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Abstract
Objectives: The main objectives of this work are to solve Neutral Delay
Differential Equations (NDDEs) using Galerkin weighted residualmethod based
on successive integration technique and to obtain the Estimation of Error
using Residual function. Methods: The Galerkin weighted residual method
based on successive integration technique is proposed to obtain approximate
solutions of the NDDEs. In this study, themost widely used classical orthogonal
polynomials, namely, the Bernoulli polynomials, the Chebyshev polynomials,
the Hermite polynomials, and the Fibonacci polynomials are considered.
Findings: Numerical examples of linear and nonlinear NDDEs have been
considered to demonstrate the efficiency and accuracy of the method.
Approximate solutions obtained by the proposedmethod are well comparable
with exact solutions.Novelty: From the results it is observed that the accuracy
of the numerical solutions by the proposed method increases as N increases.
The proposed method is very effective, simple, and suitable for solving the
linear and nonlinear NDDEs in real-world problems.
Keywords: Galerkin Weighted Residual method; Polynomials; Hermite;
Bernoulli; Chebyshev; Fibonacci; Successive integration technique; Neutral
Delay Differential Equations

1 Introduction
Delay Differential Equations (DDEs) are a type of differential equation in which the
derivative of the unknown function at a certain time is given in terms of the values
of the function at previous times. The terms involving previous times are called delay
terms. The delay terms may be constant, state dependent and time dependent. Neutral
delay differential equations (NDDEs) are another type of DDEs in which the highest-
order derivative of the unknown function occurs with delay. DDEs arise in the field of
signal processing, digital images, control system, epidemiology, chemical kinetics, etc.
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Some notable applications of DDEs and NDDEs are in electrochemical biosensor (1), cancer cells growth (2) and population
model (3), human balancing models (4), quasi-static piezoelectric beams (5).

DDEs and NDDEs have been studied by many authors and various analytical and numerical methods have been proposed.
Some of the numerical methods are New One-Step Technique (6), Hybrid multistep block method (7), Legendre pseudo spectral
method (8), Euler Wavelet method (9), matrix method based on Clique polynomial (10), Collocation Method based on successive
integration technique (11).

Kun Jiang et al. (12) have applied discontinuousGalerkinmethod for solvingmulti-pantographDDEs. Saray and Lakestani (13)
have proposedwavelet Galerkinmethod for solving the time varying delay systems. Suayip Yuzbas andMurat Karacayir (14) have
presented a weighted residual Galerkin method to solve linear functional differential equations.

The above-mentioned methods use the conventional approach which is based on differentiation and operational matrices.
When the order of polynomials increases, the dimension of the operational matrices increases. Hence, the computational effort
is also increases in these methods. In this study, we propose a new way of approaching Galerkin method and its residual error
correctionwith various polynomials using successive integration technique for solvingNDDEs.This technique does not involve
operational matrices and hence the computational will be easier.

This paper is organized as follows: In Section 2, the basic definitions of different polynomials are given. In Section 3, the
description of the method for solving NDDEs is provided. In Section 4, the description of the residual correction method for
improving the errors and error analysis of the proposed method are given. In Section 5, illustrative examples are provided.

2 Basic Definition of Polynomials

2.1 Hermite Polynomial

The Hermite polynomial Hn (t) of order n is defined on the interval (−∞, ∞) . There are different ways to define for Hermite
polynomial, one of them is the so-called Rodrigues’ formula.

Hn (t) = (−1)net2 dn

dtn e−t2 (1)

From Equation (1), the recurrence relation for the polynomials can be derived as

Hn (t) = 2t Hn−1 (t)−H
′
n−1 (t) (2)

H0 (t) can be obtained from Equation (1) and the remaining terms are determined by using the recursion relation Equation (2).
Thus, we have the following sequence of polynomials:

H0 (t) = 1

H1 (t) = 2t

H2 (t) = 4t2 −2

H3 (t) = 8t3 −12t

H4 (t) = 16t4 −48t2 +12

and so on.
The nth order Hermite polynomial Hn (t) has a leading coefficient 2n.
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2.2 Bernoulli Polynomial

TheBernoulli polynomial is named after Jacob Bernoulli which combines the Bernoulli numbers and binomial coefficients.The
generating function for the Bernoulli polynomial of order n is defined by,

∑∞
n=0 Bn (t)

xn

n!
=

xext

ex −1
(3)

The recursion formula for Bernoulli polynomial is:

∑n−1
k=0

(n
k

)
Bk (t) = ntn−1, n = 2, 3, . . . (4)

