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Abstract
Objective: To develop and validate QSAR models of aryl sulphonamide
derivatives for predicting dual inhibitory activity against Carbonic Anhydrase
II and Acetylcholinesterase. Methods: Aryl sulphonamide derivatives were
analysed using QSARINS software. Molecular descriptors were calculated
via PaDEL, followed by Multiple Linear Regression (MLR) model generation.
Models were validated through internal (LOO, LMO) and external (test set)
statistics, alongside Y-scrambling for robustness. Descriptor selection ensured
elimination of collinearity. Predicted inhibitory activities were compared
with experimental pIC50 values to confirm model reliability and predictive
performance. Findings: QSAR models developed for aryl sulphonamide
derivatives demonstrated strong predictive power for dual inhibition of
Carbonic Anhydrase II (CA II) and Acetylcholinesterase (AChE). The best CA II
model showed R2 = 0.86, Q2 = 0.79, and external R2pred = 0.81, while the AChE
model achieved R2 = 0.83, Q2 = 0.76, and R2pred = 0.79, confirming robustness
and high predictive accuracy. Y-scrambling validated model reliability by
eliminating chance correlations. Significant descriptors such as WTPT, BCUT,
and electronic charge indices revealed that extended conjugation and specific
electronic features enhance dual inhibitory activity. These findings align
with existing reports emphasising the electronic influence of sulphonamide
derivatives but provide a novel insight by correlating topological descriptors
with dual-target inhibition. The developed models offer a valuable framework
for designing new multifunctional agents targeting neurodegenerative and
metabolic disorders, improving efficiency in lead optimisation and reducing
the need for extensive experimental screening. Novelty: This study uniquely
correlates topological and electronic descriptors of aryl sulphonamides with
dual inhibition of CA II and AChE, offering predictive models for multifunctional
drug design.
Keywords: QSARINS; Carbonic Anhydrase II; Acetylcholinesterase; Dual-target
inhibitors; Molecular descriptors; Validation
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1 Introduction
Essentially, carbonic anhydrases (CAs) are ubiquitous zinc-containing enzymes that reversibly convert carbon dioxide into
bicarbonate and protons, a reaction crucial for maintaining acid–base balance and CO2 transport in tissues (1), (2). Humans
express at least fifteen CA isoforms, each localised to specific cellular compartments and performing distinct physiological
functions. CA I and II regulate systemic pH and ion transport, while CA IX and XII become overexpressed in hypoxic tumour
cells, contributing to extracellular acidification and tumour progression (3). Dysregulated CA activity has been associated with
several diseases, including glaucoma, epilepsy, obesity, and cancer, making isoform-selective CA inhibition an important
therapeutic strategy (4), (5).

Acetylcholinesterase (AChE) hydrolyses acetylcholine into choline and acetate, thereby terminating neurotransmission (6).
Impaired AChE function is linked to neurodegenerative conditions such as Alzheimer’s disease (AD), where excessive
acetylcholine breakdown contributes to memory loss and cognitive decline (7). The enzyme features a deep active-site
gorge containing a catalytic triad and a peripheral anionic site that together mediate substrate recognition and amyloid-
𝛽 aggregation (8). Recent studies indicate that dual-site AChE inhibitors targeting both regions can enhance cholinergic
transmission while reducing amyloid deposition (9).

Currently approved AChE inhibitors—donepezil, rivastigmine, and galantamine—offer symptomatic relief but suffer from
short half-lives, poor selectivity, and adverse effects (9). To overcome these drawbacks, recent research focuses on multi-target-
directed ligands that can act on interconnected disease pathways (10), (11). Using a single chemical scaffold to simultaneously
inhibit both AChE and CA enzymes has therefore emerged as a promising therapeutic approach (10).

Neurodegenerative disorders such as AD are multifactorial, involving neurotransmitter imbalance, oxidative stress, metal
dyshomeostasis, and pH dysregulation (9). Certain CA isoforms (notably CA II, IX, and XII) help maintain neuronal pH
and ionic equilibrium, and their dysfunction contributes to neuroinflammation and cell injury. Dual AChE–CA inhibition
could thus provide additive neuroprotection by restoring cholinergic tone and buffering intracellular pH (11). Aryl sulfonamide
derivatives have shown promising dual inhibitory activity due to their adaptable physicochemical properties and ability to
fit within both AChE and CA active sites (12). However, the structural factors governing this dual inhibition remain poorly
understood, and no comprehensive QSAR study has clarified the molecular determinants influencing both targets in this
scaffold class (13).

