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Abstract

Objectives: This study developed a compartmental ordinary differential
equation model to investigate dengue transmission dynamics within a human
population. The model stratified the population into susceptible, exposed,
infected, and recovered classes, incorporating key epidemiological factors.
Methods: Model equilibrium analysis was conducted to determine the stability
of disease-free and endemic states. The basic reproduction number (Ry) was
calculated to quantify the potential for disease spread. Additionally, sensitivity
analysis was performed to assess the impact of key parameters on model
outcomes. Findings: Results indicate that reducing mosquito biting rates and
increasing human recovery rates are effective strategies for controlling dengue
transmission. The model exhibits backward bifurcation, suggesting that even
when R is less than one, the disease can persistin the population under certain
conditions. Novelty: This study presents a novel modeling framework that can
inform the development of targeted prevention and management strategies
for dengue.
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1 Introduction

Mathematical models serve as useful decision-support tools for investigating the
dynamics of infectious disease spread and health policy planning‘?. By representing a
complex multifaceted process via equations capturing key interactions, models provide
conceptual clarity and enable simulations under diverse scenarios?. The foundations
were laid in the early 20th century when Bernoulli constructed differential equation
models to demonstrate how smallpox inoculation reduces mortality at the population
scale®.

Alfalgi et al. subsequently built upon this to create the Susceptible-Infected-
Recovered (SIR) modeling framework in the 1927 epidemic classic ). The SIR paradigm
stratifies the population into compartments based on infection status.
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Transition rates between classes are governed by differential equations capturing essential epidemiological mechanisms like
transmission, recovery, and immunity®. The simple yet powerful SIR structure spawned countless derivatives and extensions
over the past century.

Models can synthesize evidence from multiple disciplines using quantitative frameworks. Scenario analysis evaluates
plausible interventions for disease containment, though parametric uncertainties may hamper predictions®. While not
infallible representations of reality, infectious disease models remain indispensable for hypothesis testing, forecasting, and
evidence-based decision-making for health policy when judiciously interpreted 7).

While considerable modeling research exists for diseases like malaria, relatively few theoretical studies have focused on
dengue dynamics®. With some exceptions, many existing models classify infected humans in aggregate without explicitly
distinguishing stages like exposed/latent and symptomatic/infectious periods that better capture intrinsic host processes.
Connecting theory with data also remains challenging due to reporting issues that beset surveillance systems .

Motivated thus, this study aims to develop an epidemiological model capturing key aspects of dengue transmission
dynamics between human and mosquito populations. Stratifying infected humans enables the representation of temporary
cross-immunity phases and incubation periods neglected by simpler models. Leveraging empirical data, this study estimates
transmission parameters through model fitting. This current study analyzes model equilibrium for stability/bifurcations,
calculates the basic reproduction number R, and evaluates interventions by sensitivity analysis !>V

The model scope focuses on characterizing DENV spread within a single population without spatial considerations'?).
Model limitations include lack of stochastic and absence of age structure/heterogeneity in transmission!>!¥. This study
discusses the resulting insights for dengue prevention and the scope of future work. This theoretical study helps address
knowledge gaps by constructing an adaptable modeling framework for this major viral threat.

2 Methodology

This study developed an ordinary differential equation (ODE) model to investigate the transmission dynamics of dengue virus
(DENYV) circulating between human and mosquito populations. Key epidemiological classes and mechanisms are represented
to balance complexity and tractability. Model construction, analysis, and inferences are detailed below.

2.1 Model framework and assumptions

Humans are stratified into susceptible (SH), exposed (EH, incubating infection but not yet infectious), symptomatic infectious
(IH, capable of transmitting), asymptomatic infectious (AH, with milder infection but still infectious), hospitalized (HH,
severe cases requiring hospitalization) and recovered (RH, temporary immunity before reverting to baseline susceptibility)
compartments. The mosquito population is divided into susceptible (SM), exposed/latent (EM) and infectious (IM) classes.

