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Abstract
Objectives: The performance of Cell-Free Massive Multiple Input Multiple
Output (CFMM) is analyzed in this paper for its two bottlenecks i.e., Pilot
Contamination (PC) and Channel Estimation Error (CEE). Methods: The CFMM
network is strongly affected by PC which is one of the bottlenecks due to
which quality of service and accuracy of channel estimation gets impacted.
Therefore, we address this problem by presenting advanced pilot assignment
algorithm to mitigate PC and deep learning aided channel estimation for
reducing CEE for the CFMM systems to maximize spectral efficiency (SE).
We derive achievable uplink and downlink SE expressions for the proposed
system, and compare with Minimum Mean Square Error and Maximum Ratio
combining techniques. As well, the performance is evaluated for different
antenna configurations. The advanced pilot assignment algorithm is compared
with greedy pilot assignment and random pilot assignment methods. The
performance of cellular massive multiple input multiple output (MIMO) is
derived for comparison. The performance of CFMM system is evaluated using
MATLAB software. Findings: The UL and DL performance of the proposed
system in terms of SE is 3.2 times higher than the conventional CFMM with
MMSE and MR combining techniques. Average sum spectral efficiency of the
proposed system increases with increase in number of access points (APs).
Comparison with different antenna configurations reveals that, with 400 APs
equipped with single antenna, only UE with good channel condition shows
performance enhancement, but when each AP is equipped with 4 antennas,
the UE with unfavourable channel condition also give better performance.
Advanced pilot assignment scheme proves to be better than greedy and
random pilot assignment techniques. For the same cellular set up, the
proposed CFMM system achieves higher SE than the cellular massive MIMO.
Novelty:Due to the advanced pilot assignment algorithmused in the proposed
CFMM system, at a time, only one AP is selected and the selected AP with
its full received power serves the desired UE, which suppresses interference
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resulting in improved SE performance. The serving AP is selected considering
the distance betweenUE and AP, rather than using large scale fading coefficient
which is the unique feature of pilot assignment algorithm. The proposed deep
learning-aided channel estimation method, minimizes the mean square error
(MSE) between the actual channel and the channel estimates obtained from the
MMSE estimation resulting in reduction in channel estimation error. Thus, the
use of the proposed advanced pilot assignment algorithm and deep learning-
aided channel estimation method increase the SE performance of the CFMM
system.
Keywords: CellFree Massive Multiple Input Multiple Output; Pilot
Contamination; Channel Estimation Error; Minimum Mean Square Error;
Maximum Ratio

