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Abstract
Objective. Let F (q) = ∑∞

n=0 anqn be a formal power series and let α ∈ C. In
this note, we consider the function F(q)α . We find that if F(q)α has a series
expansion at q = 0, then its coefficients are polynomials in α . The coefficients
of these polynomials were found to be a weighted composition sum.Methods.
The method to arrive at this representation involves logarithmic derivative and
exponential representation. Findings. As a consequence of this, new identities
involving partition functions and binomial coefficients were obtained. Further,
a particular class of Dirichlet series is found to have the form of an exponential
function. Consequently, identities involving Riemann zeta function values
were obtained. Novelty. The present work generalizes a class of functions
considered by D’Arcais. Divisor-sum identities involving partition functions and
exponential representation of Dirichlet series of this article were new to the
literature.
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1 Introduction
Themotivation of this study stems from the following product-to-sum representation:

q
∞

∏
m=1

(1−qm)24 =
∞

∑
n=1

τ (n)qn,

where an infinite product, namely, ∏∞
m=1 (1−qm) is raised to the power 24. The

function τ (n)was defined by Ramanujan and is known as Ramanujan’s tau function (1).
The product ∏∞

m=1 (1−qm) is known as Euler’s product and has an interesting series
expansion which was observed by Euler. This paper is all about a generalization of this
definition. In the first part of this paper, we consider the class of functions having formal
power series expansion:

F (q) = a(0)+a(1)q+ · · · .

Raising F (q) to a complex power α and expressing F(q)α as a formal power series in
q we have

F(q)α = 1+gα (1)q+gα (2)q2 + · · · .

https://www.indjst.org/ 124

https://doi.org/10.17485/IJST/v17sp1.249
https://doi.org/10.17485/IJST/v17sp1.249
https://doi.org/10.17485/IJST/v17sp1.249
sriram.priya02@yahoo.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Sriram & Christopher / Indian Journal of Science and Technology 2024;17(SP1):124–135

The coefficients gα (n) are found to be polynomials in α of degree n. The coefficients of these polynomials are found to be
composition-sums.

Further, we substitute the term ∑∞
n=1 (1−qn)−1 in place of F(q) and obtain interesting identities. Recently, many papers

mainly by Bernard Heim et al. (see (2), (3)) have been appeared related to this class of functions given below:

∏∞
n=1 (1−qn)−α = ∑∞

m=0 τα(m)qm.

This kind of study forms the core part of section 2 and 3.
The study of Dirichlet series of arithmetic functions is an interesting branch of number theory. In section 4, we consider the

following definition.
Definition 1. Let F(q)α = 1+gα (1)q+gα (2)q2+ · · · . Let n = pβ1

1 pβ2
2 · · · pβt

t ≥ 2 be the prime factorisation of n. We define

hgα (n) = gα (β1 +1) · · ·gα (βt +1)

and hgα (1) = 1.
As the main findings of section 4, we found that the Dirichlet series of hgα (n) given by

Dhgα (γ) =
∞

∑
n=1

hgα (n)
nγ

is an exponential function in α . Here too plugging some well-known functions gives new infinite product identities especially
involving Riemann zeta function values.

2 Methodology

Polynomial Representation

Representation of the coefficients of F(q)α as the polynomials in l (whose coefficients are composition-sums) is essential to
obtain the main result of this article.

Theorem 2. Let F (q) = a(0)+a(1)q+ · · ·with a(0) = 1. Denote

logF(q) = b(1)q+b(2)q2 + · · · .

Define, for every α ∈C, Gα (q) = (F (q))α . If Gα (q) can be represented as a series like

Gα (q) = 1+gα (1)q+gα (2)q2 + · · · ,

then for n ≥ 1, we have

gα (n) =
n

∑
s=1

αs

s! ∑
a1 + · · ·+as = n

ai ∈ N

b(a1) · · ·b(as) .−−− (1)

Proof .We have
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Now equating the coefficient of the like powers of q finishes the proof.
Theorem 3. The coefficients a(n) and b(n) of Theorem 2 can be related as follows:

(n+1)a(n+1) =
n

∑
k=0

(k+1)b(k+1)a(n− k) .−−− (2)

Proof. We have

logF (q) = b(1)q+b(2)q2 + · · · .