B0 (t) can be obtained from Equation (3) and the remaining terms are determined by using the recursion relation Equation (4).
Thus, we have few terms of the Bernoulli polynomials as:

B0 (t) = 1

B1 (t) = t − 1
2

B2 (t) = t2 − t +
1
6

B3 (t) = t3 − 3
2

t2 +
1
2

t

B4 (t) = t4 −2t3 + t2 − 1
30

2.3 Chebyshev Polynomial

The Chebyshev polynomial related to cosine functions on the interval [−1, 1] of order n is defined as

Tn (cost) = cos(nt) (5)

The recursion relation of Chebyshev polynomial is:

Tn+1 (t) = 2t Tn (t)−Tn−1 (t) (6)

T0 (t) and T1 (t) can be obtained from Equation (5).Then the remaining terms are determined from Equation (6).Thus, we have
the following sequence of polynomials:

T0 (t) = 1

T1 (t) = t

T2 (t) = 2t2 −1

T3 (t) = 4t3 −3t

T4 (t) = 8t4 −8t2 +1
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2.4 Fibonacci Polynomial

The Fibonacci polynomials are a polynomial sequence which can be considered of Fibonacci numbers. The Fibonacci
polynomials are defined by a recurrence relation.

Fn (t) =


0, i f n = 0
1, i f n = 1

tF(n−1) (t)+F(n−2) (t), i f n ≥ 2

The first few Fibonacci polynomials are:

F0 (t) = 0

F1 (t) = 1

F2 (t) = t

F3 (t) = t2 +1

F4 (t) = t3 +2t

3 Description of the Proposed Galerkin Method

Consider the nth order NDDE of the form,

y(n) (t) = f
(

t,y(t) ,y
′
(t) , . . . ,y(n−1) (t) ,y(t − τ0) ,y

′
(t − τ1) , . . . ,y(n)(t − τn)

)
, t > t0 (7)

with initial conditions

y(i) (t0) =∅(t) , i = 1, 2, 3, . . . , (n−1) f or t ≤ t0 (8)

Here ∅(t) is the initial function and τ is the delay term.
For the successive integration technique, we assume that,

y(n) (t)≈ BT P(t)T = ∑N
j=0 c jPj(t) (9)

where N being any positive integer,

BT = (c0,c1, . . .cN)

P(t) = (P0 (t) ,P1 (t) . . .PN (t))

Our aim is to determine the polynomial coefficients c
′
js. For this, we integrate Equation (9) with respect to t from t0 to t,

y(n−1) (t) = y(t0)+
∫ t

t0 BT Pj(t) dt
y(n−2) (t) = y(t0)+ y′(t0) =

∫ t
t0

∫ t
t0 BT Pj(t) dt

...

y′(t) = ∑N−1
i=0 y(i)(t0)+

∫ t
t0

∫ t
t0 ...

∫ t
t0 BT Pj(t) dt

y(t) = ∑N
i=0y(i)(t0)+

∫ t
t0

∫ t
t0 ...

∫ t
t0 BT Pj(t) dt


(10)
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Now, for delay terms

y(n)(t − τn) = BT P(t − τn)

y(n−1)(t − τn−1) = y(t0)+
∫ t

t0 BT P(t − τn−1) dt
y(n−2)(t − τn−2) = y(t0)+ y′(t0)+

∫ t
t0

∫ t
t0 BT P(t − τn−2) dt

...

y′(t − τ1) = ∑N−1
i=0 y(i)(t0)+

∫ t
t0

∫ t
t0 ...

∫ t
t0 BT P(t − τ1) dt

y(t − τ0) = ∑N
i=0y(i)(t0)+

∫ t
t0

∫ t
t0 ...

∫ t
t0 BT P(t − τ0) dt


(11)

In order to adopt Galerkin method, consider the residue function,
R(t) = y(n) (t)− f

(
t,y(t) ,y

′
(t) , . . . ,y(n−1) (t) ,y(t − τ0) ,y

′
(t − τ1) , . . . ,y(n)(t − τn)

)
The weight functions Wi’s are the coefficients of ci in y(t).
Hence, the weighted residual function is given by,∫ b

a WiR(t) dt = 0 i = 1, 2…n.
Thiswould yield systemof linear or non-linear systemof equations subject to the linear and non-linear terms in Equation (7).

On solving this system of equations, we get the respective polynomial coefficients c
′
is.