1 Introduction

Unlike optical wireless communication (1–3)where light is used to transmit data, wireless
communication uses radio waves to transmit data. The Cell-Free Massive Multiple
Input Multiple Output (CFMM) system is the core technology for the upcoming
sixth-generation (6G) networks, for deploying massive multiple-input multiple-output
(MIMO) systems without the restriction of cells, which provides high data throughput,
ultra-low latency, ultra-high reliability, high spectral and energy efficiency and uniform
coverage (4,5). The CFMM systems reaps the benefits of network MIMO, small cells
(SC) and massive MIMO (6–8). We know that PC and accuracy of CE are inversely
proportional to each other i.e., with increase in PC, the accuracy of CE decreases.
In TDD, CE is done in the UL training phase. Due to channel reciprocity property
of TDD, we can use CSI obtained in UL phase for DL phase as well. Therefore, it is
very important to obtain accurate CSI during the UL phase. But generally, number of
UEs is greater then, the number of orthogonal pilots due to which orthogonal pilots
are reused between UEs leading to PC. Herein we assume that length of the pilot
sequence (τp) is equal to the number of orthogonal pilots. With τp < K, other options
for orthogonal pilots must be evaluated. Again, if we consider non-orthogonal pilots
then it will also introduce PC thereby degrading CE accuracy. The CEE caused due to
PC will deteriorate SE of the UE. So, we can formulate a method which will maximize
the SE of the UE. But any maximization problem can be solved, by using optimization
method which is computationally complex and whose solution will require exhaustive
search. Such optimizationmethod will be complicated with large number of allocations
of UEs and pilots. Therefore, to reduce computational complexity of the network, deep
learning aided CE is introduced. Further CEE is reduced by using deep learning aided
CE proposed for the CFMM system. Also, to avoid PC an advanced pilot assignment
algorithm is proposed for the CFMM system. Further CEE is reduced by using deep
learning aided CE proposed for the CFMM system. Thus, advanced pilot assignment
algorithm and deep learning aided CE will improve the SE of the UE as discussed below
in different sections. Thus, two future research directions (9) and areas of concern for
the CFMM networks are addressed in this paper i.e., channel estimation (CE) and pilot
contamination (PC). There are different techniques in literature for CE such as least
square (LS), MMSE (10). LS CE technique is less complex because it does not require
prior information of channel statistics but it does not consider the effect of noise.MMSE
CE considers the effect of noise but prior CSI is mandatory for it. Due to this MMSE,
CE technique is more computationally complex as compared to LS, CE technique.
Considering above drawbacks of CE, a new research area is emerging which is known
as Machine Learning (ML) (11,12), which will address the problem of CE effectively with
incredibly fast and robust training models. In the proposed paper, we are using Deep
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Feed Forward (DFF) neural network for CE, which proves significant in mitigating CEE and thus enhancing the system SE
performance. Furthermore, pilot sequences used in CE process for UEs may be orthogonal or non-orthogonal. The use of
orthogonal pilot symbols is beneficial for high coherence interval and a smaller number of UEs. But for densely populated cell-
free networks it will create pilot PC and use of non-orthogonal pilot symbol will affect spectral efficiency (SE) adversely. So, there
must be a trade-off between the two methods to enhance the system performance.There are many papers (13,14) which consider
different methods taking PC into consideration such as pilot reuse, maximization of SINR, partitioning of cell into rings etc.
Recently various pilot decontamination (15,16), pilot contamination (17,18) mitigation techniques are also investigated. Different
pilot assignment methods are studied in paper (19). Motivated by the above-mentioned work, this paper aims to mitigate PC
of the CFMM networks by proposing an advanced pilot assignment algorithm and deep learning aided CE method, thereby
enhancing system performance. We examine UL and DL analysis of CFMM network using Rayleigh Fading channel between
AP and UE. The advanced pilot assignment algorithm is proposed to mitigate PC by assigning pilot symbols in sequential
order. The system performance is further enhanced by considering multi- user UL scheduling at the Central processing unit
(CPU) end. We also propose a DFF neural network for CE at the CPU which minimizes CEE. Comprehensive results are
reproduced to demonstrate the efficacy of proposed cell-free networks.The proposed CFMMnetwork is compared with cellular
massive MIMO, conventional CFMM with MMSE and MR (20) combining techniques. Simulation results prove the efficiency
of proposed CFMM network against its cellular and conventional CFMM counterpart. The rest of the paper is organized
as follows. Section two introduces methodology which includes explanation of the system model for CFMM network, the
problem formulation, pilot assignment and transmission, local CE and learning aided CE, Multi-user UL scheduling and data
transmission. Performance analysis of the proposed scheme is discussed in section three followed by conclusions drawn in
section four and references in section five.

2 Methodology
We consider a cell-free network with ’M’ number of APs having ’N’ number of antennas and ’K’ number of UEs with single
antenna, that are randomly distributed over the assigned coverage area. It is assumed that for CFMMsystemM ≫K (21), but due
to the proposed scalable framework, the CFMM system goes well for any values. All APs are connected to CPU via a back-haul
network (21). The channel hmk UE ’k’ and AP ’M’ is modelled as Rayleigh Fading channel (11) given by;

hmk ∼ NC(0,Rmk) (1)

where Rmk
(21) is spatial correlation matrix having dimension Rmk ∈ CN×N with large scale fading coefficient βmk ≜

tr(Rmk)
N

featuring shadowing and path loss.We assume that hmk is an independent randomvariable for everym= 1 . . . ..M, APs and K =
1 . . . . . .K, UEs and channel realization hmk in different coherence blocks are i.i.d.,This paper considersUL andDL transmission
of CFMM system, which is assumed to operate in TDDmode, wherein τc = τp+τUL+τDL. In each coherence block τp samples
are reserved for pilot assignment, and τUL for UL data transmission and τDL for DL data transmission.The basic UL signal flow
of proposed CFMM system is depicted in Figure 1. As shown in the diagram, local MMSE CE is done at the AP. Then the
estimates are forwarded to CPU, where MMSE estimation error is minimized with the help of deep feed forward (DFF) neural
network. Multi-user UL scheduling, data detection and data transmission are also done at the CPU.