Differentiating the above, we have

F
′
(q)

F (q)
= b(1)+2b(2)q+ · · · .

This gives

a(1)+2a(2)q+ · · ·= (a(0)+a(1)q+ · · ·)(b(1)+2b(2)q+ · · ·) .

Now equating the coefficients of the like powers of q gives the expected relation.
Remark 4 . FromTheorem 3 one can see that if b(n) is an integer sequence, then a(n) will be an integer sequence.

3 Results and Discussion

Partition Identities

We recall few basics of partition theory. Let n be a positive integer. By a partition of n we mean a non-increasing sequence of
positive integers whose sum equals n. Each element of this sequence is called a part. If each distinct part, say ai, appears fi times
in a partition of n then we denote that partition by n = a f1

1 · · ·a fr
r . If f1 = f2 = · · ·= fr = 1 then that partition of n is said to be

distinct.
Definition 5. Let n be a positive integer. The number of partitions of n is denoted by p(n), and the number of distinct

partitions of n is denoted by D(n).
The generating function for p(n) is given by

∞

∑
n=0

p(n)qn =
∞

∏
m=1

1
(1−qm)

with the convention that p(0) = 1.
The generating function for D(n) is given by

∞

∑
n=0

D(n)qn =
∞

∏
m=1

(1+qm)

with the convention that D(0) = 1.
Now we illustrate on plugging special values in Theorem 2 andTheorem 3.
Define F (q) = p(0)+ p(1)q+ p(2)q2 + · · · . Then we have

logF (q) = log
∞

∏
n=1

(1−qn)−1

=
∞

∑
n=1

log
1

1−qn

=−
∞

∑
n=1

log(1−qn)
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=−
∞

∑
n=1

−
(

qn +
q2n

2
+

q3n

3
+ · · ·

)

=
∞

∑
n=1

∞

∑
m=1

qmn

m

=
∞

∑
k=1

(
∑
d|k

1
d

)
qk

= ∑∞
k=1

σ (k)
k

qk,

where σ (n) = ∑d|n d. Thus, we have b(n) = σ(n)
n while plugging a(n) = p(n) in Theorem 2. NowTheorem 3 implies that

(n+1) p(n+1) =
n

∑
k=0

σ (k+1) p(n− k) .−−− (3)

If one defines
∞

∏
n=1

(1−qn)−α = 1+ τα (1)q+ τα (2)q2 + · · · ,

thenTheorem 2 implies that

τα (n) =
n

∑
s=1

αs

s! ∑
a1 + · · ·+as = n

ai ∈ N

σ (a1)

a1
· · · σ (as)

as
.−−− (4)

The class of polynomials τα (n) are called D’Arcais polynomials (refer (4)). The search for reducibility criterions of these
polynomials over the ring of integers is of special interest and one can see a lot of papers appearing in this direction (refer (2,5–7)),
the main reason behind this search is that the non-vanishing of the polynomials atα =−24 for each n is equivalent to Lehmer’s
conjecture on Ramanujan’s tau function which is still open. As the relations (3) and (4) are well-known we take the above
derivation as an illustration, and proceed in similar fashion taking into account the other partition-generating functions.

Define F (q) = D(0)+D(1)q+D(2)q2 + · · · . Then we have

logF (q) = log∏∞
n=1 (1+qn)

= ∑∞
n=1 log(1+qn)

= ∑∞
n=1

(
qn − q2n

2 + q3n

3 + · · ·
)

= ∑∞
n=1 ∑∞

m=1 (−1)m−1 qmn

m

=
∞

∑
k=1

(
∑
d|k

(−1)d−1 1
d

)
qk

= ∑∞
k=1 σs (k)qk,

https://www.indjst.org/ 127

https://www.indjst.org/


Sriram & Christopher / Indian Journal of Science and Technology 2024;17(SP1):124–135

where σs (n) = ∑d|n (−1)d−1 1
d . Now fromTheorem 3 we have the following recurrence identity for D(n).

Theorem 6. Let n be a positive integer. We have

(n+1)D(n+1) =
n

∑
k=0

(k+1)σs (k+1)D(n− k) .

An application of Theorem 2 gives the following result.
Theorem 7. Let n be a positive integer. We have

D(n) =
n

∑
t=1

1
t! ∑

a1 + · · ·+at = n
ai ∈ N

σs (a1) · · ·σs (at) ,

where σs (n) = ∑d|n (−1)d−1 1
d .