4 Error Analysis and Residual Error Correction

In this section, the estimation of error for the proposed method is carried out based on the residual function of the nth order
NDDE given by Equation (7). It shows how this error estimation is used to obtain an improved approximate solution called the
corrected solution for the equation. Finally, Taylor theorem is used to get an upper bound for the error of the corrected solution.

4.1 Estimation of Error using Residual function

Let us consider the residual function,

R(t) = yn(t)− f
(

t,y(t) ,y
′
(t) , . . . ,y(n−1) (t) ,y(t − τ0) ,y

′
(t − τ1) , . . . ,y(n)(t − τn)

)
= 0 (12)

Now, replacing y(t) by the approximate solution yN(t).

RN (t) = yn
N(t)− f (t, yN (t) , y

′
N (t) , . . . ,y(n−1)

N (t) ,
yN (t − τ0) ,y

′
N (t − τ1) , . . . ,y

(n−1)
N (t − τn−1) ,y

(n)
N (t − τn−1)) = 0

(13)

Subtracting Equation (12) from Equation (13) we obtain

e
′
N (t) =−RN(t)+ f (t,eN (t) ,e

′
N (t) , . . . ,e(n−1)

N (t) ,
eN (t − τ0) ,e

′
N (t − τ1) , . . . ,e

(n−1)
N (t − τn−1) ,e

(n)
N (t − τn−1))

(14)

which is just as Equation (7) with non-homogeneous term−RN(t) and y(t)−yN (t) is replaced by eN (t). Since the approximate
solution yN (t) also satisfies the initial condition, we get,

eN (a) = y(a)− yN (a) = ya − ya = 0.

This is the initial condition of Equation (14). Then applying the described in Section 3 upon two different cases and an
approximate solution eN,M(t) for Equation (14), where M is any arbitrary constant. Finally, we employ this approximation
to get an improved solution for Equation (7) as

yN,M (t) = yN (t)+ eN,M(t).

Here EN,M (t) represents the actual error of yN,M (t) which is given by,

EN,M (t) = y(t)− yN,M(t)
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4.2 Estimation of Upper Bound for the Error

For any natural number M, the Taylor truncation error can be used to give an upper bound for the absolute error |EN,M(t)|of
the improved solution, which depends on first M+1 derivatives of the exact solution y(t) and first M derivatives of EN,M (t) .

Let yT,M(t) denote the Mthdegree of the truncated Taylor polynomial of y(t) in a neighbouring point cε[a,b] and RT,M(t)

denote its truncation error given by (t−c)M+1

(M+1)! yM+1(ξ ) for some ξ ε (c, t) .
Theorem 4.2.1
If y(t) is the exact solution of NDDE (7), then the upper bound for the absolute error of the improved solution yN,M (t) is

given by,

|EN,M(t)|= |y(t)− yN,M(t)| ≤ |RT,M (t)|+ |yT,M (t)− yN,M (t)| (15)

Proof:
According to Taylor’s theorem with Lagrange-type remainder term

y(t) = y(c)+ y
′
(c)(t − c)+ · · ·+ yM(c)

M! (t − c)M + (t−c)M+1

(M+1)! yM+1 (ξ )
= yT,M (t)+RT,M (t)

for some ξ ε(a,b). Using the triangle inequality for |EN,M(t)|, we get
|EN,M(t)|= |y(t)− yN,M(t)|

= |y(t)− yT,M (t)+ yT,M(t)− yN,M(t)|
≤ |RT,M (t)|+ |yT,M (t)− yN,M (t)| .
which completes the proof.
The above result can be explained as follows:
Since yN,M(t) is a polynomial of degree M, it can be expressed in terms of orthogonal polynomials P(t) as

yN,M (t) =
M

∑
j=0

aN, jPj(t)

where aN, j are constants. Alternatively, it can also be written as

yN,M (t) =
M

∑
j=0

−
aN, jPj(t − c)

Now, Equation (15) can be expressed as

|y(t)− yN,M(t)| ≤

∣∣∣∣∣ (t − c)M+1

(M+1)!
y(M+1) (ξ )

∣∣∣∣∣+
∣∣∣∣∣∑M

k=0

(
y(k) (c)

k!
−−

aN,k

)
(t − c)(k)

∣∣∣∣∣ (16)

To express this bound in a compact form, let us denote the maximum absolute value of yk(t)

Sk = Sup
a≤t≤b

∣∣∣y(k)(t)∣∣∣
Since c ∈ [a,b], assuming t ∈ [a,b] we also have (t − c)k ≤ (b−a)k.On combining these Equation (16) takes the form as in the
following Corollary:

Corollary 4.2.2
The absolute error |EN,M(t)| of yN,M (t) satisfies

|y(t)− yN,M(t)| ≤ SM+1

(M+1)!
(b−a)M+1 +

M

∑
k=0

(
Sk

k!
−
∣∣∣−aN,k

∣∣∣)(b−a)k .