Fig 1. Block Diagram of UL CFMM system depicting signal processing flow
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2.1 Pilot Assignment and Transmission

A unique pilot assignment technique, which is the modified version of the technique mentioned in paper (21) is used for
mitigating PC. Due to PC, quality of CE gets affected. So, to avoid the aforementioned drawback, a unique pilot assignment
algorithm is proposed in this paper. Consider τp mutually orthogonal pilot sequences and pilot sequence of UE 0K0 is denoted
by φk wherein (||φk ||)2 =τp and φk ∈ C (τp × 1). Whenever a UE gains access into the network, a pilot is assigned to the UE
depending on the distance between mobile UE and AP.The AP which is nearest to the UE, will serve that UE. If there are more
than one APs near to the UE, then β large scale fading factor will decide the serving AP. In this way pilot assignment and AP
selection is done through a small algorithm as follows:

• AccessingUE selection:Here the UE gaining access to the network is selected using a specific process through which first
of all, poor channel quality UE are assigned with pilot sequence and then other UEs are considered for pilot assignment.
The channel quality of UEs is determined by large scale fading coefficient i.e., beta.This fading coefficient is calculated for
all accessing UEs and the values are stored in set S as per descending order. Accordingly, the accessing UE, is selected for
further process.

• In 5G, accessing UE communicates (14) with its neighbouring APs using either primary or secondary synchronization
signals. Depending on the nearest distance measurement dn a serving AP APn is chosen by the accessing UE.

Serving (APn) = arg (min dn) (2)

• If there are more than one equidistant APs in neighbourhood of the accessing UE, then the serving AP is chosen based
on the large-scale fading coefficient, β .

• The serving APn will serve the accessing UE with all its N number of antennas. It will assign pilot p to the accessing UE
using specific algorithm.

• The servingAPn will give information to all neighbouringAPs that pilot p is being used by accessingUE. As a consequence
of this, other pilot sequences will be considered for transmission apart from pilot p which will reduce PC to a significant
extent. Finally, accessing UEwill appoint serving AP, the one which is nearest to it and Serving APwill assign unused pilot
p to the accessing UE. This will not only ensure reduced PC but also increases system performance to a greater extent as
shown in the simulation results.

Consider all UEs transmit their pilot signals, then the pilot signal received by mthAP is given as:

Zp
m = ∑k

i=1
√

ρiτPhimϕK +nP
m (3)

where ρi is the UL pilot power of the ith UE. nP
mεCN×τp is the received noise matrix i.e nP

m ∼ NC(0,σ2) and σ2 is the noise
power.

Algorithm 1 Optimal Pilot Allocation Algorithm
Require:UA,UL,τ p,K,M,τ,β ,s
Ensure:ϕk optimal =UA
1. InitializeUA = UL
2. Calculate β of all users and store in descending order in ‘s’
whileUA̸=ϕ do
3. Select UA asper order defined in ‘s’
4. If K ≤ τpassignφkto the Kth user
5. If K > τpthen find out best serving AP using Equation (2) for UA
6. Then select optimal pilot having the least impact on UA
end while
7. Return
Now to have initial estimate of hmk, project the receiving pilot signal Zp

monto φk, so that we have,

Zp
mk = Zp

m ϕ H
K (4)

Zp
mk = ∑k

i=1

√
ρiτPhimϕ H

K +ϕ H
K nP

m (5)
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Here we assume that K > τp due to which each pilot sequence is shared by more than one UE, leading to so called PC. Also, we
define subset SK of UEs with same pilot sequence as UE K. So, we can write Equation (5) as:

Zp
mk = ∑i∈SK

√
ρiτPhim +ϕ H

K nP
m (6)

Now if we observe Equation (6), then it is clear that mutual interference is created due to sharing of same pilot sequence by
UEs leading to so called PC. Due to PC, system performance is degraded similar to cellular massive MIMO. Also, CE quality is
affected and channel estimates becomes correlated. This correlation is directly proportional to number of AP antennas i.e., ’N’.
Both factors will have negative impact on UE performance.

