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Abstract
Objective: The absorption activity of saturable absorber material (Cr+4: YAG)
for dual wavelengths (1.064 µm and 0.946 µm), simultaneously generated
in same passive Q-switching system, has been investigated. Methods: This
study utilized the mathematical model that was used in our previous study.
Rung-Kutta—Fehelberge numerical method has been used to solve this
mathematical model. Nd+3: YAG used as an effective medium and Cr+4: YAG
used as a saturable absorber in the laser passive Q-switching optical system.
Finding: When the population density of saturable absorber (ni) increases,
the steady state of photons losses occurs at advancement time and the
absorption activity reaches to optical bleaching state at advancement time also
(it is occurring approximately at time 35 ns from the beginning of the time
of pulse construction when the ni = 4 × 1018cm−3, while at ni = 3 × 1018cm−3,
approximately at time 47 ns). Novelty: The absorption activity of saturable
absorber material for a single wavelength of photons oscillating inside the
passive Q-switch laser system received attention by some studies. This study
verifies or investigates from the behavior of absorption activity of saturable
absorber material when encounters photons with two wavelengths oscillating
simultaneously inside the laser cavity in order to obtain high power of the
pulses.
Keywords: Laser; Passive Qswitching; laser; Dual wavelengths laser; Solid
state lasers

1 Introduction
Dual-wavelength lasers are great interest in wide applications such as terahertz gener-
ation, biomedicine, precision measurement spectroscopy, range-finding, spectroscopy,
free space communication and laser surgery (1,2). The generation of high-power pulses
by subjecting these wavelengths to optical techniques it has received the attention of
researches, the passive Q-switching technique (PQS) is one of these techniques, it is
depends on the presence intracavity saturable absorber material (SA) (3,4). Laser passive
Q -switching technique is a reliable approach to obtain laser pulses of the nanosecond
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order (5).
The choices of SA to work in the compatibility case with the active medium (AM) very important, for this reason the

absorption activity and the optical bleaching state of SA in the case of a single wavelength of photons oscillating inside the
passive Q-switch laser system received attention by the studies (6,7) which was interested in studying this topic for a single
wavelength. While this study focuses and investigates the absorption activity of Cr+4:YAG saturable absorber towards the dual
wavelengths of Nd+3:YAG laser oscillating simultaneously inside the passive Q-switching system, also the time of occurrence
of optical bleaching state was studied in this study.

The energy level scheme of Cr+4:YAG as shown in Figure 1 (8). The absorption of the pump wavelength occurs at the 1-3
transition. The transition 3-2 was very fast. For a material to be suitable as a passive Q-switch, the absorption cross-section of
the ground state must be large, while the lifetime of the upper state (level 2) must be long enough to allow significant depletion
of the ground state due to laser radiation. When an SA is inserted into a laser cavity, it appears opaque to laser radiation until
the photon density is large enough to reduce the population on the ground. If the upper energy levels are sufficiently occupied,
the absorber of laser radiation becomes transparent, which means the optical bleaching state of SA occurs.

Nd+3:YAG crystal has been used an active medium; the energy level structure of Nd+3 ion in Nd+3:YAG is illustrated in
Figure 2 (9). The energy level system of Nd: YAG consists of a stark split4I11/2,

4F9/2 ground state and 4F3/2 excited state. The
wavelength 1.064 µmdue to the 4F3/2→4I11/2 transition, while 0.964 µmdue to the 4F3/2→4I9/2 transition.The characteristics
of laser between the 4-level system and the quasi-three-level system produce a major difference. Because of small division of
energy for each manifold, it is assumed that the relaxation times for the energy level within the manifold are also very small (10).