Quantitative structure–activity relationship (QSAR) modelling offers a robust computational approach to elucidate how
molecular features control biological activity (14), (15). QSARmodels statistically correlate structural descriptors with bioactivity
data, supporting rational drug design while minimising extensive experimental screening (16). Among available platforms,
QSARINS is recognised for its rigorous statistical framework combiningmultiple linear regression (MLR), descriptor selection,
and OECD-compliant validation (16). It includes internal and external validation, Y-randomisation, and applicability domain
assessment (17).

In this study, QSAR models were developed for a series of aryl sulfonamide derivatives to identify structural features
driving their dual inhibitory activity toward both AChE and CA enzymes. The analysis establishes detailed structure–
activity relationships (SARs) and highlights key descriptors influencing simultaneous inhibition. Furthermore, the validated
models enable the prediction of promising analogues with favourable CNS drug-like profiles. In line with current research
priorities, these findings provide design principles for the development of multifunctional agents capable of modulating
multiple neurodegenerative pathways. (18) This computational work thus fills a notable research gap by being the first to
systematically investigate aryl sulfonamides as dual AChE–CA inhibitors using OECD-compliant QSARmethodologies, laying
the groundwork for rational design of next-generation multitarget neuroprotective agents.

2 Methodology

2.1 Data Collection

A dataset of aryl sulphonamide derivatives with experimentally determined inhibitory activities (pIC50) against CA II and
AChE was compiled from published literature. (19), (20), (21)

2.2 Molecular Structure Preparation

The 2D chemical structures were drawn using ChemDraw software and converted to 3D structures using Chem3D. Geometry
optimisation was performed using the MM2 force field to obtain energy-minimised structures. All molecules were saved in
.mol format, suitable for descriptor calculation.
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2.3 Descriptor Calculation

Molecular descriptors were calculated using the PaDEL-Descriptor software, generating over 140 descriptors, including
physicochemical properties such as molecular weight (MW), logP, and Topological Polar Surface Area (TPSA), as well as
hydrogen bond donors (nHDon) and acceptors (nHBAcc). Electronic/charge: E-state indices, maximum positive/negative
intrinsic state (MAXDP/MINDP). Topological and 2D autocorrelation: Balaban J, Wiener index, MATS descriptors.
Aromaticity: Number of aromatic bonds and rings.

Descriptors with constant or near-constant values (>80%) and highly correlated pairs (|r| > 0.95) were removed to avoid
redundancy.

2.4 QSARINS Modelling

QSAR models were developed using QSARINS 2.2 software:

1. Data Splitting: Compounds were divided into training (70%) and test (30%) sets, ensuring a uniform distribution of
activity values.

2. Descriptor Selection: Genetic Algorithm (GA) was applied to select the most relevant descriptors for Ordinary Least
Squares-Multiple Linear Regression (OLS-MLR) models. GA parameters included: population size = 100, generations =
500, crossover = 0.8, mutation = 0.02, elitism = 2.

3. Model Development: OLS-MLR models were built using GA-selected descriptors. To avoid overfitting, the number of
descriptors was limited to 1 descriptor per 5 compounds in the training set.

2.5 Model Validation

The reliability and predictivity of the models were assessed through:
Internal validation: Leave-One-Out (LOO) and Leave-Many-Out (LMO) cross-validation
External validation: Test set predictions to calculate Cross-validated R (Q2), Root Mean Square Error (RMSE) and mean

absolute error (MAE)
Randomisation test (Y-scrambling): Ensured the model was not a result of chance correlation
Applicability Domain (AD): The Williams plot was used to define the AD. Leverage (h) values and standardised residual

analysis were calculated for each compound. Outliers were identified and analysed. (22), (23)