Euler’s partition theorem states that the number of distinct partitions of n is equal to the number of partitions of n with odd
parts. This statement can be expressed in terms of generating functions as follows:

∞

∏
n=1

(1+qm) =
∞

∏
m=1

(
1−q2m−1)−1

.

Now consider the following equalities:

log∏∞
m=1

(
1−q2m−1

)−1
=−∑∞

m=1 log
(
1−q2m−1

)
=−∑∞

m=1−
(

q2m−1 + q2(2m−1)

2 + q3(2m−1)

3 + · · ·
)

= ∑∞
m=1 ∑∞

n=1
qn(2m−1)

n

= ∑∞
k=1 σo (k)qk,

where

σo (k) = ∑
d | k

d ≡ 1 (mod 2)

d
k
.

Then in view of the Theorem 2 we have another recurrence identity for D(n).
Theorem 8. Let n be a positive integer. We have

(n+1)D(n+1) =
n

∑
k=0

(k+1)σo (k+1)D(n− k) .

Now comparingTheorem 6 andTheorem 8 we have the following theorem.
Theorem 9. Let n be a positive integer. We have

∑
d|n

(−1)d−1 1
d
= ∑

d | n
d ≡ 1 (mod 2)

d
n
.

Consider the infinite products:

Tq =
∞

∏
n=1

(1+qn) = elog∏∞
n=1 (1+qn) = eAq
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and

T ∗
q =

∞

∏
n=1

(1−qn) = elog∏∞
n=1 (1−qn) = eA∗

q .

From the previous observations, one can have

Aq = log
∞

∏
n=1

(1+qn) =
∞

∑
k=1

σs (k)qk

and

A∗
q = log

∞

∏
n=1

(1−qn) =−
∞

∑
k=1

σ (k)
k

qk.

Now we have

TqT ∗
q = eAq eAq∗

= eAq+Aq∗ .

On the other hand, we have

TqT ∗
q = e

A∗
q2 .

Now equating the coefficients of like power of q gives the following result.
Theorem 10. Let n be a positive integer. Then we have

σs (n)−
σ (n)

n
=

{
−σ( n

2 )
n
2

if n ≡ 0 (mod 2);
0 otherwise.

Our next concern is over a particular class of partitions, namely, regular partitions which is defined as follows.
Definition 11. Let n be a positive integer and let l ≥ 2 be a positive integer. Then the l-regular partition of n is defined to be

the partition of n, none of its part is divisible by l. The number of l-regular partitions of n is denoted by pl (n).
The study of regular partitions is predominant in additive number theory. In recent development,many arithmetic properties

of l-regular partition functions were obtained. Abinash (8) studied the 3-divisibility of 3 and 9 regular partition functions.
Cherubini et al. (9) studied the parity of 8 regular partition function.

The generating function for l-regular partitions of n is given by

∞

∑
n=0

pl (n)qn =
∞

∏
m=1

1−qlm

1−qm

with the convention that pl (0) = 1.
Consider the following equalities:
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where

σ−1 (n) = ∑
d|n

1
d

and

σ−1
l (n) = ∑

ld|n

1
d
.

Based on these observations, theorem 3 gives the following recurrence identity for pl (n).
Theorem 12. Let n be a positive integer and let l ≥ 2 be a positive integer. We have

(n+1) pl (n+1) =
n

∑
k=0

(k+1)
(
σ−1 (k+1)−σ−1

l (k+1)
)

pl (n− k) .

The infinite product form of the generating function of certain partition functions allows us to employ Theorem 3 to obtain
partition function identities. This kind of derivation may be extended to many other partition functions.

Binomial Identities
Define F (q) = 1+q. In accordance with the notations of Theorem 2 we can write

a(n) =
{

1 if n = 0,1;
0 otherwise,

and considering the following expansion:

log(1+q) = q− q2

2
+

q3

3
−·· · ,

we can write

b(n) =
(−1)n−1

n
.

Now for a positive integer k, we have

(1+q)k =

(
k
0

)
+

(
k
1

)
q+ · · ·+

(
k
k

)
qk.

