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Abstract
Objectives: To introduce a new type of labeling called Discrete Labeling.
This labeling aims at providing the maximum output whenever the inputs
are distinct with rational distribution of neighbours thereby exhibiting the
stronger formof Cordial labeling. This work serves as an aid in decision-making.
Methods: The discrete labels 0 and 1 are cordially assigned to the vertices
such that the edges receive labels depending on the incident vertex labels
using EX-OR operation with the condition that for every vertex the cardinality
of neighbours labeled 0 and 1 differs by at most 1. Findings: This study
proposes the discrete labeling of some standard and special graphs. Also it
provides the cases for which certain path, star and cycle related graphs admit
discrete labeling. Novelty: This labeling uses EX-OR operation which reduces
the complexity of having two swords in one sheath. Apart from keeping the
distinct vertex labels and edge labels difference minimal, the cardinality of the
neighbouring labels of every vertex is also taken into account.

Keywords: Graph Parameters; Discrete; Trees; Cycle; Complete Graphs

1 Introduction
Labeling of graphs is a function that maps the vertex set (edge set) to the set of
labels. Here, the domain and codomain are the set of vertices and {0, 1} respectively.
Motivated by the cordial labeling (1) in this paper, we have defined a new type of
labeling called “Discrete labeling” which assigns labels using EX-OR operations taking
the neighbouring labels into consideration. This newly proposed labeling helps in
characterization of neighbours which will further be helpful in determining highly
effective, non-repetitive groups. The graph (V,E) discussed here are simple, connected
and undirected. The terminologies and symbols used in this paper are in accordance
with (2).

Note: In this paper, neighbours of v denote the adjacent vertices of the vertex vand
−
0= 1,

−
1= 0

https://www.indjst.org/ 93

https://doi.org/10.17485/IJST/v17sp1.176
https://doi.org/10.17485/IJST/v17sp1.176
https://doi.org/10.17485/IJST/v17sp1.176
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Tharani & Saradha / Indian Journal of Science and Technology 2024;17(SP1):93–102

2 Methodology

Definition 2.1

Let G(V,E)be a simple, connected, undirected graph.G is said to have a discrete labeling if there exist functions d : V →{0,1}
and e : E → (0,1} defined by

e(uv) =
{

0;d(u) = d(v)
1;d(u) ̸= d(v) u,v ∈V for which

|nd(0)−nd(1)| ≤ 1 (i)

|ne(0)−ne(1)| ≤ 1 (ii)∣∣nN(v)(0)−nN(v)(1)
∣∣≤ 1∀v ∈V (iii)

where nd (x)and ne (x) denote the number of vertices and edges with d (u) = x and e(uv) = x ; x ∈ (0,1} respectively
and nN(v) (0) and nN(v)(1) denote the number of neighbours of the vertex v labeled 0 and 1 respectively. A Graph G is discrete
if it admits discrete labeling (3)

Example:

Fig 1. Bull graph

In Figure 1 , |nd(0)−nd(1)| = |2 − 3| = 1 and |ne(0)−ne(1)| = |3 − 2| . Also, for every vertex the cardinality of the
neighbouring vertices labeled 0 and 1 differs by at most 1. Hence Bull graph admits discrete labeling.

3 Results and Discussion

Discrete Labeling of Some Standard Graphs

Theorem 3.1.1
Path Pn admits discrete labeling
Proof: Let the vertices of Pn be u1 , u2, . . . ,un

(4). Define a function f : V →{0,1} by

f (u1) = 0

f (u2i) = f (u2i+1) =

{
1 when i is odd
0 when i is even

Label the edges 1 if the vertex labels are distinct and 0 otherwise.
The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1

are listed in Table 1 :
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Table 1. Edge Conditions of Pn

Case |V | |E| nd (0) nd (1) ne (0) ne (1)
n = 0 mod 4 4t 4t −1 2t 2t (2t −1) 2t
n = 1 mod 4 4t +1 4t 2t +1 2t 2t 2t
n = 2 mod 4 4t +2 4t +1 2t +1 2t +1 2t 2t +1
n = 3 mod 4 4t +3 4t +2 2t +1 2t +2 2t +1 2t +1

For all n,

nNu1
(0) = nNun (0) = 1

nNu1
(1) = nNun (1) = 0

nNui
(0) = nNui

(1) = 1, 2 ≤ i ≤ n−1.

It is evident from the above cases that |nd(0)−nd(1)| ≤ 1, |ne(0)−ne(1)| ≤ 1 and
∣∣∣nNui

(0)−nNui
(1)

∣∣∣≤ 1 for all i. Hence Path
Pn admits discrete labeling.