2.2 Channel Estimation (CE)

In this paper, local CE is done at the serving AP. Now according to standard theory of MMSE estimation, we can calculate
channel estimate ĥmk for Kth UE at mthAP which belongs to the subset SK is given as:

ĥmk =
√

ρkτpRmkψ−1
mk Zp

mk (7)

Where ψmk = E (Zmkp (Zmkp )} = ∑i∈SK ρiτ pRim+ IN is the correlation matrix of received signal Equation (4). We can also write
Equation (5) as:

ĥmk = YmkZm (8)

where Ymk =
√

ρkτpRmkψ−1
mk and depends on channel statistics. So, we can have channel estimate by multiplying Zmkp with N

×NmatrixYmk of each UE served by APm.The value ofYmk is known prior to APm and is calculated at APm.This will reduce
the computational complexity at AP m, to a significant extent.

2.2.1 Proposed DFF neural network
MMSE CE often considers the impact of noise, which improves CE accuracy but at the same time, prior knowledge of channel
statistics is mandatory leading to increase in computational complexity. Additionally, the performance ofMMSE estimation (10)

cannot always be guaranteed.

Fig 2. UL Comparison of the proposed CFMMwithMMSE andMR combining techniques withM=400 and N=1 antenna configuration

To overcome the aforementioned drawbacks of MMSE estimation, Deep Feed Forward (DFF) neural network as shown in
Figures 2 and 3, also known asmulti-layered network of neurons wherein information travels only in forward direction is being
proposed in this paper for CE. It minimizes the mean square error (MSE) between the actual channel and the channel estimate
obtained from the MMSE estimation. DFF neural network-based CE is performed at the CPU and is divided into input layer,
hidden layer, and output layer with different number of neurons per each layer. This neural network will map input vector x
onto the output vector y. Here fully connected neural network is chosen due to its simplicity and low computational complexity.
So, for fully connected L no of layers we have:

y j = f (∑x
j=1 w jx j +b) (9)
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Fig 3. UL Comparison of the proposed CFMMwithMMSE andMR combining techniques withM=400 and N=1 antenna configuration

Where y j is the output, x j is the input, w jis the weight, b is the bias of jth layer. The activation function f(.) used here is tanh
which characterizes non-linearity of data is given by:

f (x) =
e+x − e−x

e+x + e−x
(10)

The input given to the proposed DFF neural network is the channel estimates obtained from MMSE technique. So, the
input

(
ĥm1 . . . . . . . . . ..ĥmk

)
MMSE

obtained fromMMSE estimate for mth AP is given to the neural network.The proposed neural
network will minimize the MSE by learning actual channel information. Then these inputs are multiplied by weights. Then
tanh activation function is applied to the product of input and weights. The output of these is given to hidden layers. It goes on
through all layers and finally we get output from output layer. We will not get desired output in one epoch. This deviation of
output from actual value is known as gradient or loss. Now this gradient is optimized by using Adam optimizer by adjusting
weights till we getminimumgradient.Thus, the neural networkwill minimizeMSE gradient to give desiredDFF channel output
i.e.,

(
ĥm1 . . . . . . . . . ..ĥmk

)
DFF

. The loss function used for training is mean squared error (MSE) given by:

L(∑L
j=1Wb) =

1
RT

∑R
R=1∑T

t=1

∥∥∥ĥDFF − ĥactual

∥∥∥2
(11)

where T is the training size, and R is the number of realizations used for training, ĥDFF is the output of neural network, ĥactual is
the actual channel, w and b areweights and biases respectively.Theseweights and biases are regularly updated byminimizing the
loss function (22) in Equation (11). The data set for the proposed network is gathered from (22). Out of 250880 (22) realizations
we have used 200000 only. For training data 140,000 realizations are used, and 30,000 for validation and data testing each
respectively.TheDFFneural network is trained for 900 iterations, with a learning rate of 0.001. For each iteration,mini batch size
of 20 is considered. After training, performance is evaluated for test data set which gives us desired output. There are 3 hidden
layers each with 1.6K,1.2K and 800 neurons respectively. All simulation parameters of DFF neural network are mentioned
in Table 1. The proposed network is designed considering supervised learning approach but one can consider unsupervised
approach as a future work.