When the above substitutions were made inTheorem 2 we have the following result.
Theorem 13. Let n and k be two positive integers. We have

n

∑
s=1

ks

s! ∑
a1+···+as=n

(−1)a1+···+as−s

a1 · · ·as
=

{ ( k
n

)
if n ≤ k;

0 otherwise.

In order to arrive at another identity, we define F (q) = 1+q+q2 + · · ·= 1
1−q . In line with Theorem 2 we can write a(n) = 1

for every non-negative integer n. For a positive integer k, we have

F(q)k = (1−q)−k =
∞

∑
n=0

(
n+ k−1

k−1

)
qn

We observe that

logF (q) =−log(1−q) = q+
q2

2
+

q3

3
+ · · · .

Now again in line withTheorem 2 we can write b(n) = 1
n . Now an appeal to Theorem2 gives the following result.

Theorem 14. Let n and k be two positive integers. We have(
n+ k−1

k−1

)
=

n

∑
s=1

ks

s! ∑
a1+···+as=n

1
a1 · · ·as

.
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Class of Dirichlet series which behaves like an exponential function
One can see from the literature that Dirichlet series, power series and Riemann zeta function have harmonious interplay. B. Q.
Li and J. Steuding (10) obtained asymptotic formula for the counting function for fixed points of Dirichlet series and Riemann
zeta function. L. M. Navas et al. (11) obtained an analytic continuation of Dirichlet series. Parth Chavan et al. proposed a general
formula linearizing the convolution of Dirichlet series withmodified weights (12). In this section, we consider a class of Dirichlet
series mentioned in the Definition 1, namely, Dhgα (γ). For a given γ ∈C, we will show that Dhgα (γ) is an exponential function
of α . To acheive that end, we employ Euler’s product formula.

Lemma 15. Let f be a multiplicative function. If its Dirichlet series exist for γ ∈C, then we have

∞

∑
n=1

f (n)
nγ = ∏

p−prime

(
1+

f (p)
pγ +

f
(

p2
)

p2γ + · · ·

)
.

To present the main results of this section, we need the following definition.
Definition 16. Let γ ∈C. We define

S (γ) = ∑p−prime
1
pγ .

Theorem 17. Let F and gα be as in theTheorem 2. We have

Dhgα (γ) = ηα ,

where

η = ∏
p−prime

F
(

p−γ) .
Proof. Let n and m be two relatively prime positive integers greater than 1. Let n = pβ1

1 pβ2
2 · · · pβt

t and m = qδ1
1 qδ2

2 · · ·qδs
s be the

prime factorisations of n and m respectively. Then from the definition of hgα we have

hgα (nm) = gα (β1 +1) · · ·gα (βt +1)gα (δ1 +1) · · ·gα (δs +1)
= hgα (n)hgα (m) .

Thus hgα ismultiplicative. Because of thismultiplicative nature of hgα , we can involve hgα in Euler’s product formula forDirichlet
series as follows:
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Since Dhg0
= 1, the above relation implies that the Dirichlet series Dhgα (γ) is an exponential function. As one can see from

the above equalities that the base of this exponential function is ∏p−prime F (p−γ). Now the proof is completed. �
In what follows we consider the following definitions of functions.
Definition 18. Let α ∈C. A class of functions, denoted τα (n), is defined as follows:

q
∞

∏
m=1

(1−qm)−α =
∞

∑
n=1

τα (n)qn.

Definition 19. Let α ∈C. A class of functions, denoted τ∗α (n), is defined as follows:

q
∞

∏
m=1

(1+qm)α =
∞

∑
n=1

τ∗α (n)qn.

Now in accordance withTheorem 17 we can write

Dhτα (γ) = ∏p−prime (1− p−γ)
−α(1− p−2γ)−α · · ·

=
(

1
ζ (γ)ζ (2γ)···

)−α
.

Denote

δ =
1

ζ (γ)ζ (2γ) · · ·
.

Recall that

S (γ) = ∑
p−prime

p−γ .