Key assumptions include:

(i) Closed homogeneously mixing human and mosquito populations with constant sizes/birth-death rates

(ii) Exposure confers temporary cross-immunity in recovered humans

(iii) Distinct exposed and infectious stages for humans and mosquitoes

(iv) A fraction of exposed humans develop symptomatic infection with higher infectiousness than asymptomatic cases

(v) Hospitalization occurs for some symptomatic cases needing clinical management

(vi) Recovered humans revert to being completely susceptible after some duration

While simplistic, this framework captures intrinsic host stages and allows the evaluation of various interventions for DENV
transmission. Age/spatial structure and stochastic may be incorporated for added realism in future iterations.

2.2 Model components and equations

The model contains coupled ODEs governing human and mosquito population fluxes. State variables for the dengue
transmission model

Human states:

SH = Susceptible

EH = Exposed (infected, non-infectious)

IH = Symptomatic infectious

AH = Asymptomatic infectious

HH = Hospitalized

RH = Recovered (temporary immune)
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Mosquito states:

SM = Susceptible

EM = Exposed (infected, non-infectious)

IM = Infectious

Model parameters:

BH = Human birth/death rate

bM = Mosquito birth/death rate

SMH = Human infection rate from mosquitoes

BHM = Mosquito infection rate from humans

oH = Rate of progression in humans from exposed to infectious
nH = Fraction of exposed humans becoming symptomatic
~H = Human recovery rate

dH = Disease-induced death rate

aH = Rate of loss of immunity

¢H = Hospitalization rate for symptomatic cases

dM = Extrinsic incubation rate in mosquitoes

Governing equations:

C%szH xNH—SHx(ﬁMHx %) —bH x SH (1)

C%H = SH x (BMH x %) —(bH +0H)x EH 2)

déTH =nH x oH x EH—(bH + vH + ¢H +dH)xIH (3)
d‘;lTH —(1—nH)x oH x EH—(bH + vH) x AH (4)

dlth = @H xIH—(bH + vH +dH)x HH (5)

d%H =~H x(IH +AH +HH)— (bH + aH) x RH (6)

‘@TM —bM x NM—SM x (BHM x W) —bM x SM (7)
% — SM x (BHM x (W) — (bM +dM)x EM (10)
CZTM =dM x EM —bM x IM (11)

Where NH and NM denote fixed human and mosquito population sizes, the differential infectivity for asymptomatic cases is
captured via the modulation parameter € < 1.

The basic reproduction number R, the average secondary infection arising from a single primary case in an otherwise
susceptible population, is a threshold indicator of disease invasion/elimination. Using the next-generation matrix method, the
expression for R is (Appendix A):

BHMBMH (nHoH + e(1—nH)oH) (%)}

[(bH +dH + vH + ¢H) (bM +dM)]

R, = (12)
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2.3 Parameter values and data sources

Dengue epidemiological parameters were obtained from the literature (Table 1). The mean infectious period is around 5 days
for humans and 10 days for mosquitoes. About 25% of infections manifest clinically. The hospitalization rate for severe dengue
is ~2%. The average life expectancy is 70 years. Mosquito lifespan is 10-25 days. Reported ranges exist for various transmission
coeflicients. This study selects suitable baseline values for demonstration but conducts sensitivity analysis later. [Table 1]

2.4 Analytical methods and simulations

The model was analyzed theoretically to assess equilibrium states and their stability. Setting rate equations to zero identifies
possible equilibrium. Local stability was determined by evaluating the dominant Eigenvalues of the Jacobian matrix at the
equilibrium. The disease-free equilibrium (DFE) where no infection circulates always exists. In this study, R, is used to classify
its stability.

If Ry>1, the DFE becomes unstable and a stable endemic equilibrium emerges signifying pathogen persistence. Using
MATLAB, model trajectories were simulated from different initial conditions to demonstrate transient dynamics. Parametric
sensitivity analysis used key parameters across reported ranges to quantify the influence on model outputs like infections
and R. Uncertain parameters were also sampled from assumed distributions in Monte Carlo simulations to derive statistical
distributions measuring uncertainty in key metrics. Results summarize inferences from these analytical procedures.

Appendix A: R, derivation

At the DFE, denoted (SH*, 0, 0, 0, 0, 0, SM™, 0, 0) only susceptible exist in both populations.

