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Abstract
Objectives: The Trigonometric inequalities, generalized trigonometric inequal-
ities which have been obtained by Wilker and Cusa Huygens have attracted
attention of somany researchers. Generalized trigonometric functions are sim-
ple generalization of the classical trigonometric functions. It is related to the
r- Laplacian, which is known as a non-linear differential operator. Method:
For the establishment of inequalities involving generalized trigonometric and
hyperbolic functions convexity plays the important role in many aspects, also
Monotonicity rule is used for sharpness of inequalities. This technique is used
to refine and sharpness of inequalities. Findings:Our main result of this paper
focus on generalization of Wilker and Cusa Huygens type inequalities for gen-
eralized trigonometric and hyperbolic functions with one parameter. Nov-
elty: The inequalities with generalized trigonometric and hyperbolic functions
proved in this research paper are Wilker’s and Cusa Huygens generalization. It
can be used for further refinement and sharpness.
Keywords: Trigonometric function; Hyperbolic function; Generalized
Trigonometric; Hyperbolic functions; Wilker Inequality and Huygen’s Inequality

1 Introduction
Inequalities have various applications in various branches ofmathematics, amongwhich
are numerical analysis, probability, and statistics as well as in the other sciences such as
information theory, fractional calculus, engineering, and technology. From the basic
calculus we know that,

sin−1(ζ ) =
∫ ζ

0
1

(1−s2)
1
2

ds, 0 ≤ ζ ≤ 1 and π
2 = sin−1(1) =

∫ 1
0

1

(1−s2)
1
2

ds.

Now we define the function sin on
[
0, π

2

]
as the inverse of sin−1 and extend it

to (−∞,∞). For r > 1, the generalized inverse trigonometric sine function with one
parameter sin−1

r (ζ ) is defined as,
sin−1

r (ζ ) =
∫ ζ

0
1

(1−sr)
1
r

ds, 0 ≤ ζ ≤ 1 and πr
2 = sin−1

r (1) =
∫ 1

0
1

(1−sr)
1
r

ds.
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sin−1
r (ζ ) is the inverse of generalized sin function defined on

[
0, πr

2

]
. We can also define generalized cosine function as (1),

cosr(ζ ) = d
dζ sinr(ζ ). Clearly, cosr(ζ ) = (1−|sinr(ζ )|r)

1
r ,0 ≤ ζ ≤ πr

2 and

|sinr(ζ )|r + |cosr(ζ )|r = 1, ζ ∈ R. (1.1)

We can easily prove that d
dζ cosr(ζ ) =−cosr−2

r (ζ )sinr−1
r (ζ ),0 ≤ ζ ≤ πr

2 .

The generalized tangent function is defined as (1)tanr(ζ ) = sinr(ζ )
cosr(ζ ) ,ζ ∈ R \

{
kπr +

πr
2 : k ∈ Z

}
.

From (Equation (1.1)) we have,
d

dζ
tanr(ζ ) = 1+ |tanr(ζ )|r ,

−πr

2
< ζ <

πr

2

Now we can define generalized inverse hyperbolic function as, sinh−1
r (ζ ) =

{ ∫ ζ
0

1

(1+sr)
1
r
, 0 ≤ ζ < ∞

−sinh−1
r (ζ ), −∞ < ζ ≤ 0

.

The inverse of sinh−1
r (ζ ) is known as the generalized hyperbolic sine function and it is denoted by sinhr(ζ ). The generalized

hyperbolic cosine function is defined as, coshr(ζ ) = d
dζ sinhr(ζ ).