Table 1. Simulation Specifications for DFF neural network
Parameter Ranging values
Input Layer neurons 1248
Output Layer neurons 1248
Hidden Layer1neurons 1.6K
Hidden Layer2 neurons 1.2K
Hidden Layer neurons 800
Learning Rate 0.001
Optimizer Adam
Batch Size 20
Gradient Descent Accuracy 10−8

Continued on next page
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Table 1 continued
Activation Function tanh
Loss Function MSE

2.3 Multi-User UL Scheduling and Data Transmission

Every UE determines its transmission rate and conveyed the same information to the CPU through APs.Then, CPU schedules
the UE with the highest transmission rate. Scheduled UE will transfer data during assigned transmission slot. If there is more
than one user with the same transmission rate, then the user will be selected randomly with equal probability.Thus, multi-User
UL scheduling will ensure good channel condition leading to enhanced performance of the proposed system. Now let us derive
achievable UL SE equation for the proposed CFMM system. If Skis the UL signal transmitted, then the received signal is given
as:

yUL
m = ∑K

k=1 hmkSk +nUL
m (12)

where Sk ∼NC(0,ρk)with power ρk =E
{
|Sk|2

}
and nUL

m ∼NC(0,σ2
UL) is additive receiver noise.TheCPUwill select receiver

combining scalar asVmk =
(

ĥmk

)
DFF

obtained from DFF neural network-based CE, then the combined received signal (6) can
be decomposed as:

S̃mk =VmkyUL
m = VmkhmkSk︸ ︷︷ ︸

Desired Signal

+
k

∑
i=1,i ̸=k

VmihmiSi︸ ︷︷ ︸
Inter−User Inter f erence

+VmknUL
m︸ ︷︷ ︸

Noise
(13)

The above equation represents first level of receiver combining at the CPU. For second level of receiver combining, we are
considering Large Scale Fading Decoding (LSFD) (23). After second level of LSFD combining, Equation (12) will be modified
as:

Ŝk = ∑M
m=1 amkS̃mk =

M

∑
m=1

amkVmkhmkSk︸ ︷︷ ︸
Desired Signal

+
M

∑
m=1

K

∑
i=1,i ̸=k

amkVmihmiSi︸ ︷︷ ︸
Inter−User Inter f erence

+
M

∑
m=1

amkVmknUL
m︸ ︷︷ ︸

Noise

(14)

Where amk is the LSFD weight computed by the CPU in such a way to reduce inter-user interference. The LSFD weight
calculation depends on the distance between the UE and the AP. Then we can find out the UL ergodic channel capacity of
UE K, using use and then forget (UatF) lower bound. Then the UL ergodic SE of UE k is given as:

SEUL
k =

τUL

τc
log2(1+SINRUL

k ) (15)

where the effective signal to interference and noise ratio (SINR) SINRUL
k is given as:

SINRUL
k =

ρk |E{ak V H
k hk }|2

∑k
i=1 ρiE{|ak V H

k hk|2}−ρk |E{V H
k hk}|2 +σ2

ULE{∥ak Vk∥2}
(16)

Similarly, we can find SE forMR receiver combining scheme. FromEquation (16) we can calculate system throughput (20) which
is given as:

R = ∑k
k=1 1−

τp

τc
log2(1+SINRUL

k ) (17)