Fig 1. Energy levels scheme of Cr+4:YAG (8)

Fig 2. Energy level scheme of Nd+3:YAG (9)
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2 Methodology

Rate equations model (11) used in this study as the following:

dφ1

dt
= φ1 [Kam1Ng1 −Ksg1nsg −Kse1nse − γc1] (1)

dφ2

dt
= φ2 [Kam2Ng2 −Ksg2nsg −Kse2nse − γc2] (2)

dNg1

dt
= Rp − γp1Kam1Ng1φ1 − Ng1/τg (3)

dNg2

dt
= Rp − γp2Kam2Ng2φ2 − Ng2/τg (4)

dnsg

dt
=−Ksg1nsgφ1 −Ksg2nsgφ2 +nse/τse (5)

dnse

dt
= Ksg1nsgφ1 + Ksg2nsgφ2 −nse/τse (6)

Equations (1) and (2) represent the time variation of photons density of PQS pulses which are generated from λ1,λ2 laser
respectively, (φ1) belong to the 4-level scheme, while φ2 belong to the 3-level scheme). Equations (3) and (4) represent the
time variation of population inversion density, Ng1 is the population inversion density (PID) of ions (cm-3) between 4F3/2 and
4F11/2 spectrum lines. Ng2 is the PID of ions between 4F3/2 and 4F9/2 spectrum lines. Kam j( j=1,2) =

2σa j lam
τT

is the coupling
coefficient between the φ1,φ2 photons and the ions of excited level of AM

(
4F3/2

)
. σa j is the emission cross sections

(
cm2

)
of AM at 4-energy level, 3- energy level schemes, lam is the length of AM. τr =

2lc
c is the round-trip transit time, lc is the

cavity optical length, c is the speed of light in vacuum. Equations (5) and (6) represent the time variation of ions population in
the ground and excited state respectively, Ksg j( j=1,2) =

2σsg j ls
τT

is the coupling coefficient between φ j photons and the ground
state ions of SA respectively, Kse j( j=1,2) =

2σse j ls
τr

is the coupling coefficient between φ j and the excited state ions of the SA

respectively. σsgi( j=1,2) sections
(
cm2

)
of excited state of SA, ls is the length of the SA. γc j( j=1,2) =

(
ln 1

R j
+L j

)
is the cavity

decay rate represents the sum of losses in φ j because of the reflectivity (R j), absorption and scattering mechanisms in cavity
(L j) .γp j( j=1,2) is the reduction population factor equal 1,2 for four and three energy levels schemes of AM system respectively.
nsg,nse the ions population (No. of ions density) of the ground and excited levels of SA respectively. τg the fluorescence lifetime
of the upper laser level

(
4F3/2

)
,τse the lifetime of the SA. RP is the pumping rate. The build-up time of PQS laser pulses is

generally very short compared to τg and RPtime, then it is possible to neglect the terms of pumping rate and spontaneous decay
of the upper laser level (terms 1 and 3 in Equations (3) and (4)) during pulse generation, so τse is very long compared the
build-up time of PQS laser pulses, then it is possible to neglect the third term of Equations (5) and (6).

PQS laser pulses, then it is possible to neglect the third term of Equations (5) and (6).
The initial population inversion density (IPID) between the spectral lines 4F3/2 and 4F11/2(Ng01) ,

4F3/2 and 4Fs/2 (Ng02)
can be estimated at the initial time by boundary conditions, nsg ≈no or nse ≈ 0, where (ni = nsg +nse) is the total ions of SA.
dφ j
dt ≈ 0 in Equations (1) and (2) because of φ j is very low in value, then the IPID values Ng01,Ng02 for laser medium can be
predicted from Equations (1) and (2) respectively, as the following:

Ng0 j( j=1,2) =
Ksg jni + γc j

Kam j
(7)

The threshold population inversion (TPID) for the four and three-level schemes, Nth1, Nth2 respectively, can be estimated at the
time of maximum photon density (when the number of photons inside the optical laser cavity reaches the peak of the pulse) by
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Equations (1) and (2). At TPID the most of the SA ions population in the excited state (nse), can be regarded nse ≈ ni (nsg ≈ 0);
then can be considered dφ j

dt ≈ 0.
The total photon losses (Tloss) occur by the absorption of SA, and the cavity losses (γc). In order to compare the population

inversion density of the laser to the loss of the overall laser system, it is convenient to define the normalized loss parameter.
From Equations (1) and (2), the photon losses in the overall optical system can be estimated as follows:

T loss(φ j) =

[
Ksg jnsg +Kse1nse + γc j

Kam j

]
(8)

Where j = 1,2 for λ1 and λ2 respectively. estimate the total absorption activity (TActSA) of SA, λ j to is equal to the absorption
activity of the ground state (Act sg) and the absorption activity of excited state (Act se) of SA to λ j.