These definitions show that,
coshr(ζ )r −|sinhr(ζ )|r = 1,ζ ∈ R and d

dζ coshr(ζ ) = cosh2−r
r (ζ )sinr−1

r (ζ ),ζ ≥ 0.
The generalized hyperbolic tangent function is defined as,
tanhr(ζ ) = sinhr(ζ )

coshr(ζ ) and coshr(ζ )r −|sinhr(ζ )|r = 1,ζ ∈ R .
It is clear that, all these generalized functions coincide with the classical ones when r = 2. (1)
Some known inequalities for generalized trigonometric and hyperbolic functions was already established which is helpful

for proving main result of this paper. Our main results in this paper focused on generalization of Wilker and Huygens type
inequalities using trigonometric and hyperbolic functions. These inequalities were sharpened and proved by many researchers
using generalized trigonometric and hyperbolic functions of two parameters (2,3). The study establishes a generalized inequality
for higher class of the hyperbolic and trigonometric functions extended beyond the initial scope. This finding is expressed in
terms of a one parameter family of hyperbolic and trigonometric functions provide a unified framework for understanding their
relations.The study establishes a unified formulation that connects the inequalities involving generalized functionswith classical
trigonometric inequalities. These results provide insights into the relationships between classical and generalized functions,
further enriching our understanding of these mathematical constructs.

2 Methodology
The main findings in this article include a comparative analysis with other existing generalizations of trigonometric and
hyperbolic functions. By highlighting similarities and differences, this analysis contributes to the ongoing dialogue within the
mathematical community and aids in refining the understanding of these generalizations. To establish the inequalities and for
more refine results we the results as listed.

Lemma 2.1. (4) Let p and q be different numbers which satisfy the inequality pq > 1, then

p+q >
1
p
+

1
q
.

Lemma 2.2. (4) Let p > 0,q > 0 be different numbers and let m and n be any positive numbers such that m + n = 1. If
mp+nq > m

p + n
q > 1 then, mpr +nqr > m

pr +
n
qr > 1. The first part of inequality proved if r > 0 and second part holds when

r ≥ 1.
Lemma 2.3. (4) Let p> 0,q> 0 be different numbers and letm and n be any positive numbers such thatm+n= 1. If qmqn > 1

then, mp+nq > m
(

p
q

)n
+n
(

q
p

)m
.

With the addition of these results Arithmetic and Geometric mean andMonotonicity Rules were used for clarification of our
main findings. Following two inequalities were established and used for the proof of inequalities listed in result and discussion
section (4,5),

cosr

ζ
2


4
3

<
sinr(ζ )

ζ
<

cos2
r

(
ζ
2

)
+2cosr

(
ζ
2

)
3

, 0 < ζ <
πr

2
(2.1)
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coshr

ζ
2


4
3

<
sinhr(ζ )

ζ
<

cosh2
r

(
ζ
2

)
+2coshr

(
ζ
2

)
3

, ζ ̸= 0 (2.2)

3 Results and Discussion

The following inequalities of Wilker type was established by researchers (5),(
sinr(ζ )

ζ

)2

+
tanr(ζ )

ζ
> 2,0 < ζ <

πr

2
and

(
sinhr(ζ )

ζ

)2

+
tanhr(ζ )

ζ
> 2,ζ ̸= 0.

The generalization of these inequalities of generalized trigonometric and hyperbolic functions are defined as,(
sinr(ζ )

ζ

)2r

+

(
tanr(ζ )

ζ

)r

>

(
ζ

sinr(ζ )

)2r

+

(
ζ

tanr(ζ )

)r

> 2,0 < ζ <
πr

2
(3.1)

and (
sinhr(ζ )

ζ

)2r

+

(
tanhr(ζ )

ζ

)r

>

(
ζ

sinhr(ζ )

)2r

+

(
ζ

tanhr(ζ )

)r

> 2,ζ ̸= 0 (3.2)

To establish the result of these inequalities, here we consider the particular case of inequalities and combinedly define the results
as,

Theorem 3.1. Let, 0 < ζ < πr
2 then,

(
sinr(ζ )

ζ

)2

+
tanr(ζ )

ζ
>

(
ζ

sinr(ζ )

)2

+
ζ

tanr(ζ )
>

sinr(ζ )
ζ

+

 tanr

(
ζ
2

)
ζ
2


2

>

ζ
sinr(ζ )

+


ζ
2

tanr

(
ζ
2

)


2

> 2.