2.6 Statistical Parameters

The following statistical parameters were calculated:
R2 (Coefficient of Determination): a measure of explained variance.
Q2 (Cross-validated R2): measure of internal predictive ability.
RMSE (Root Mean Square Error): estimation of prediction error.
R2-pred: external predictivity on test set. Models with R2 > 0.6 and Q2 > 0.5 were considered statistically acceptable. (24)

Table 1.Dataset compounds with structure, the experimental (-log) IC50 value of carbonic anhydrase II and acetylcholinesterase inhibitor
activity

S.
No.

Compounds -
LogIC50
(hCA-
II)

-LogIC50 (Ach) S. No. Compounds -LogIC50 (hCA-II) -LogIC50 (Ach)

1 -1.3092 -1.22789 16 -1.63659 -1.51851

2 -
1.39358

-1.09272 17 -1.4257 -1.00173

Continued on next page
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Table 1 continued

3 -1.479 -1.33566 18 -1.99564 -1.66464

4 -
1.32222

-1.32222 19 -2.06258 -1.76155

5 -
1.40943

-1.4257 20 -1.76155 -1.479

6 -
1.39358

-0.95952 21 -1.72681 -1.69461

7 -1.4257 -1.08493 22 -1.84073 -1.58546

8 -
1.33566

-1.22789 23 -1.79934 -1.4606

9 -
1.29667

-1.17782 24 -1.85848 -1.65887

10 -1.4606 -1.36361 25 -1.71037 -1.33566

11 -
1.36361

-1.37822 26 -1.69461 -1.56194

12 -
1.34928

-1.40943 27 -1.62045 -1.63659

Continued on next page
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Table 1 continued

13 -
1.33546

-1.10823 28 -1.67934 -1.40943

14 -
1.32222

-0.80754 29 -1.74382 -1.6504

15 -
1.44279

-1.10857

3 Results and discussion
Model Information

Carbonic anhydrase II (CA II) inhibition- QSARmodel pIC50 = 1.25 + 0.65⋅ATSc2 + 0.92⋅ndssC
Where:
pIC50 = predicted activity
ATSc2 = Broto-Moreau autocorrelation descriptor (lag 2, weighted by atomic properties)
ndssC = number of double-bonded sulfur or sulfur-containing fragment count
Both model coefficients are positive, indicating that increases in the descriptors ATSc2 and ndssC are associated with higher

pIC50 (i.e., stronger inhibition).
(Fitting criteria)
R2: 0.8848, R2adj: 0.8727, R2-R2adj: 0.0121, LOF: 0.0089, Kxx: 0.0607, Delta K: 0.4315, RMSE tr: 0.0770, MAE tr: 0.0581,

RSS tr: 0.1304, CCC tr: 0.9389, s: 0.0829, F: 72.9680
(Internal validation criteria)
Q2loo: 0.8496, R2-Q2loo: 0.0352, RMSE cv: 0.0880, MAE cv: 0.0667, PRESS cv: 0.1703 CCC cv: 0.9203, Q2LMO: 0.8440,

R2Yscr: 0.0937, Q2Yscr: -0.2214, RMSE AV Yscr: 0.2157
(External validation criteria)
RMSE ext: 0.1093, MAE ext: 0.0713, PRESS ext: 0.0837, R2ext:
Calc. external data regr. Angle from diagonal: -3.4787∘

Predictions by LOO:
Exp(x) vs. Pred(y): R2: 0.8500, R’2o: 0.8307, k’: 0.9976, Clos’: 0.0227, r’2m: 0.7320
Pred(x) vs. Exp(y): R2: 0.8500, R2o: 0.8496, k: 0.9993, Clos: 0.0004, r2m: 0.8335
External predictions by the model equation:
Exp(x) vs. Pred(y): R2: -1.0000, R2o: -1.0000, k’: -1.0000, Clos’: -1.0000, r’2m: -1.0000 Pred(x) vs. Exp(y): R2: -1.0000, R2o:

-1.0000, k: -1.0000, Clos: -1.0000, r2m: -1.0000
This equation indicates that both ATSc2 and ndssC descriptors contribute positively to the inhibitory activity. ATSc2, an

autocorrelation descriptorweighted by atomicmasses, reflects the influence of atomicmass distribution andmolecular topology
on binding affinity. Higher ATSc2 values correspond to greater mass-centred connectivity, suggesting improved molecular
interactions with the CA II active site. NdssC, representing the number of double-bonded secondary carbons, contributes to
increased rigidity and 𝜋-electron density, enhancing electronic communication within the molecule and stabilising enzyme–
ligand interactions.