Thus, the error of the proposed method is closely related to the magnitude of the first M derivatives of the exact solution y(t).
Therefore, Equation (16) is the upper bound to be used in computations.

The aim of Corollary 4.2.2 is just to emphasize the dependence of the error on first M+1 derivatives of exact solution y(t) .
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5 Numerical Simulations
In this section, three numerical examples are given to demonstrate the accuracy and effectiveness of the proposed method.
We solved these examples by using Galerkin Weighted Residual Method with four different polynomials, namely Hermite,
Chebyshev, Bernoulli and Fibonacci polynomial.

Example 1
Consider the second order linear NDDE with constant delay and variable coefficient
ty

′′
(t)+ ty(t)+ y

′′
(t −1)+ y

′
(t −1) = 2cos(t −1)

with initial conditions
y(0) =−1 and y

′
(0) = 1.

Exact solution is y(t) = sin(t)− cos(t).
For this example, the numerical results are obtained by Galerkin method with successive integration technique and its

residual correction for different N. The actual error results and the corrected error results by using Hermite polynomial are
presented in Table 1. The comparative results by Galerkin method using different polynomials at t = 1 are presented in Table 2.
The solution graph obtained by using the proposed method with N = 3 is presented in Figure 1.

Table 1. Actual Errors and Corrected Errors for Example 1 (Hermite Polynomial)
Time t Actual Error for y3(t) N

= 3
CorrectedError E3,5 N=3,
M = 5

Actual Error for y7(t) N
= 7

Corrected Error E7,9 N
= 7, M = 9

0.2 1.892 e-04 1.136 e-05 6.306 e-07 2.772 e-08
0.4 5.753 e-04 3.660 e-05 2.045 e-06 3.902 e-08
0.6 8.327 e-04 5.850 e-05 3.306 e-06 3.849 e-07
0.8 6.600 e-04 6.043 e-05 3.500 e-06 1.073 e-06
1.0 7.448 e-05 3.365 e-05 2.131 e-06 2.013 e-06

Table 2. Comparison of Absolute Errors for Example 1

Polynomials Proposed Galerkin
Method
N = 3 N = 7

Bernoulli 8.462 e-04 8.103 e-07
Chebyshev 7.448 e-05 2.198 e-06
Hermite 7.448 e-05 2.131 e-06
Fibonacci 9.756 e-05 1.967 e-06

Example 2
Consider the following non-linear NDDE,
1
2 y

′′ ( t
2

)
+ 1

t y
′ ( t

2

)
+ y2 (t) =− 1

2 sin
( t

2

)
+ 1

t cos
( t

2

)
+ sin2(t)

with initial condition as
y(0) = 0 and y

′
(0) = 1.

Exact solution is y(t) = sin(t) .
For this example, the numerical results are obtained by Galerkin method with successive integration technique and its

residual correction for different N. The actual error results and the corrected error results by using Hermite polynomial are
presented in Table 3. The solution graph obtained by using the proposed method with N = 5 is presented in Figure 2.

Table 3. Actual Errors and Corrected Errors for Example 2 (Hermite Polynomial)
Time t Actual Error y3(t) N = 3 Corrected Error E3,5 N = 3, M = 5
0.2 6.497 e-07 6.639 e-09
0.4 3.012 e-07 1.089 e-08
0.6 8.816 e-07 1.247 e-06
0.8 4.191 e-06 1.452 e-05
1.0 2.762 e-05 6.640 e-05
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Fig 1. Solution Graph at N = 3 for Example 1

Fig 2. Solution Graph at N = 5 for Example 2

6 Conclusion
In this paper, a new way of approaching Galerkin method and its residual error correction based on the successive integration
technique is proposed for solving neutral delay differential equations. This method uses various polynomials such as Bernoulli,
Chebyshev, Hermite and Fibonacci.

Numerical examples are considered to demonstrate the efficiency of the method. From the Tables, it is observed that
the accuracy of the results by the proposed method increases as N (order of the polynomial) increases. The estimation of
residual correction improves the accuracy of the results. This technique does not involve operational matrices and hence the
computational will be easier. It is concluded that the proposed Galerkin method based on successive integration technique with
residual error correction is very effective, simple and suitable for solving linear and nonlinear NDDEs.
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