Now we have

=−
[

σ (1)
1

S (γ)+
σ (2)

2
S (2γ)+ · · ·

]
https://www.indjst.org/ 132
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This gives

δ = e−
[

σ(1)
1 S(γ)+ σ(2)

2 S(2γ)+···
]
.

Consequently, Dhτα (γ) becomes

Dhτα (γ) = e−α
[

σ(1)
1 S(γ)+ σ(2)

2 S(2γ)+···
]
.

This is recorded in the following theorem.
Theorem 20. We have

Dhτα (γ) = e−α
[

σ(1)
1 S(γ)+ σ(2)

2 S(2γ)+···
]
,

In the course of proof of the theorem above we have arrived at the following identity.
Corollary 21.We have

1
ζ (γ)ζ (2γ) · · ·

= e−
[

σ(1)
1 S(γ)+ σ(2)

2 S(2γ)+···
]
.

Our next concern is over representing Dhτ∗α
(γ) as an exponential function.

Consider

Dhτ∗α
(γ) = ∏p−prime (1+ p−γ)

α(1+ p−2γ)α · · ·
= ∏p−prime

1
(1−p−γ )α(1−p−3γ)

α ···
= (ζ (γ)ζ (3γ) · · ·)α .

Define

λ = ζ (γ)ζ (3γ) · · · .

Consider

logλ = logζ (γ)+ logζ (3γ)+ · · ·

= log ∏
p−prime

1
1− p−γ + log ∏

p−prime

1
1− p−3γ + · · ·

= ∑p−prime

(
log 1

1−p−γ + log 1
1−p−3γ + · · ·

)
= ∑p−prime

[(
p−γ + 1

2 p−3γ + · · ·
)
+
(

p−2γ + 1
2 p−6γ + · · ·

)
+ · · ·

]
= ∑p−prime

[
p−γ

1−p−2γ +
1
2

p−2γ

1−p−4γ + · · ·
]

= ∑p−prime
1
2

[
p−γ

1−p−γ +
1
2

p−2γ

1−p−2γ + · · ·
]
+∑p−prime

1
2

[
p−γ

1+p−γ +
1
2

p−2γ

1+p−2γ + · · ·
]

= ∑p−prime
1
2

[
σ(1)

1 p−γ + σ(2)
2 p−2γ + · · ·

]
+∑p−prime

1
2

[
σs (1) p−γ +σs (2) p−2γ + · · ·

]
= 1

2

[
σ(1)

1 S (γ)+ σ(2)
2 S (2γ)+ · · ·

]
+ 1

2 [σs (1)S (γ)+σs (2)S (2γ)+ · · · ]

This gives

λ = e
1
2

(
σ(1)

1 S(γ)+ σ(2)
2 S(2γ)+···

]
+ 1

2 (σs(1)S(γ)+σs(2)S(2γ)+··· ]
,

https://www.indjst.org/ 133

https://www.indjst.org/


Sriram & Christopher / Indian Journal of Science and Technology 2024;17(SP1):124–135

and

Dhτ∗α
(γ) = e

α
2

[
σ(1)

1 S(γ)+ σ(2)
2 S(2γ)+···

]
+ α

2 [σs(1)S(γ)+σs(2)S(2γ)+··· ]
.

This is recorded in the following theorem.
Theorem 22. We have

Dhτ∗α
(γ) = e

α
2

[
σ(1)

1 S(γ)+ σ(2)
2 S(2γ)+···

]
+ α

2 [σs(1)S(γ)+σs(2)S(2γ)+··· ]
.

In the proof of the theorem above we have the following identities.
Corollary 23.We have

ζ (γ)ζ (3γ) · · ·= e
1
2

[
σ(1)

1 S(γ)+ σ(2)
2 S(2γ)+···

]
+ 1

2 [σs(1)S(γ)+σs(2)S(2γ)+··· ]
.

Corollary 24.We have[(
1
2

σ (1)
1

+
1
2

σs (1)−σ 1
2
(1)
)

S (γ)+
(

1
2

σ (2)
2

+
1
2

σs (2)−σ 1
2
(2)
)

S (2γ)+ · · ·
]
= 0,

where

σ 1
2
(n) =

{
σ( n

2 )
n
2

if n is even;
0 otherwise.

4 Conclusion
This study has raised a formal power series to a complex power. Polynomial representation of its coefficients was observed.
Subsequently, newnumber theoretic identities were obtainedwhen limiting formal power series to somewell-known generating
functions. This kind of study may be extended to existing vast collection of generating functions to derive identities or to study
the properties of numerous arithmetic functions.
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