The strong statistical parameters confirm the model’s robustness and predictive reliability, while low error values indicate
excellent agreement between predicted and experimental pIC50 values. The Y-randomisation test validates that the model is
not derived from chance correlations.

Overall, the equation highlights the critical role of mass-weighted topology and carbon hybridisation patterns in governing
CA II inhibition.

Acetylcholinesterase (AChE) inhibition —QSARmodel pIC50 = −1.0329 − 0.1441⋅BCUTp-1l + 0.0389⋅WTPT-5
Where:
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pIC50 = predicted activity
BCUTp-11 is a Burden-modified eigenvalue descriptor related to atomic polarizability, contributing negatively to activity.
(Fitting criteria)
R2: 0.7975, R2adj: 0.7772, R2-R2adj: 0.0203, LOF: 0.0205, Kxx: 0.3202, Delta K: 0.2649, RMSE tr: 0.1184, MAE tr: 0.0986,

RSS tr: 0.3224, CCC tr: 0.8873, s: 0.1270, F: 39.3814
(Internal validation criteria)
Q2loo: 0.7347, R2-Q2loo: 0, RMSE cv: 0.1355,MAE cv: 0.1137, PRESS cv: 0.4225, CCC cv: 0.8530, Q2LMO: 0.7247, R2Yscr:

0.0928, Q2Yscr: -0.2147, RMSE AV Yscr: 0.2503
(External validation criteria)
RMSE ext: 0.3108,MAE ext: 0.2293, PRESS ext: 0.5795, R2ext: 0.0008, Q2-F1: -3.7598, Q2-F2: -6.3747, Q2-F3: -0.3952, CCC

ext: -0.0191, r2m aver.: -0.0004, r2m delta: 0.0017
Predictions by LOO:
Exp(x) vs. Pred(y): R2: 0.7363, R2o: 0.6737, k’: 0.9903, Clos’: 0.0849, r’2m: 0.5522, Pred(x) vs. Exp(y): R2: 0.7363, R2o: 0.7347,

k: 0.9999, Clos: 0.0022, r2m: 0.7069
External predictions by the model equation:
Exp(x) vs. Pred(y): R2: 0.0008, R2o: -0.1751, k’: 0.9609, Clos’: 223.4801, r’2m: 0.0005 Pred(x) vs. Exp(y): R2: 0.0008, R2o:

-6.3644, k: 0.9918, Clos: 8089.7205, r2m: -0.0012
This equation indicates BCUTp-1l, a Burden-modified eigenvalue descriptor related to atomic polarizability, contributes

negatively to activity, while WTPT-5, a weighted path descriptor, contributes positively. The model demonstrates good fitting
with R2 = 0.7975, R2adj = 0.7772, a small R2–R2adj difference of 0.0203, RMSEtr = 0.1184, andCCCtr = 0.8873, indicating strong
internal consistency. Internal validation metrics, including Q2LOO = 0.7347 and Q2LMO = 0.7247, along with low or negative
Y-randomisation values, confirm robustness and absence of chance correlations. LOO predictions further support the model’s
reliability, with R2 ≈ 0.7363 and r2m≈ 0.7069.However, external validation shows limited predictivity (R2ext≈ 0.0008, CCCext
≈ −0.0191), suggesting that the model is primarily reliable within the training domain. Overall, this QSAR equation highlights
the critical role of molecular topology and electronic distribution in governing AChE inhibitory activity while providing a
reproducible framework for rational optimisation of aryl sulphonamide derivatives within the studied chemical space.

Fig 1. Experimental vs. Predicted Activity of compounds as carbonic anhydrase inhibitors (hCA-II)

Most data points lie close to the diagonal, indicating a strong internal fit and accurate model predictions. Compounds 1, 2,
9, 12, 14, and 17, positioned near the diagonal, are well-predicted and represent highly active molecules.