(3.3)

Proof: To prove the first part of inequality (Equation (3.3)), put r = 1 in Equation (3.1), which gives us,(
sinr(ζ )

ζ

)2

+
tanr(ζ )

ζ
>

(
ζ

sinr(ζ )

)2

+
ζ

tanr(ζ )
> 2

Using the Bernoulli’s inequality (6) which states that, for a > 1, s > 0,(1 + s)a > 1 + asby considering, s = sinr(ζ )
ζ − 1 and

r = a = 2, we get, (
sinr(ζ )

ζ

)2

> 1+2
(

sinr(ζ )
ζ

−1
)
= 1+2

sinr(ζ )
ζ

−2

Since, r
(

sinr(ζ )
ζ

)
+ tanr(ζ )

ζ > 1+ r, for r = 2 (6)

(
sinr(ζ )

ζ

)2
>−1+3− tanr(ζ )

ζ ⇒
(

sinr(ζ )
ζ

)2
> 2− tanr(ζ )

ζ(
sinr(ζ )

ζ

)2
+ tanr(ζ )

ζ =
(

ζ
sinr(ζ )

)2
+ ζ

tanr(ζ ) > 2.

Now by using lemma 2.1, setting p =
(

sinr(ζ )
ζ

)2
and q = tanr(ζ )

ζ first inequality holds.
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In order to prove the second inequality in Equation (3.3), let us assume that a = sinr(ζ )
ζ and

d = 2
1+cosr(ζ ) and using the half angle formula of tangent function, tanr

(
ζ
2

)
= sinr(ζ )

1+cosr(ζ ) , the second inequality in
(Equation (3.3)) can be rewritten in simple form as,

1+acosr(ζ )> a3 +a4d2

Let,

f (ζ ) = 1+acosr(ζ )−a3 +a4d2 = g(ζ )+h(ζ ) (3.4)

where, g(ζ ) = 1+acosr(ζ ) and h(ζ ) =−
(
a3 +a4d2

)
.

It is easy to verify that g(ζ ) is strictly decreasing and strictly concave for 0 < ζ < πr
2 .

From left inequality in (Equation (3.3)), we get

d2 > a−3 ⇒ d2a3 > 1

Multiplying by a and then adding a3 to both sides, we have,

a3 +a4d2 > a3 +a,−
(
a3 +a4d2)>−

(
a3 +a

)
Since, a = a(ζ ) = sinr(ζ )

ζ is strictly decreasing and strictly concave on 0 < ζ < πr
2 . we have

h(ζ )<−
(
a3 +a

)
which is strictly increasing and strictly convex function, such that,−2 < h(ζ )<−

[(πr
2

)3
+ πr

2

]
Using properties of functions, we can write f (ζ ) from (Equation (2.2)) as, f (ζ )> 0 for 0 < ζ < πr

2 .
Hence, the second inequality of (Equation (3.3)) holds.
For proving the third inequality in (Equation (3.3)) we use lemma 2.1.

Now substitute, p = sinr(ζ )
ζ and q =

(
tanr

(
ζ
2

)
ζ
2

)2

in lemma 2.1, we get,

sinr(ζ )
ζ +

(
tanr

(
ζ
2

)
ζ
2

)2

> 1
sinr(ζ )

ζ
+ 1 tanr

(
ζ
2

)
ζ
2


2

∴ sinr(ζ )
ζ +

(
tanr

(
ζ
2

)
ζ
2

)2

> ζ
sinr(ζ ) +

(
ζ
2

tanr

(
ζ
2

)
)2

.