We can use Equation (17) as a performance measure to calculate UL system throughput wherein pilot symbols are considered
instead of transmission data. So, with proposed advanced pilot assignment algorithm, we assign least interfering pilot sequence
to the accessingUEwhich in turnwill maximize the system throughput of the CFMMnetworks. Similar toUL signal processing
methodology, we derive achievable DL SE equation for the proposed CFMM system. For, DL data transmission there are τDL
symbols. During UL data transmission, UEs are dependent, on their own combining vectors, but in DL data transmission UEs
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are dependent, on normalized precoding vectors of all UEs.Therefore, during DL transmission precoding vectors are optimized
jointly for all UEs. Herein we assumed to have same data signal to be transmitted from all APs to all UEs.Thus, the transmitted
signal from AP m is given as;

Tm = ∑k
k=1 WmkXk (18)

where Xk ∼ NC(0,1) is the DL transmitted signal for UE K andWmk is the coherent precoding beamforming vector, chosen to
satisfy DL power constraint. The signal received at the UE k is given as;

Y DL
k = WkhH

k Xk︸ ︷︷ ︸
Desired Signal

+
k

∑
i=1,i ̸=k

WihH
k Xi︸ ︷︷ ︸

Inter−User Inter f erence

+ nDL
k︸︷︷︸

Noise
(19)

Where nDL
k is the receiver noise given by nDL

k︸︷︷︸ ∼ NC(0,σ2
DL). Then we can find out DL ergodic capacity of UE k using UatF

lower bound given as;

SEDL
k =

τDL

τc
log2(1+SINRDL

k ) (20)

Where SINR is given as;

SINRDL
k =

∣∣E {
W H

k hk
}∣∣2

∑k
i=1 E

{∣∣W H
k hi

∣∣2}−
∣∣E {

W H
k hk

}∣∣2 +σ2
DL

(21)

3 Result and Discussion
We consider a scenario in which the total coverage area for cell-free setting is 1× 1Km area, with K single antenna UEs and M
APs with N number of antennas. The UEs are independently and uniformly distributed within the specified area. For cellular
setting (24), 4 square cells are deployed in 1× 1Km area with a centrally located base station (BS) with 100 number of co-located
antennas. The channel model, MMSE CE method used is similar to CFMM system previously. Doing similar analysis, we can
calculate achievable SE of UE K, for cellular massive MIMO system, which is given as:

SEk = (1− τUL

τc
)E

{
log2(1+SINRDL

k )
}

(22)

Both the network configurations will have same number of antennas. The propagation model used for both networks is also
same which will ensure performance differences due to difference in technology only. Apart from this location of UEs and pilot
assignment technique is also same for both networks. The large-scale fading coefficient is calculated which is given by:

βmk = 10
PLmk +Zmkσ sh

10 (23)

Where Zmk is a random variable with gaussian distribution, with σsh equal to 8db. PLmk is the path loss for mth AP and kthUE,
which is represented by three slope path loss model given by:

PLmk =

 −P−35log10dmk . . . . . . .(i f dmk < 50m )
−P−15log1050−20log10dmk . . . . . . .(i f 10m < dmk ≤ 50m )

−P−15log1050−20log1010 . . . . . . .(i f dmk ≤ 10m )
(24)