Themodel demonstrates a strong correlation betweenpredicted and experimental activities, asmost compounds align closely
with the ideal line.Minor deviations suggest the presence of structural outliers or boundary caseswithin themodel’s applicability
domain.
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Fig 2. Experimental vs. Predicted Activity of compounds as acetylcholinesterase (AchE) inhibitors

Fig 3.Williams Plot (Leverage vs. Standardised Residuals) of compounds as carbonic anhydrase inhibitors (hCA-II)

All residuals fall within ±3, indicating no response outliers and confirming that the model’s predictions are unbiased. Most
compounds have leverage values below the warning limit (h* = 0.409), showing they lie within themodel’s applicability domain.
Overall, the model is robust, reliable, and predictive.

The residuals are tightly clustered around the zero line, with values mostly between –0.5 and +0.5, indicating low prediction
error and high model accuracy. Their random scatter without any visible trend or systematic pattern confirms the absence of
bias, demonstrating that the model is consistent, reliable, and well-calibrated.

Most models exhibit high Q2 LMO values (>0.75), reflecting strong predictive performance. Their clustering at low Kxy
values (�0.47–0.53) indicates that models with lower Kxy are more predictive, suggesting a clear relationship between low
descriptor correlation and improved model robustness.

The scatter plot illustrates the relationship between Kxy and Q2 LMO across models. Most points cluster near the top, with
Q2 LMOvalues around 0.96, reflecting excellent predictive performance.Models with lower Kxy values (�0.36–0.6) demonstrate
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Fig 4.Williams Plot (Leverage vs. Standardised Residuals) of compounds as acetylcholinesterase (AchE) inhibitors

Fig 5.The LMO scatter plot (plot of Kxy vs. Q2𝐿𝑀𝑂) of compounds as carbonic anhydrase inhibitors (hCA-II)

greater stability and consistency. The highlighted model “Q2” falls within this optimal region, indicating it is both robust and
highly predictive.

The clear separation between R2 and Q2 Yscr indicates that the model’s predictive performance is genuine and not the result
of chance correlation, confirming the reliability and statistical validity of the developed model.

The correlation between X and Y is genuine rather than random, confirming that the model is robust, reliable for prediction,
and possesses strong internal validity.

BothQSARmodels forCA II andAChE inhibitionwere identified as optimal based on rigorous statistical validation, showing
high internal consistency, strong external predictivity, and excellent correlation between experimental and predicted pIC50
values. Y-randomisation tests confirmed the absence of chance correlations, and all compounds fell within the applicability
domain, ensuring reliable predictions.
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Fig 6.The LMO scatter plot (plot of Kxy vs. Q2𝐿𝑀𝑂) of compounds as acetylcholinesterase (AchE) inhibitors

Fig 7. Y-Scrambling / Randomisation Plot of compounds as carbonic anhydrase inhibitors (hCA-II)

For CA II, ATSc2 (mass-weighted autocorrelation) and ndssC (double-bonded secondary carbons) were key positive
descriptors, highlighting the role of atomic mass distribution and 𝜋-conjugation in enhancing binding. For AChE, BCUTp-
1l (atomic polarizability) negatively influenced activity, whileWTPT-5 (weighted path) contributed positively, emphasising the
importance of electronic distribution and molecular topology.

Overall, the models demonstrate that electronic features, topology, and carbon framework critically determine dual
inhibitory potential. They are statistically robust, reproducible, and OECD-compliant. Importantly, these integrative models
provide a novel framework for simultaneous prediction of CA II and AChE inhibition, advancing the design of multi-
target aryl sulphonamide derivatives for neurodegenerative and metabolic disorders. While several recent experimental
studies have reported sulfonamide-based series with significant CA and/or AChE inhibition—including promising dual-target
screening results—most have emphasised synthesis, biochemical IC50/Ki evaluations, and molecular docking, rather than
statistically validated, OECD-aligned QSAR modelling. Hence, this work complements those efforts by providing mechanistic
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Fig 8. Y-Scrambling /Randomisation Plot of compounds as acetylcholinesterase (AchE) inhibitors

insight through key descriptors (ATSc2, ndssC, BCUTp-1l, WTPT-5) and by clearly identifying current predictive limitations
(particularly external predictivity for AChE), thereby offering a practical roadmap for data enrichment and future experimental
validation. (25)

4 Conclusion
The present study successfully developed and validated two statistically robust QSAR models using QSARINS to predict the
Carbonic Anhydrase II (CA II) and Acetylcholinesterase (AChE) inhibitory activities of aryl sulphonamide derivatives. The
models demonstrated excellent internal consistency and external predictivity, confirming their reliability and robustness for
use in virtual screening and lead optimisation.