For proving fourth inequality, put ζ
2 = s, therefore the inequality in (Equation (2.1)) can be written as,

sinr(ζ )
ζ

<
1
2

(
1+ cos3

r (s)
s

sinr(s)

)
. (3.5)

Using second inequality of (Equation (2.1)), we get,

sinr(ζ )
ζ

<
cos2

r (s)+2cosr(s)
3

⇒ cos2
r (s)+2cosr(s)

3
<

1
2

(
1+ cos3

r (s)
s

sinr(s)

) (3.6)

⇒ 2cos2
r (s)+4cosr(s)< 3+3cos3

r (s)
s

sinr(s)
(3.7)
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Since, s
sinr(s)

< (cosr(s))
−1
3

Therefore inequality (Equation (3.7)) can be written as,

2cos2
r (s)+4cosr(s)−3(cosr(s))

8
3
−3 < 0. (3.8)

Let, f (s) = 2cos2
r (s)+4cosr(s)−3(cosr(s))

8
3 −3

∴ f
′
(s) =−4sinr(s)

(
c+1

2
− c

5
3

)
< 0, where c = cosr(s).

Using Arithmetic and Geometric mean and Monotonicity Rules in Calculus (4), the previous inequality can be written as,
c+1

2 > c
1
2 > c

5
3 ⇒ cosr(s)+1

2 > cosr(s)
1
2 > cosr(s)

5
3 .

Since f (s) is strictly decreasing, we conclude that, f (s)< 0 on
(
0, πr

2

)
which gives us,

ζ
sinr(ζ )

+

 ζ
2

tanr

(
ζ
2

)
2

> 2

Hence, all the inequalities of theorem (Equation (3.3)) are proved.
The inequality proved in this theorem is generalized as follows which is established in similar manner.
Corollary 3.1.1. If, 0 < ζ < πr

2 then,

(
sinr(ζ )

ζ

)r

+

 tanr

(
ζ
2

)
ζ
2


2r

>

(
ζ

sinr(ζ )

)r

+


ζ
2

tanr

(
ζ
2

)


2r

> 2 (3.9)

The first inequality holds for all r > 0, while the second one is valid for r ≥ 1.
Some more inequalities were established well before as (4,7),

2
sinr(ζ )

ζ
+

tanr(ζ )
ζ

> 3,0 < ζ <
πr

2
and 2

sinhr(ζ )
ζ

+
tanhr(ζ )

ζ
> 3,ζ ̸= 0

The generalization of these inequalities of generalized trigonometric and hyperbolic functions are defined as,

2 sinr(ζ )
ζ + tanr(ζ )

ζ > 2 ζ
sinr(ζ ) +

ζ
tanr(ζ ) > 3,0 < ζ < πr

2 and

2 sinhr(ζ )
ζ + tanhr(ζ )

ζ > 2 ζ
sinhr(ζ ) +

ζ
tanhr(ζ ) > 3,ζ ̸= 0.

To establish the result of these inequalities, here we consider the particular case of inequalities and combinedly define the results
as,

Theorem 3.2. Let, 0 < ζ < πr
2 then,

2
sinr(ζ )

ζ
+

tanr(ζ )
ζ

>
sinr(ζ )

ζ
+2

tanr

(
ζ
2

)
ζ
2

> 2
ζ

sinr(ζ )
+

ζ
tanr(ζ )

> 3. (3.10)

Proof: For the proof of first inequality in (Equation (3.10)), we assume that,

1+
1

cosr(ζ )
=

4
1+ cosr(ζ )

,0 < ζ <
πr

2
. (3.11)

⇒ (1− cosr(ζ ))2 > 0. Multiplying both sides of Equation (3.11) by sinr(ζ )
ζ , we have,

sinr(ζ )
ζ

(
1+

1
cosr(ζ )

)
=

sinr(ζ )
ζ

(
4

1+ cosr(ζ )

)
⇒ sinr(ζ )

ζ
+

tanr(ζ )
ζ

>
2sinr(ζ )

1+ cosr(ζ )
1(
ζ
2

) .
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Adding sinr(ζ )
ζ to both sides of previous inequality we get,

2
sinr(ζ )

ζ
+

tanr(ζ )
ζ

>
sinr(ζ )

ζ
+

2sinr(ζ )
1+ cosr(ζ )

1(
ζ
2

) Since, tanr

(
ζ
2

)
=

sinr(ζ )
1+ cosr(ζ )

,

we can write previous inequality as, 2 sinr(ζ )
ζ + tanr(ζ )

ζ > sinr(ζ )
ζ +2

tanr

(
ζ
2

)
ζ
2

.

