) > 2.

Case(ii): Let 1" be a tree with n > 2 vertices. By theorem 3.8. the edge vertices not be the enclave dominating vertex. Let us
construct the enclave dominating set £, with respect to any vertex u; in T. Suppose the set £/, have all the edge vertices then
the domination condition will be satisfied. If we choose the vertex u; belongs to the set, then E,, = {u;,e;,e5,...,e,,_1 } will
be the satisfy the enclave domination condition. Hence v (T4 (T)) <14+ (n—1) =n. l

From the above cases, we have 2 <~_(T}(T)) <n

Theorem 5.6.

Let T be any tree then . (T') < v.(T5(T")). The equality holds if every vertex in T is either a pendant vertex or adjacent to
at least one pendant vertex.

Proof:

Let us prove the inequality by the following two cases,

Case(i): Suppose every vertex in 7 is either pendant vertex or adjacent to at least one pendant vertex.

Let S be the set of all support vertices in T, |S| = s. By theorem 5.1. 7. (T') = §+ 1. In this case 8 = |S| = s. Thus
v.(T) = s+ 1. By theorem 5.5. for this case, we have s+ 1 = v, (T5(T")). From the two equalities, we get v, (T') = 7. (T5(T)).

Case(ii): Suppose there exist a vertex in 7" that is neither pendant vertex nor adjacent to pendant vertex.

Let A be the set of minimum vertex cover in T, |A| = . The minimum enclave dominating set of 7" is F,, = AU {u}
where u is any pendant vertex in T. And | E,, | = |A| + 1,7.(T) = S+ 1. In T, (T') any support edge vertex (say) € is the enclave
dominating vertex and its minimal enclave dominating setis F/, = N[e]U A. Clearly, there exists exactly one vertex in N[e] N A.
Andso |E.|=|A|+2thus vy (T5(T)) = 8+ 2. From the two equlaites, we get v (T') < 7. (To(T)).

From the above cases, we get v, (T") < v.(T5(T)).

Theorem 5.7.

Let T be any tree then v, (T5(T)) <. (T4 (T)). The equality holds if T" = P, , or if every vertex in T is either pendant vertex
or adjacent to exactly one pendant vertex.

Proof:

Let us prove the inequality from the following cases,

Case(i) If T' = P, By theorem 3.1. and theorem 4.1. we say that v_(T5(P,,)) = v.(T1(P,,)).

Case(ii): Assume that every vertex in 7' is either pendant vertex or is adjacent to at least one pendant vertex.

In this case, for T, (T') every support vertex, one pendant edge vertex and its corresponding pendant vertex in T are included
in the enclave dominating set. For T} (T"), all the pendant edge vertices and any one pendant vertex in T belong to the enclave
dominating set. Furthermore, the cardinality of minimum enclave dominating sets in both graphs are equal.

Therefore v, (T, (T)) = 7, (T, (T)).

Case(iii): Assume that some vertex in 7" is neither pendant vertex nor is adjacent to the pendant vertex.
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Let A and B be the set of all support vertex and support edges in T respectively. Clearly for this case | A| < | B|. The minimum
enclave dominating set of T, (7') must have all the support vertex in T', whereas the minimum enclave dominating set in T} (T')
must have all the support edge vertex in T'. Also for the enclave vertex in T5(T"), N[e] = 3, whereas in T} (T'), N[u] = 2. And
by the adjacency conditions specified in T4 (G) and T (G) we get v (T5(T)) < v (T3 (T)).

From the above cases, we conclude that v, (T5(T)) <. (Ty(T)).

Theorem 5.8.

Foranytree T, v.(T) < v.(T5(T)) <. (Ty (T)). The equality holds if every non-pendant vertex in T is adjacent to exactly
one pendant vertex.

Proof:

The inequalities follow from theorem (5.6.) and (5.7.)

6 Conclusion

This paper presents a study on enclave dominating sets and explores the enclave domination number of semi-total graphs
T,(G), T5(G) associated with certain standard and special graphs. And we characterize the enclave dominating sets in
semi-total line graphs and semi-total point graphs. Future research aims to develop algorithms for determining the enclave
domination number and examine potential applications of this concept.
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