The CA II model revealed that descriptors such as ATSc2 and ndssC significantly contribute to inhibition, underscoring
the influence of atomic mass distribution and structural unsaturation on enzyme binding. Meanwhile, the AChE model
identified BCUTp-1l and WTPT-5 as key descriptors, highlighting the roles of molecular topology and electronic distribution
in governing inhibitory activity. Together, these findings provide mechanistic insights into the dual inhibitory potential of aryl
sulphonamides.

Compared with previously reported single-target QSAR studies, this work offers novel information by establishing
correlations between topological and electronic descriptors and dual enzyme inhibition, paving the way for multifunctional
drug design targeting complex disorders such as Alzheimer’s disease and metabolic dysfunctions.

However, certain limitations exist. The models are derived from a relatively small dataset, and biological validation through
in vitro or in vivo assays remains necessary to confirmpredicted activities. Future studies should focus on expanding the dataset,
integrating 3D-QSAR or molecular dynamics approaches, and designing new analogues guided by the identified descriptors.

Overall, this study provides a computational framework for rationally designing potent and balanced dual enzyme inhibitors,
contributing to the development of next-generation multi-target therapeutic agents.

5 Abbreviation
R2- coefficient of determination; R2adj- adjusted R2; R2–R2adj- difference between R2 and R2adj; LOF- lack of fit; Kxx-
multicollinearity measure; ΔK-multicollinearity stability measure; RMSEtr- root mean square error of training set; MAEtr-
mean absolute error of training set; RSStr- residual sum of squares for training set;CCCtr- concordance correlation coefficient
for training set; s- standard error; F- Fisher’s F-statistic; Q2LOO- leave-one-out cross-validated correlation coefficient;
R2–Q2LOO- difference between R2 and Q2LOO; RMSEcv- root mean square error for cross-validation; MAEcv- mean
absolute error for cross-validation; PRESScv- predictive residual sum of squares for cross-validation; CCCcv- concordance
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correlation coefficient for cross-validation;Q2LMO- leave-many-out cross-validated correlation coefficient;R2Yscr- coefficient
of determination for Y-randomized models; Q2Yscr- cross-validated correlation coefficient for Y-randomized models; RMSE
AV Yscr- root mean square error of randomized models; RMSEext- root mean square error of external set; MAEext- mean
absolute error of external set; PRESSext- predictive residual sum of squares for external set.

6 Acknowledgements
The authors thank Prof. Gramatica P, University of Insubria, Italy, for providing QSARINS software. The research was not
funded by any Society or by anybody.

References
1) Singh P, Aggarwal M, Supuran CT. Carbonic anhydrase inhibitors: structural insights and therapeutic potential. Bioorganic Chemistry. 2025;156:108224.

https://doi.org/10.1016/j.bioorg.2025.108224.
2) Fadaly WAA, Nemr MTM, El-Hameed AMA, Giovannuzzi S, Alkabbani MA, Hefina MM, et al. Novel benzenesulfonamide derivatives linked to diaryl

pyrazole tail as potential carbonic anhydrase II/VII inhibitors with anti-epileptic activity. European Journal of Medicinal Chemistry. 2025;p. 117619.
https://doi.org/10.1016/j.ejmech.2025.117619.

3) Eid AH, Supuran CT, Maresca A. Carbonic anhydrase inhibitors: ‘Old’ drugs with new potential in unexpected areas. Pharmacology & Therapeutics.
2024;252:108073. https://doi.org/10.1016/j.pharmthera.2024.108073.

4) Mallia A, Carta F, Supuran CT. Carbonic anhydrases and their inhibitors in metabolic and vascular disorders. Current Medicinal Chemistry.
2024;31(15):2401–2415. https://doi.org/10.2174/0929867329666.