where P is 140.7db, which is a constant and depends on carrier frequency fc, UE height hUE and AP height hAP and dmk is
the distance between mth AP and kth UE. The proposed CFMM system is compared with conventional CFMM with MMSE
and MR combining techniques from previous literature. In Figure 2, the UL comparison of the proposed CFMM system with
conventional CFMM is done with MMSE and MR combining techniques. It shows cumulative distribution function (CDF) of
the SE in UL, for M=400 and N=1 i.e., 400 APs equipped with single antenna. The abscissa value on the CDF curve represents
90 percentage of UEs.The 90 percent likely SE for the proposed scheme, CFMMMMSE scheme, and CFMM-MR scheme is 1.8
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bits/s/Hz, 1.5 bits/s/Hz and 0.1 bits/s/Hz respectively. It is observed that the proposedCFMMsystemperformswell as compared
to CFMM-MMSE and CFMM-MR systems.The average SE of the proposed CFMM system is approximately 3.2 times higher as
compared to other two systems. Due to the advanced pilot assignment algorithm used in the proposed CFMM system, at a time
only one AP is selected and the selected AP with its full received power will serve the desired UE, which is more than enough to
suppress interference, resulting in improved performance of the proposed CFMM system depicted by the graph. If we observe
the CDF curve, it is seen that performance of UEs is significantly increased for those having favourable channel condition. So,
with 400 APs equipped with single antenna, only UE with good channel condition will show performance enhancement.Thus,
the proposed scheme enhances performance of every UE as compared toMMSE andMR combining schemes. Figure 3 presents
the UL comparison of the proposed CFMM system with conventional CFMM with MMSE and MR combining techniques. It
shows cumulative distribution function (CDF) of the SE in UL, forM=100 andN=4 i. e 100 APs equipped each with 4 antennas.
The 90 percent likely SE for the proposed scheme, CFMM-MMSE scheme, and CFMM-MR scheme is 3 bits/s/Hz, 2.1 bits/s/Hz
and 0.1 bits/s/Hz respectively. It is observed that the proposed CFMM system performs well as compared to CFMM-MMSE and
CFMM-MR systems.The average SE of the proposed CFMMsystem is approximately 3.2 times higher as compared to other two
systems. Due to the advanced pilot assignment algorithm used in the proposed CFMM system, at a time only one AP is selected
and the selected AP with its full received power will serve the desired UE, which is more than enough to suppress interference,
resulting in improved performance of the proposedCFMMsystemdepicted by the graph.Here the distance betweenUE andAP
is increased thereby decreasing macro diversity. With each AP equipped with 4 antennas, interference is locally suppressed to a
greater extent. So, the UE with unfavourable channel condition will also give better performance. As shown in Figure 4, the DL
comparison of the proposed CFMM system is done with conventional CFMM with MMSE and MR combining techniques. It
shows cumulative distribution function (CDF) of the SE in DL, for M=400 and N=1 i.e., 400 APs equipped with single antenna.
The 90 percent likely SE for the proposed scheme, CFMM-MMSE scheme, andCFMM-MR scheme is 0.7 bits/s/Hz, 0.5 bits/s/Hz
and 0.4 bits/s/Hz respectively. It is observed that the proposed CFMM system performs well as compared to CFMM-MMSE
and CFMM-MR systems. The same, UL analysis holds true for DL analysis also. It is evident that APs with single antenna
configuration performs well with an advantage of improving performance of UEs having lower SEs. Similarly, Figure 5 will
consider the performance measures in DL. It shows the DL comparison of the proposed CFMM system with conventional
CFMM with MMSE and MR combining techniques. It shows cumulative distribution function (CDF) of the SE in DL, for
M=100 and N=4 i.e., 100 APs equipped with 4 antennas. The 90 percent likely SE for the proposed scheme, CFMM-MMSE
scheme, and CFMM-MR scheme is 2 bits/s/Hz, 1.2 bits/s/Hz and 1 bits/s/Hz respectively. It is observed that the proposed
CFMM system performs well as compared to CFMM-MMSE and CFMM-MR systems. The same, UL analysis holds true for
DL analysis also. It is seen from the graph that, with multiple antennas per APs, local interference mitigation is improved. In
Figure 6 the performance is evaluated by considering the average sumSE of the proposed systemwith increasing number of APs,
during UL. From the figure, it is obvious that the proposed system outperforms the one with MMSE combining system. Also,
average sum SE increases with increase in number of APs. Different UE locations and channel realizations are considered while
taking average of sum SE. Again, the improved performance of the proposed system emphasizes the importance of advanced
pilot assignment technique. Figure 7 measures the performance of the average sum SE of the proposed system with increasing
number of APs, considering DL analysis. From the figure, it is obvious that the proposed system outperforms the one with
MMSE combining system. Also, average sum SE increases with increase in number of APs. Different UE locations and channel
realizations are considered while taking average of sum SE. From UL and DL analysis curve, it is clear that average DL sum
SE is higher then, UL one. Again, the improved performance of the proposed system emphasizes the importance of advanced
pilot assignment technique. As shown in Figure 8 the cellular massive MIMO system, is compared with the proposed CFMM
system and the conventional CFMM-MMSE system. It indicates CDF as a function of SE, considering randomly located UEs.
From comparing all CDF curves, it is evident that the proposed CFMM system performs well then cellular MM system and
CFMM-MMSE system.The 90 percent likely SE for the proposed scheme, CFMM-MMSE scheme, and Cellular massiveMIMO
scheme is 6.4 bits/s/Hz, 4.2 bits/s/Hz and 2 bits/s/Hz respectively. Improved performance of the proposed CFMM system
emphasizes the importance of using advanced pilot assignment and DFF neural network for CE. Comparison of advanced pilot
assignment algorithm of the proposed scheme with random pilot assignment and greedy pilot assignment algorithm is shown
in Figure 9. CFMM system provides uniform service to all UEs in spite of different UE location. Therefore, system throughput
is considered as the performance metric in evaluating different pilot assignment algorithm. From the 90 percent likely values
of the throughput, it is evident that the proposed advanced pilot assignment algorithm performs better as compared to random
and greedy pilot assignment techniques.
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Fig 4. DL Comparison of the proposed CFMMwithMMSE andMR combining techniques withM=400 and N=1 antenna configuration