Theorem 3.1.2
Star K1,n−1 is discrete.
Proof: Let u,vi(i= 1,2, . . . ,n−1) denote the central and the pendant vertices of the star graph. For StarK1,n−1|V |= n, |E|=

n−1
Define a function f : V →{0,1} by

f (vi) =

 f (u) = 1
0 when i is odd

1 when i is even

Label the edges 1 if the vertex labels are distinct and 0 otherwise.
The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1

are listed in Table 2 :

Table 2. Label Count in K1,n−1

Case nd (0) nd (1) ne (0) ne (1) nNu(0) nNu(1) nNvi
(0)1 ≤ i ≤

n−1
nNvi

(1)1 ≤ i ≤
n−1

n is odd n−1
2

n+1
2

n−1
2

n−1
2

n−1
2

n−1
2 0 1

n is even n
2

n
2

n−2
2

n
2

n
2

n−2
2 0 1

It is obvious from the above table that |nd(0)−nd(1)| ≤ 1, |ne(0)−ne(1)| ≤ 1
|nNu(0)−nNu(1)| ≤ 1 and

∣∣∣nNvi
(0)−nNvi

(1)
∣∣∣= 1 for all i . . Hence the star graph is discrete.

Theorem 3.1.3
Cycle graphCnadmits discrete labeling only when n is a multiple of 4.
Proof: Let the vertices ofCnbe denoted by u1,u2, . . . ,un

(5). Let us find a suitable function for vertex labeling as follows:
Case 1: When n is a multiple of 4 (n = 4i, i = 1,2, . . .)
Define a function f : V →{0,1} by

f (u4i+1) = f (u4i+2) = 0 ; i = 0,1,2, . . .

f (u4i−1) = f (u4i) = 1; i = 1,2,3, . . .
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Table 3. Label Count inC4n

Case |V | |E| nd (0) nd (1) ne (0) ne (1) nNui
(0)1 ≤ i ≤ n nNui

(1)1 ≤ i ≤ n
n = 0 mod 4 4t 4t 2t 2t 2t 2t 1 1

Label the edges as 1 if the vertex labels are distinct and 0 otherwise.
The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1

are listed below Table 3 :
Hence the Cycle graph admits , |nd(0)−nd(1)|= 0, |ne(0)−ne(1)|= 0 and

∣∣∣nNui
(0)−nNui

(1)
∣∣∣≤ 1 for all i . . Hence Cycle

graph is discrete when n is a multiple of 4.
Case 2: When n is odd
In a cycle, every vertex has exactly two neighbours. When we try labeling the vertices optimally satisfying (i) and (ii) of

the definition, we observe that there exists a vertex whose neighbours are either both 0 or 1 violating the condition (iii) of the
definition. HenceCn is not discrete when n is odd.

Case 3: When n ≡ 2 mod 4
In this case, labeling of vertices is not discrete since the cardinality of half the vertex set is odd. Hence it is not possible to

label the vertices and edges satisfying conditions (i) and (ii). ThereforeCn is not discrete when n ≡ 2 mod 4.
The above cases clearly shows that the cycle graphCnadmits discrete labeling only when n is a multiple of 4.

3.2 Discrete Labeling of Complete graphs

Theorem 3.2.1
Complete bipartite graph Kr,ssatisfies discrete labeling.
Proof: Let the vertices of Kr,s be u1,u2 , ..., ur,ur+1,...,ur+s. Here |V |= r+ s, |E|= rs
Define a function f : V →{0,1} by

f (ui) =

{
0 when i is odd

1 when i is even

Label the edges 1 if the vertex labels are distinct and 0 otherwise.
The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1

are listed below Table 4 :

Table 4. Label Count in Kr,s

Case nd (0) nd (1) ne (0) ne (1) nNui
(0) , 1 i r nNui

(1) , 1 i r
r+ s is odd r+s+1

2
r+s−1

2
rs
2

rs
2

s
2

s
2

r+ s is even r+s
2

r+s
2

rs−1
2

rs+1
2

r+1
2

r−1
2

Table 5.
nNui

(0) , r+1 i r+ s nNui
(1)r+1 i r+ s

r+1
2

r−1
2

s−1
2

s+1
2

It is observed that

|nd(0)−nd(1)|=
{

1 when r+ s is odd
0 when r+ s is even ,

|ne(0)−ne(1)|=
{

0 when r+ s is odd
1 when r+ s is even

For every i,
∣∣∣nNui

(0)−nNui
(1)