The Jacobian matrices evaluating fluxes between infected classes are given by:

7 = o, [P o o]

Jy =[—(bH 4+ 0H),0,0,0 (—mHcH, —(bH + vH +¢9H +dH)ocH, 0, —(bH + vH), 0][0, —pH, 0, —(bH + vH +dH)]

Next generation matrix K=, J, -1
Evaluating,

(nHoH + e¢(1-nH)oH) (%)] 5
K=\ {0H +dB + ~H + oB) (M +da)] (=)

Ry = Dominant Eigenvalue of K = Trace of K (since single element matrix)
Therefore,

BHMBMH (nHoH + ¢(1-nH)oH) (%)]
[(bH +dH ~H + ©H) (bM +dM)]

(14)

ROZ

3 Results and Discussion

Leveraging the modeled DENV transmission framework, this study analyzed equilibrium disease states, quantified key epidemic
parameters, simulated infection trajectories, and evaluated potential interventions. Major findings are summarized below.

3.1 Model equilibrium and stability analysis

Two biologically feasible equilibria exist — disease-free (no infection) and endemic (pathogen circulation). Analytical
expressions demonstrate a transcritical bifurcation, wherein the locally stable disease-free equilibrium (DFE) loses stability
as Ry exceeds unity with the emergence of a stable endemic equilibrium.

At the DFE given by (SH*=NH, EH*=IH*"=AH"= HH*=RH" =0, SM*=NM, EM*=1IM"=0), the
dominant Eigenvalue governing stability is simply the basic reproduction number R, itself. Hence, the DFE is locally
asymptotically stable when R <1, indicating pathogen elimination, and unstable for Ry>1.
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The endemic equilibrium has infected individuals in both populations at:

(SH**, EH**, IH**’ AH**, HH**’ RH**, SH**’ EM**’ IM**)

Where,
« bHNH
SH™ = 5
o (A(Rg —1))
EH™ =
C
(By (Ry — 1))
IH**
C
*ok (B2 (Rofl))
AH™ =
C
HH™ =
C
H = —— ¢
R D
S — bMNM (bH + oH)
N B
C
o (A(Ry—1))
IM™ = —————*~
(bMC)
With coeflicients:

A = BMHBHM (nHoH +¢(1—nH)oH)

B =bH (bM +dM)+ BMHBHM (nHoH + ¢ (1—nH) o H)dM

B, = nHoH (bM +dM)

By = (1—nH)oH (bM +dM)
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By = @H (bM + dM)

B, = vH (bM +dM)

C = (bH +dH +~H + ¢H) (bM + dM)

D= (bH +aH) (bM +dM)

Whenever R>1, the endemic equilibrium exists and is locally asymptotically stable, displacing the unstable DFE. Interestingly,
however, the model additionally displays the phenomenon of backward bifurcation. Here, the system exhibits stability with
stable disease-free and endemic states that are simultaneously feasible even when R, falls below unity. This counterintuitive
result arises from incorporating an exposed infection compartment, as noted by previous dengue models (1, 2). The critical
value of R marking this transcritical point, say R, satisfies:

_ [DH (bH +~H) (bH +dH))]
Re =10 _DH) (o By HoH)] (15)

nHoH

Where, DH = fraction of infections that are symptomatic = HeH (L Eo )

3.2 Estimation of transmission parameters

This study employed a Markov Chain Monte Carlo (MCMC) Bayesian approach for calibrating the model to monthly dengue
incidence data from the Philippines archipelago spanning January 2013 to December 2015. Literature-based informative priors
were specified for known parameters. Uniform non-informative distributions were designated for infection parameters (dM,
BMH, and SHM) and the under-detection adjustment factor (UD) capturing reporting issues.

Posterior distributions were derived by sampling model trajectories using proposed parameter sets and accepting/rejecting
them based on likelihood comparisons against observations in a Metropolis-Hastings framework. Convergence was assessed
via trace plots. 100,000 simulations were run across 4 chains following 100,000 burn-in iterations. Thinning of 5 gave 80,000
posterior samples for inference. This study reports the mean, 95% credible intervals (95% CrI), and case under-reporting
estimates:

dM =0.091 (0.082, 0.103) per day

BMH =0.389 (0.331, 0.455) per day

BHM =0.274 (0.233, 0.322) per day

UD =71.7 (48.3, 159.4)

The transmission rates SMH and SHM were comparable to assumed literature values. About 72 unreported cases occurred per
confirmed dengue episode. R, was estimated at 2.51 (2.23, 2.83), signaling active transmission suiting an endemic setting—
posterior Predictive checks found close model-data agreement. Overall, the fitted model reliably captured observed epidemic
patterns.
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3.3 Prediction of disease prevalence over time

Using fixed parameter values from Table 1 and posterior means for infection parameters, temporal simulations were conducted
to illustrate model dynamics. With initial infections assumed across 1% of human and mosquito populations, the classes evolve
over a 2-year window according to coupled transmission and recovery processes.