Fig 5. DL Comparison of the proposed CFMMwithMMSE andMR combining techniques withM=100 and N=4 antenna configuration

Fig 6. Average Sum SE of the proposed system compared with MMSE technique during UL analysis
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Fig 7. Average Sum SE of the proposed system compared with MMSE technique during DL analysis

Fig 8. Comparison of Cellular massive MIMO system with the proposed CFMM system and the conventional CFMM-MMSE system

Fig 9. Comparison of advanced pilot assignment scheme with greedy and random pilot assignment schemes
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4 Conclusion
This research considered a taxonomy for UL and DL CFMM system with an advanced pilot assignment algorithm and
machine learning aided CE method, for Rayleigh Fading channel model. The proposed system is analysed considering pilot
contamination, channel estimation error and compared with conventional cell-free networks withminimummean square error
and maximum ratio combining techniques. In this paper closed-form UL and DL SE expressions are calculated for large scale
fading decoding,minimummean square error,maximum ratio combining techniques. An advanced pilot assignment algorithm
is developed, due to which the interference suppression capability of the proposed system increases thereby mitigating pilot
contamination to a greater extent. Machine Learning aided channel estimation is designed, which minimizes gradient loss to
zero, enabling the proposed CFMMwith accurate channel prediction with faster calculations as compared to the conventional
CFMM system. The simulation result shows that:

1. The 90 percent likely SE for the proposed scheme, CFMMMMSE scheme, and CFMM-MR scheme in uplink for M = 400
and N = 1, is 1.8 bits/s/Hz, 1.5 bits/s/Hz and 0.1 bits/s/Hz respectively.

2. Similarly, forM=100 andN=4, the 90 percent likely SE for the proposed scheme, CFMM-MMSE scheme, andCFMM-MR
scheme is 3 bits/s/Hz, 2.1 bits/s/Hz and 0.1 bits/s/Hz respectively.

3. The SE in DL, for M=400 and N=1, for the proposed scheme, CFMM-MMSE scheme, and CFMM-MR scheme is 0.7
bits/s/Hz, 0.5 bits/s/Hz and 0.4 bits/s/Hz respectively.

4. The SE in DL, for M=100 and N=4, for the proposed scheme, CFMM-MMSE scheme, and CFMM-MR scheme is 2
bits/s/Hz, 1.2 bits/s/Hz and 1 bits/s/Hz respectively. From simulation results, it is evident that, the SE performance of the
proposed system is three times better than the conventional system.

5. The 90 percent likely SE for the proposed scheme, CFMM-MMSE scheme, and cellular massive MIMO scheme is 6.4
bits/s/Hz, 4.2 bits/s/Hz and 2 bits/s/Hz respectively, which clearly indicates performance enhancement of the proposed
system against its cellular counterpart.

6. Also, the system throughput obtained by using advanced pilot assignment algorithm outperforms greedy and random
pilot assignment methods.

Thus, it has been demonstrated that the proposed CFMM system outperformed cellular MM, CFMM-MMSE and CFMM-
MR systems. For, future research direction, one can consider the power allocation problem for the proposed CFMM system.
A supervised learning approach is used for channel estimation herein, but one may go for unsupervised approach as another
future research direction as well.
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