∣∣∣≤ 1. . Hence we infer that Kr,s is discrete.
Theorem 3.2.2
For n ≥ 3, Complete graph Kn is not discrete.
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Proof: It is obvious that Kn is discrete when n < 3. When n = 3, condition (iii) of the definition fails since K3 is nothing
butC3. Assume n ≥ 4. Since there are n(n−1)

2 number of edges which is even, equal number of 0’s and 1’s have to be shared for
the edges. It is possible to obtain such an edge labeling, only if we assign (n− 1) zero or one labels to the vertices. This is not
possible by the definition of the discrete labeling. Hence complete graph (Kn,n ≥ 3) is not discrete.

3.3 Discrete Labeling of Some Path and Star related graphs

Theorem 3.3.1
Comb graph is discrete.
Proof: Comb is a graph obtained by joining a single pendant edge to each vertex of a path Pn (Pn ⊙ K1). Let us denote the

vertices of Pn by u1,u2, . . . ,un and the pendant vertices by v1,v2, . . . ,vn.
Case 1 : When n ≡ 0 mod 4
Define a function f : V → (0,1} by

f (u1) = 0

f (u2i) = f (u2i+1) =

{
1 when i is odd
0 when i is even

f (vi) =


f (v5) = 1

0 when i is odd, i ̸= 5
1 when i is even, i ̸= n

f (vn) = 0

Case 2:
When n ≡ 1 mod 4, comb is discrete for we define a function f : V → (0,1} by

f (u1) = 0

f (u2i) = f (u2i+1) =

{
1 when i is odd
0 when i is even

f (vn) = 1

For the other cases of n (i.e) n ≡ 2 mod 4 and n ≡ 3 mod 4, we shall similarly define a function f : V →{0,1} by

f (u1) = 0

f (u2i) = f (u2i+1) =

{
1 when i is odd
0 when i is even

f (vi) =

{
0 when i is odd
1 when i is even

and label the edges 1 if the incident vertex labels are distinct and 0 otherwise.
The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1

are listed below:

From the above table Table 6 it is very clear that
|nd(0)−nd(1)|= 0
|ne(0)−ne(1)|= 1

,For i = 1,n ; |nNui
(0)−nNui

(1) |= 0, for 2 ≤ i ≤ n−1

,|nNui
(0)−nNui

(1) |= 1 and for all i,|nNvi
(0)−nNvi

(1) |= 1.
Hence the proof.
Broom graph Bm,n admits discrete labeling.
Proof: Theorem 3.3.2 :A broom graph Bm,n is a graph with m vertices, which has a path Pn and m−n pendant vertices. Let

the vertices of Pn be u1,u2, . . . ,unand the pendant vertices be v1,v2,…,vm−n.
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Table 6. Labels of Comb graph
Case |V | |E| nd (0) nd (1) ne (0) ne (1) nNui

(0)i =
1,n

nNui
(1)i =

1,n
n ≡
3 mod 4,

8t 8t −1 8t 8t 4t −1 4t 1 1

n≡ 1 mod 4 8t +2 8t +1 4t +1 4t +1 4t 4t +1 1 1
n≡ 1 mod 4 8t +4 8t +3 4t +2 4t +2 4t +2 4t +1 1 1
n= 3 mod 4 8t +6 8t +5 4t +3 4t +3 4t +3 4t +2 1 1

Table 7.
nNui

(0)2 ≤ i ≤
n−1

nNui
(1)2 ≤ i ≤

n−1
nNu5

(0) nNu5
(1) nNv1

(0) nNv1
(1) nNv2i

(0) nNv2i
(1)

1 , i even2, i odd(i ̸=
5)

2, i even1, i odd(i ̸=
5)

1 2 1 0 0, i odd1, i even 1, i odd0, i even

1 , i even2, i odd 2, i even1, i odd − − 1 0 0, i odd1, i even 1, i odd0, i even
1 , i even2, i odd 2, i even1, i odd − − 1 0 0, i odd1, i even 1, i odd0, i even
1 , i even2, i odd 2, i even1, i odd − − 1 0 0, i odd1, i even 1, i odd0, i even

Table 8.
nNv2i+1

(0) nNv2i+1
(1)

0, i odd1, i even 1, i odd0, i even
0, i odd1, i even 1, i odd0, i even
0, i odd1, i even 1, i odd0, i even
0, i odd1, i even 1, i odd0, i even