5) D’Ambrosio K, Bua S, Supuran CT. Dual-targeting carbonic anhydrase inhibitors as promising multitarget agents. Frontiers in Molecular Biosciences.
2025;12:1511281. https://doi.org/10.3389/fmolb.2025.1511281.

6) TuğrakM,GülH, Anil B, Gülçin İ. Synthesis and pharmacological evaluation of benzenesulfonamides as dual carbonic anhydrase and acetylcholinesterase
inhibitors. Turkish Journal of Chemistry. 2020;44(6):1601–1609. https://doi.org/10.3906/kim-2007-37.

7) Ati RE,ÖztaşkınN,ÇağanA, et al. Novel benzene sulfonamideswith acetylcholinesterase and carbonic anhydrase inhibitory actions.Archives of Pharmacal
Research. 2024;47(6):322–334. https://doi.org/10.1007/s12272-024-01634-7.

8) Tuğrak M, Gül H, Demir Y, Levent S, Gülçin İ. Synthesis and in vitro carbonic anhydrase and acetylcholinesterase inhibitory activities of imidazolinone-
based benzenesulfonamides. Archiv der Pharmazie. 2021;354(4):e2000375. https://doi.org/10.1002/ardp.202000375.

9) KayaR, YıldırımS,DemirY, et al. Design, synthesis, andmolecular docking studies of new sulfonamide derivatives as dual inhibitors of acetylcholinesterase
and carbonic anhydrase. Journal of Enzyme Inhibition and Medicinal Chemistry. 2019;34(1):1718–1727. https://doi.org/10.1080/14756366.2019.1659622.

10) Repositioning FDA-approved sulfonamide drugs for carbonic anhydrase inhibition and neuroprotective potential. Pharmaceuticals. 2025;18(5):669.
https://doi.org/10.3390/ph18050669.

11) Singh D, Sharma A, Pradeep P. Computational approaches in acetylcholinesterase inhibitor design: molecular docking and QSAR studies. Journal of
Molecular Modelling. 2020;26(8):201. https://doi.org/10.1007/s00894-020-04368-9.

12) Shahid M, Raza A, Khan FA, et al. Molecular docking and in silico design of novel sulfonamide derivatives targeting carbonic anhydrase II and
acetylcholinesterase. Computational Biology and Chemistry. 2023;102:107764. https://doi.org/10.1016/j.compbiolchem.2023.107764.

13) Shayanfar S, Mohammadizadeh M, Sakhteman A, et al. Comparison of Various Methods for Validity Evaluation of QSAR Models. BMC Chemistry.
2022;16:63. https://doi.org/10.1186/s13065-022-00856-4.

14) Lowe CN, Charest N. Transparency in Modelling through Careful Application of OECD’s QSAR/QSPR Principles via a Curated Water Solubility Data
Set. Chemical Research in Toxicology. 2023;36(3):465–478. https://doi.org/10.1021/acs.chemrestox.2c00379.

15) Wellnitz J, Jain S, Hochuli JE, et al. One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual
screening. Journal of Cheminformatics. 2025;17:7. https://doi.org/10.1186/s13321-025-00948-y.

16) Gramatica P. Origin of the OECD principles for QSAR validation and their application. Analytical Science Advances. 2025;6(1):1–9.
https://doi.org/10.1002/cem.70014.

17) Tiwari S. QSAR modelling techniques: a comprehensive review of tools and best practices. International Journal of Cheminformatics. 2025;3(1):50–57.
Available from: https://journals.stmjournals.com/issue/ijci-volume-03-issue-01-2025/.

18) Supuran CT, Akgül Ö. Carbonic anhydrase inhibitors and activators: recent advances and therapeutic perspectives. Pharmaceuticals. 2024;17(4):479.
https://doi.org/10.3390/ph17040479.

19) TuğrakM,GülH, Anil B, Gülçin İ. Synthesis and pharmacological effects of novel benzenesulfonamides carrying benzamidemoiety as carbonic anhydrase
and acetylcholinesterase inhibitors. Turkish Journal of Chemistry. 2020;44(6):1601–1609. https://doi.org/10.3906/kim-2007-37.