Hence the first inequality in (Equation (3.10)) is proved.
For the second inequality in (Equation (3.10)), we know that (8,9),

ζ
sinr(ζ )

+2

ζ
2

tanr

(
ζ
2

) = 2
ζ

sinr(ζ )
+

ζ
tanr(ζ )

(3.12)

Now we can prove the following inequality,

sinr(ζ )
ζ

+2
tanr

ζ
2

ζ
2

>
ζ

sinr(ζ )
+2

ζ
2

tanr

(
ζ
2

) (3.13)

Let us assume that a = sinr(ζ )
ζ ,d = cosr(ζ ),ζ = s

2 in Equation (3.13), it can be written as,

a2 >
2d2 +1
d2 +2

(3.14)

Now, the first inequality in (Equation (2.1)) can be written as, sinr(ζ )
ζ >

(
cosr

(
ζ
2

)) 4
3 ⇒ a2 >

( 1+d
2

) 4
3

Now, Equation (3.14) can be written as,

f (d) =
(1−d)2

16(d2 +2)3

(
d8 +6d7 +23d6 +68d5 +34d4 +72d3 +4d2 +16d −8

)
As, 0 < ζ < πr

2 ,0 < s < π
4 . We have, 1√

2
< d < 1 ⇒ f (d)> 0.

So the inequalities in the Equations (3.12), (3.13) and (3.14) holds true.
Hence, 2 ζ

sinr(ζ ) +
ζ

tanr(ζ ) > 3. So, the inequality of Theorem 3.2 is proved.
Corollary 3.2.1. If 0 < ζ < πr

2 then,

(
sinr(ζ )

ζ

)r

+2

 tanr

(
ζ
2

)
ζ
2


r

>

(
ζ

sinr(ζ )

)r

+2


ζ
2

tanr

(
ζ
2

)
> 3. (3.15)

first inequality holds true for r > 0 and second holds for r ≥ 1.
With the addition of this result for generalized trigonometric function same results were define for generalized hyperbolic

function also as,
Theorem 3.3. If ζ ̸= 0 then,

2
sinhr(ζ )

ζ
+

tanhr(ζ )
(ζ )

>
sinhr(ζ )

ζ
+2

tanhr

(
ζ
2

)
ζ
2

>
ζ

sinhr(ζ )
+

ζ
tanhr(ζ )

> 3. (3.16)
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Proof: For first inequality in (Equation (3.16)) let us assume,

1+
1

coshr(ζ )
=

4
1+ coshr(ζ )

(3.17)

Multiplying both sides of Equation (3.17) by sinhr(ζ )
ζ and adding sinhr(ζ )

ζ on both sides, which gives us,

2 sinhr(ζ )
ζ + tanhr(ζ )

ζ > sinhr(ζ )
ζ + 2sinhr(ζ )

1+coshr(ζ )
1(
ζ
2

)
⇒ 2 sinhr(ζ )

ζ + tanhr(ζ )
ζ > sinhr(ζ )

ζ +2
tanhr

(
ζ
2

)
ζ
2

For proving second inequality of (Equation (3.16)), we know that,

ζ
sinhr(ζ )

+2
ζ
2

tanhr

(
ζ
2

) = 2
ζ

sinhr(ζ )
+

ζ
tanhr(ζ )

which gives, sinhr(ζ )
ζ +2

tanhr

(
ζ
2

)
ζ
2

> ζ
sinhr(ζ ) +2

ζ
2

tanhr

(
ζ
2

) .
Proof of remaining inequalities of Equation (3.16) follows from theorem 3.1.

4 Conclusion
Generalized trigonometric and hyperbolic function of one parameter verified and refined new inequalities of Wilker and
Huygens type. Building upon the initial one parameter results, the research extends inequalities to functions involving multiple
parameters. The multi-parameter inequalities showcase the versatility of proposed framework and its applicability to a wider
range of mathematics.
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