For the Broom graph |V |= m, |E|= m−1
Define a function f : V →{0,1} by

f (u1) = 0

f (u2i+1) = f (u2i) =

{
1 when i is odd
0 when i is even

Now label the pendant vertices as follows:
Case 1: When m−n is even(n odd/n even)

Label vi(i = 1,2, . . . ,m−n) as f (vi) =

{
1 when i is odd
0 when i is even

Case 2: When m−n is odd
Subcase (i):When m−n is odd and n is odd
Label

vi,∀i ≤ m−n−1 as f (vi) =

{
1 when i is odd
0 when i is even

and f (vm−n) =
−

f (un)
Subcase (ii): When m−n is odd and n is even
Label

vi,∀i ≤ m−n−1 as f (vi) =

{
1 when i is odd
0 when i is even

and f (vm−n) = f (un) .
Then Label the edges 1 if the incident vertex labels are distinct and 0 otherwise.
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Table 9. Label Count in Bm,n

Case nd (0) nd (1) ne (0) ne (1) nNu1
(0) nNu1

(1)
m − n is odd &n =
0 mod 4

m+1
2

m−1
2

m−1
2

m−1
2 0 1

m − n is odd &n =
2 mod 4

m−1
2

m+1
2

m−1
2

m−1
2 0 1

m − n is odd & n =
1 mod 4

m
2

m
2

m−2
2

m
2 0 1

m − n is odd & n =
3 mod 4

m
2

m
2

m−2
2

m
2 0 1

m − n is even & n =
0 mod 4

m
2

m
2

m−2
2

m
2 0 1

m − n is even & n =
2 mod 4

m
2

m
2

m−2
2

m
2 0 1

m − n is even & n =
1 mod 4

m+1
2

m−1
2

m−1
2

m−1
2 0 1

m − n is even & n =
3 mod 4

m−1
2

m+1
2

m−1
2

m−1
2 0 1

Table 10.
nNui

(0)2 ≤ i ≤ n−1 nNui
(1)2 ≤ i ≤ n−1 nNun

(0) nNun
(1) nNvi

(0)1 ≤ i ≤ n nNvi
(1)1 ≤ i ≤ n

1 1 m−n+1
2

m−n+1
2 1 0

1 1 m−n+1
2

m−n+1
2 0 1

1 1 m−n+1
2

m−n+1
2 1 0

1 1 m−n+1
2

m−n+1
2 0 1

1 1 m−n
2

m−n+2
2 1 0

1 1 m−n+2
2

m−n
2 0 1

1 1 m−n+2
2

m−n
2 1 0

1 1 m−n
2

m−n+2
2 0 1

The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1
are listed below Table 9 :

Hence we can conclude that |nd(0)−nd(1)| ≤ 1, |ne(0)−ne(1)| ≤ 1,,∣∣∣nNui
(0)−nNui

(1)
∣∣∣= 1 and

∣∣∣nNvi
(0)−nNvi

(1)
∣∣∣= 1∀i .

Hence Bm,n admits discrete labeling.
Theorem3.3.3
Bistar is discrete.
Proof: Bistais a graph obtained by joining the central vertices of two copies of the star graphs K1,m and K1,n respectively.

Here, |V |= m+n+2, |E|= m+n+1
Without loss of generality assume, m ≥ n .Let u,v denote the central vertices and ui(i = 1,2, . . . ,m) and vi(i = 1,2, . . . ,n) be

the pendant vertices of K1,m and K1,n respectively. Now, Let us define a function f : V →{0,1} by

f (u) = 0, f (v) = 1

f (ui) =

{
0 when i is odd
1 when is even

f (vi) =

{
1 when i is odd
0 when i is even
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which gives the desired vertex labeling. Then assign labels 0 and 1 to the edges if the incident vertex labels are similar and
distinct respectively.

The number of vertices and edges labeled 0 and 1 and for every vertex the number of neighbouring vertices labeled 0 and 1
are listed below:

Table 11. Label Counts of Bistar graph
Case nd (0) nd (1) ne (0) ne (1) nNu (0) nNu (1)
m even ,n odd m+n+1