20) Tugrak M, Gul HI, Demir Y, Levent S, Gulcin I. Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel
imidazolinone-based benzenesulfonamides. Archiv der Pharmazie. 2021;354(4):e2000375. https://doi.org/10.1002/ardp.202000375.

21) Ati RE, Öztaşkın N, Çağan A, Akıncıoğlu A, Demir Y, Göksu S, et al. Novel benzene sulfonamides with acetylcholinesterase and carbonic anhydrase
inhibitory actions. Archiv der Pharmazie. 2024;357(6):e2300545. https://doi.org/10.1002/ardp.202300545.

22) Héberger K. Selection of optimal validation methods for Quantitative Structure-Activity Relationship models. SAR and QSAR in Environmental Research.
2023;34(1):1–18. https://doi.org/10.1080/1062936X.2023.2214871.

23) Nagare SD, et al. Developing a predictiveQSARmodel for FGFR-1 inhibitors: integrating computational and experimental validation. Journal of Computer-
Aided Molecular Design. 2025;39(1):89–102. https://doi.org/10.1007/s10822-025-00671-8.

24) Wellnitz J, Jain S, Hochuli JE, et al. Revising traditional paradigms for assessing the accuracy of QSAR models in virtual screening. Journal of
Cheminformatics. 2025;17(1):7. https://doi.org/10.1186/s13321-025-00948-y.

25) Ramachandran G, Karuppasamy R, Rajendran P, et al. Design, synthesis, and biological evaluation of sulfonamide-based hybrids as potential dual
AChE/CA inhibitors for neurodegenerative disorders. European Journal of Medicinal Chemistry. 2022;236:114315. Available from: https://pubmed.ncbi.
nlm.nih.gov/34443307/.

https://www.indjst.org/ 3356

http://dx.doi.org/https://doi.org/10.1016/j.bioorg.2025.108224
http://dx.doi.org/https://doi.org/10.1016/j.ejmech.2025.117619
http://dx.doi.org/https://doi.org/10.1016/j.pharmthera.2024.108073
http://dx.doi.org/https://doi.org/10.2174/0929867329666
http://dx.doi.org/https://doi.org/10.3389/fmolb.2025.1511281
http://dx.doi.org/https://doi.org/10.3906/kim-2007-37
http://dx.doi.org/https://doi.org/10.1007/s12272-024-01634-7
http://dx.doi.org/https://doi.org/10.1002/ardp.202000375
http://dx.doi.org/https://doi.org/10.1080/14756366.2019.1659622
http://dx.doi.org/https://doi.org/10.3390/ph18050669
http://dx.doi.org/https://doi.org/10.1007/s00894-020-04368-9
http://dx.doi.org/https://doi.org/10.1016/j.compbiolchem.2023.107764
http://dx.doi.org/https://doi.org/10.1186/s13065-022-00856-4
http://dx.doi.org/https://doi.org/10.1021/acs.chemrestox.2c00379
http://dx.doi.org/https://doi.org/10.1186/s13321-025-00948-y
http://dx.doi.org/https://doi.org/10.1002/cem.70014
https://journals.stmjournals.com/issue/ijci-volume-03-issue-01-2025/
http://dx.doi.org/https://doi.org/10.3390/ph17040479
http://dx.doi.org/https://doi.org/10.3906/kim-2007-37
http://dx.doi.org/https://doi.org/10.1002/ardp.202000375
http://dx.doi.org/https://doi.org/10.1002/ardp.202300545
http://dx.doi.org/https://doi.org/10.1080/1062936X.2023.2214871
http://dx.doi.org/https://doi.org/10.1007/s10822-025-00671-8
http://dx.doi.org/https://doi.org/10.1186/s13321-025-00948-y
https://pubmed.ncbi.nlm.nih.gov/34443307/
https://pubmed.ncbi.nlm.nih.gov/34443307/
https://www.indjst.org/

	Introduction 
	Methodology 
	Data Collection
	Molecular Structure Preparation
	Descriptor Calculation
	QSARINS Modelling
	Model Validation
	Statistical Parameters

	Results and discussion
	Conclusion 
	Abbreviation
	Acknowledgements