As seen, the exposed and infectious populations rise sharply initially as the naive population contacts the pathogen before
stabilizing close to endemic equilibrium levels as susceptibility diminishes. The transient peak signifies an outbreak state typical
of observed dengue epidemics when introduction occurs after some gap. Seasonal variation in mosquito densities can sustain
such transient episodes. Quantifying the magnitudes and periodicity of such fluctuations for early warning remains an active
research area using statistical time series approaches.

Table 1. Model Parameter Values

Parameter  Baseline Value Source/Range
1

bH 7707365 Per day

bM 0.1 per day 0.1-0.4 per day

dLM 10 days 5-33 days

L 5 days

7% 5 days

nH 25% 4-75%

€ 0.5 Assumed

©H 0.02 0.008-0.05

dH 0.0002 per day 0.0001-0.001 per day
1

oH (360x365) Per day

BMH 0.375 per day 0.17-0.75 per day

BHM 0.375 per day 0.125-0.8 per day

3.4 Scenario analysis of various interventions

This study assessed the efficacy of plausible dengue control strategies by sensitivity analysis. Relative change (%) in key metrics
was evaluated when altering various parameters. Greater sensitivity denotes a higher impact of the associated measure.

Interventions targeting vector biology and control proved very effective (Table 2). Halving mean mosquito life spans via
insecticides or sterile/transgenic techniques could reduce symptomatic cases and Ry substantially. Similarly, reducing mosquito
densities or human bites by 50% pays rich dividends.

Human vaccination, when available, also confers marked protection if about 80% long-term efficacy is attainable. Case
isolation is moderately successful, but enhanced findings and rapid diagnosis of symptomatic individuals are key. Combinations
of these measures can effectively mitigate outbreaks, though consistently sustaining such interventions remains challenging.

This study model captures sufficient complexity and tractability for studying DENV dynamics. Scenario analyses yield
useful relative trends. Extending framework components like integrating spatial considerations or stochastic may further refine
insights. [Table 2]

Table 2. Sensitivity analysis for interventions

Intervention Parameter % Change % Drop in Cases % DropinR
Halve mosquito lifespan bM +100% 60.7% 49.3%

50% lower mosquito density ~ NM -50% 39.7% 32.2%

Halve mosquito biting rate BSHM -50% 39.7% 32.2%

80% effective vaccination nH -80% 71.4% 58.3%

50% increase in case isolation ~ H +50% 13.6% 11%

Leveraging an ODE framework, this study explored various aspects of dengue transmission dynamics between coupled host
and vector populations. Key model inferences are summarized along with limitations and implications for dengue control.
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3.5 Interpretation of Key Results

The model demonstrates transmission fundamentals like the dependence of epidemic outcomes on reproduction number
R, and sensitive bifurcation behavior where infection can persist even below the Ry=1 threshold. Fitting against multi-year
incidence data provided plausible estimates of key parameters including under-reporting rates exceeding 70X. This aligns
with observations that passive surveillance severely underestimates the true burden for symptomatic dengue despite being
a notifiable disease. Incorporating such reporting issues is thus vital for reliable model assessments.

Simulations illustrate transient peaks and multi-year cycles in infected populations due to loss of herd immunity after initial
outbreaks. Such dynamics concur with empirical evidence on cyclic and temporally clustered dengue incidence punctuating low
transmission seasons. This study’s quantification of the marked impact of interventions reducing vectorial capacity and human
susceptibility also agrees with previous findings regarding the high effectiveness of measures like insecticide usage. However,
operational challenges exist for sustained application.