2
m+n+3

2
m+n+1

2
m+n+1

2
m
2

m+2
2

m odd,n even m+n+3
2

m+n+1
2

m+n+1
2

m+n+1
2

m+1
2

m+1
2

m odd,n odd m+n+2
2

m+n+2
2

m+n+2
2

m+n
2

m+1
2

m+1
2

m even,n even m+n+2
2

m+n+2
2

m+n
2

m+n+2
2

m
2

m+2
2

Table 12.
nNv (0) nNv (1) nNui

(0)1 ≤ i ≤ m nNui
(1)1 ≤ i ≤ m nNvi

(0)1 ≤ i ≤ n nNvi
(1)1 ≤ i ≤ n

n
2

n
2 1 0 0 1

n+2
2

n
2 1 0 0 1

n+1
2

n+1
2 1 0 0 1

n+2
2

n
2 1 0 0 1

Hence from all the above cases Table 11 it is obvious from the table that |nd(0)−nd(1)| ≤ 1,,
|ne(0)−ne(1)| ≤ 1,
|nNu(0)−nNu(1)| ≤ 1, |nNv(0)−nNv(1)| ≤ 1,

∣∣∣nNui
(0)−nNui

(1)
∣∣∣= 1 and

∣∣∣nNvi
(0)−nNvi

(1)
∣∣∣=

1∀i .
Therefore, we can conclude that Bistar is discrete.

3.4 Discrete Labeling of some Special graphs

3.4.1: The Diamond graph is a Hamiltonian,planar,unit distance graph with 4 vertices and 5 edges.It is a complete
graph K4minus one edge.It is often referred as double triangle graph. In diamond graph, |nd(0)−nd(1)| = |2 − 2| =
0 and |ne(0)−ne(1)| = |2−3| = 1 . Also, for every vertex the cardinality of the neighbouring vertices labeled 0 and 1 differs
by at most 1.Hence diamond graph is discrete.

3.4.2:TheMoser Spindle is a planar, unitdistance, Laman graph with seven vertices and eleven edges.It is sometimes termed
as Hajo’sgraph. It is obvious(Figure 2 ) that |nd(0)− nd(1)| =|3− 4| = 1 and |ne(0)− ne(1)| = |5− 6| = 1 . Also, for every vertex
the cardinality of the neighbouring vertices labeled 0 and 1 differs by at most 1 satisfying all the 3 conditions of the definition
which draws a conclusion that Moser Spindle is discrete.

Fig 2.Moser Spindle

3.4.3: The Wagner graph is a 3-regular,Hamiltonian,planar graph with 8 vertices and 12 edges. It is the 8-vertex Mobius
Ladder graph. Wagner graph is discrete for, |nd(0)− nd(1)| = |4− 4| = 0, |ne(0)− ne(1)| = |6− 6| = 0 . (Figure 3 ) and for every
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vertex the (iii) condition of the definition holds.
3.4.4:TheHerschel graph is a non-hamiltonian, bipartite, polyhedral, perfect,planar graph with 11 vertices and 18 edges. It

is also known as Goldner-Harary graph. In this graph, (Figure 4 ) | nd(0)− nd(1)| = |6− 5| = 1 and |ne(0)− ne(1)| = |9− 9| =
0 which shows that the number of vertices labeled 0 and 1 and the number of edges labeled 0 and 1 have an absolute difference
at most 1. We also observe that for every vertex the cardinality of the neighbouring vertices labeled 0 and 1 differs by at most
1.Therefore, Herschel graph admits Discrete Labeling.

3.4.5: The Petersen graph is a cubic, non-planar (10, 15) graph . Petersen graph admits Discrete labeling for, the absolute
difference between the number of vertices labeled 0 and 1 =|5 − 5| =0. The absolute difference between the number of edges
labeled 0 and 1 = |8− 7| = 1.In either cases, the absolute difference is less than or equal to unity (Figure 5 ). Also, the cardinality
of the neighbours of every vertex labeled 0 and 1 differs by at most 1. Hence, Petersen graph is discrete.

Fig 3.Wagner graph

Fig 4.Herschel Graph

Fig 5. Petersen graph

4 Discussion
All Discrete graphs are cordial but not all Cordial graphs are discrete. This study has found that Cycle graphCnadmits discrete
labeling only when n is a multiple of 4. But Cycle graph is cordial if and only if n ̸≡ 2 mod 4 (6). Further studies are being done
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in classification of graphs that satisfy all the three conditions. It is observed that certain cycle related graphs (7) like tadpoles,
wheels and friendship graph (8) admit discrete labeling for only certain cases; whereas, they are cordial for more cases (9).

5 Conclusion
This work represents the stronger form of cordial labeling which incorporates the cardinality of the neighbor vertex labels. In
this paper we have discussed the Discrete labeling of some standard and special graphs. Further explorations are being done on
star related graphs and double graphs. Also, this work can be extended by applying the adjacency condition of the vertices to
the edges resulting in edge discrete labeling (10,11).
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