TActSA(φ j) =

[
Ksg jnsg +Kse jnse

Kam j

]
(9)

The absorption activity of the SA ground state to the λ j represented by the expression:

Acsg(φ j) =

[
Ksg jnsg

Kam j

]
(10)

The absorption activity of SA excited state to the λ j represented by the following expression:

Acse(φ j) =

[
Kse jnse

Kam j

]
(11)

3 Results and Discussion
The rate Equations (1), (2), (3), (4), (5) and (6) have been solved numerically by Rung-Kutta -Fehelberg method.The input data
has been used in simulation reported in Table 1:

Table 1. Input data used in simulation
Parame. Value Parame. Value
σa1 2.8×10−19cm2 (12) σsg1 7×10−18cm2 (13)

σa2 5.1×10−20cm2 (14) σsg2 4×10−18cm2 (14)

λ1 1.064µm (15) σse1 2×10−18cm2 (16)

λ2 0.946µm (17) σse2 1.1×10−18cm2 (14)

γ1 1 (4) R1 0.94
γ 2 2 (13) R2 0.99

Figure 3a, b show the time behavior of photon losses within the cavity of a laser system for dual pulses for two values of ions
density (ni). At the initial time, the loss may be higher due to the high absorption at that time, until a steady state is reached.
From the figure, we can see that when the ni increases, the steady state of losses occurs at an earlier time, it is occurring at a
time approach to 45 ns when the ni = 4×1018cm−3, while at ni = 3×1018cm−3, the steady state of losses occurs at 57 ns.

Figure 4a, b show the absorption activity for the ground state and excited state of SA, as well as the total absorption activity of
the SA for wavelength 1.064µm and 0.963 µm for ni = 3×1018cm−3 and ni = 4×1018cm−3. From the figure, can be seen that
the absorption activity of the ground state decreases with time until it reaches a steady state, while the absorption activity of the
excited state increases with time.The absorption activity of the excitation state and the ground state are equal at an earlier time
when increase, can be observed at ni = 3×1018cm−3 the losses equal approximately at time 47 ns, while at ni = 4×1018cm−3

approximately at time 35 ns. Then the optical bleaching state occur at advance time when the SA ions density increases.
Figure 5a, b shows the absorption activity in the ground state and excitation level of SA, as well as the absorption activity of

the SA for wavelength 0.946µm for ni = 3×1018cm−3 and ni = 4×1018cm−3. From the figure, can be seen that the absorption
activity of the ground level decreases with time until it reaches a steady state, while the absorption activity of the excited state
increases with time. If the absorption activity of the excitation state and the ground state are equal, then the optical bleaching
state occur at advance time when ni increases.
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Fig 3. Profiles of photons losses as a function of time for two values of SA ions density

Fig 4. The behavior time of absorption activity of SA for ground, excited levels and total absorption, for 1.064µm for two values of SA
ions density

Fig 5.The behavior time of absorption activity of SA for ground, excited levels and total absorption, for 0.964 µm for different SA ions
density.
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4 Conclusion
The study concludes the following: The temporal behavior of absorption activity of the SA towards each of the wavelength of
dual wavelengths similar to the temporal behavior of a single wavelength which content of the studies (6,7), this supports the
theoretical basis of this study.The steady state of losses occurs at an earlier time when SA ions density increases.The SA optical
bleaching state for each wavelength occur at advance time when the ni increases. The absorption activity of the ground state
decreases with time until it reaches a steady state, while the absorption activity of the excited state increases with time. The
absorption activity of the excitation state and the ground state are equal at an earlier time when ni increase.
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