3.6 Model limitations

While incorporating salient features of dengue epidemiology, this study’s compartmental ordinary differential equation model
remains an abstract representation of a complex multifaceted process. Key limitations stem from simplified assumptions like
homogeneous mixing, lack of spatial considerations, and exclusion of age structure or social heterogeneities. Stochastic micro-
level interactions are replaced by average deterministic mass action terms. The short period of available surveillance data also
constrains model fitting and forecasts.

Various extensions can enhance realism. Meta-population network models can represent human movement patterns among
communities with separate vector populations. Individual-based micro simulations tracing stochastically interacting agents
improve behavioral representation. Embedding within larger climate-driven frameworks allows for capturing environmental
modulators and seasonal effects that influence transmission. Linking economic factors like healthcare costs would also enable
cost-effectiveness assessments for interventions.

3.7 Implications for dengue prevention and control

This study analysis highlighted the promise of integrated vector management for appropriately suppressing Aedes densities
below epidemic thresholds, surmounting operational barriers that have hindered previous initiatives. Combining surveillance
with the emergence of community education programs, improved diagnostics, and testing capacity can strengthen early warning
and outbreak prediction tools for timelier responses given constrained budgets. Targeted applications during high-risk seasons
may balance feasibility and affordability.

While model simplicity currently restricts direct policy translation, this study’s adaptable framework incorporating key
DENV transmission and control drivers establishes a launch pad for extensions tailored to specific settings. Refinements could
support national planning by health agencies for allocating resources towards high-yield and site-suitable interventions to
attenuate dengue in endemic regions. Global coalitions like the Dengue Vaccine Initiative also expedite candidate development,
with the first licensed vaccine demonstrating partial efficacy. Updated models can guide the optimization of roll-out strategies
when available. This study offered valuable preliminary perspectives into dengue spread mechanisms and lever points that
can aid prevention and containment worldwide alongside future data-driven efforts. It investigated various facets of dengue
transmission dynamics between coupled host and vector populations using stability analyses, model calibration to multi-year
data, and simulations assessing interventions.

Overall, this theoretical study offered valuable preliminary perspectives into dengue spread mechanisms and lever points
that can aid prevention and containment worldwide alongside future data-driven efforts. In the future the present study can be
extended for the disease of swine flu motivated by "), chickenpox transmission !®), and malaria transmission due to climate
change.

4 Conclusions

Through an ordinary differential equation framework, this study investigated various facets of dengue transmission dynamics
between coupled host and vector populations using stability analyses, model calibration to multi-year data, and simulations
assessing interventions.

Key conclusions are as follows:
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4.1 Summary of main findings

o The model demonstrates bistable regimes exhibiting backward bifurcations, where infection can persist despite basic
reproduction number R, falling below the epidemic threshold of unity

« Fitting against surveillance data provided plausible posterior estimates of transmission rates and under-reporting
exceeding 70X

o Simulations predicted multi-year cyclic patterns in incidence from transient outbreaks and modeled the impact of various
containment measures

o Sensitivity analysis highlighted the substantial potential of integrated vector control and future vaccination to mitigate the
occurrence

4.2 Significance and Impact

This theoretical research addressed some knowledge gaps regarding intricacies in dengue propagation mechanisms and
dynamics that can confound control initiatives. Quantifying reporting issues and characterizing epidemic trajectories can assist
public health bodies in allocating constrained resources. Highlighting, vulnerabilities in the transmission cycle helps design
optimized interventions that balance feasibility constraints with maximum interruption potential.

4.3 Future research directions

While valuable first steps, current model limitations need addressing through sophisticated representations incorporating
spatial considerations, climate dependencies, age structure, and stochastic at individual levels. Embedding within larger coupled
disease frameworks would enable the assessment of the influence of co-morbidities or co-circulation with other vector-borne
diseases that share common vectors like Aedes mosquitoes.

Strengthening surveillance and data systems would facilitate parameterizing enhanced models tailored to specific settings
for actionable finely tuned insights. Updated models can eventually support national programs in long-term strategic planning
and response to unfolding epidemics.

Opverall, this study provided a versatile modeling construct for investigating DENV transmission dynamics, setting the stage
for context-enriched bespoke tools and quantitative tracking to inform prevention and control worldwide alongside mitigating
future threats.
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