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Abstract
Objectives: The core objective of this paper is to introduce the explicitModified
Laguerre polynomial 𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) and obtain a new general integral transform
of Modified Laguerre’s Polynomial, by using this general transform, some
transforms of Laguerre’s Polynomial are identified as special cases. Method:
We derive transforms of the polynomials 𝐿𝑎,𝑏,𝑐,𝑛 (𝑡), 𝐿𝑛 (𝑡) by using this new
integral transform approach and found the transforms like Laplace, 𝛼-Laplace,
Sawi, Elzaki, Sumudu, Natural, Aboodh, Pourreza,Mohand, G_transform, Kamal
transforms and their relationship for the same. Findings: A new general
integral transform of the Modified Laguerre’s Polynomial 𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) has been
obtained, and a special case for the polynomial 𝐿𝑛 (𝑡) has been derived by
using this transform. Novelty: This is a novel general integral transform for
this polynomial and by applying this transform to the Modified Laguerre’s
polynomial as special transform cases like Laplace, 𝛼-Laplace, Sawi, Elzaki,
Sumudu, Natural, Aboodh, Pourreza, Mohand, G_, Kamal, Sumudu, Elzaki,
Natural, and Pourreza are obtained.
Keywords:Modified Laguerre polynomial; Laguerre polynomial; A New
Integral Transform; Laplace Transform; Sumudu Transform

1 Introduction
To solve some real-world problems, the use of integral transforms is required.
Differential and integral equations can be simplified into an algebraic equation, which
is simple to solve by selecting the appropriate integral transformations. In the last two
decades, numerous integral transforms within the Laplace transform class have been
introduced including G_transform, Sawi, Kamal, Aboodh, Sumudu, Elzaki, Natural,
and Pourreza transforms (1–5).

A variety of special functions are required to solve numerous theoretical and
mathematical physics problems. A special function’s generating function relations,
integral representations, explicit formula, recurrence relations, and other distinctive
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qualities are identified, during analysis (6–11). In this paper, we primarilywrite the different transforms of thewell-known classical
Laguerre polynomials (6,7,12–15) in the field of theory of special functions by using the New Integral transform (5).

The explicit form of Modified Laguerre polynomial 𝐿𝑎,𝑏,𝑐,𝑛(𝑡) was introduced (16,17) as

𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) =
𝑏𝑛(𝑐)𝑛

𝑛! 1𝐹1 [−𝑛;𝑐;−; 𝑎𝑡
𝑏 ] (1.1)

=
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘 ( 𝑎𝑡
𝑏 )𝑘

(𝑐)𝑘 𝑘!

But

(−𝑛)𝑘 = {
(−1)𝑘𝑛!
(𝑛−𝑘)! (0 ≤ 𝑘 ≤ 𝑛)
0 (𝑘 > 𝑛)

=
𝑏𝑛(𝑐)𝑛

𝑛!
𝑛

∑
𝑘=0

(−1)𝑘 𝑛!(𝑎𝑡
𝑏 )

𝑘

(𝑐)𝑘 (𝑛−𝑘)!𝑘!
(1.2)

The definition of a new integral transform2 is as follows: Let 𝑓(𝑡) be an integrable function defined for 𝑡 ≥ 0, 𝑝(𝑠) ≠ 0 and,
𝑞(𝑠) are positive real functions, the general integral transform 𝐹(𝑠) of 𝑓(𝑡) is defined by the formula

𝑇 {𝑓 (𝑡) ;𝑠} = 𝐹 (𝑠) = 𝑝(𝑠)∫∞
0 𝑓 (𝑡)𝑒−𝑞(𝑠)𝑡 𝑑𝑡 (1.3)

provided, that the integral exists for some 𝑞(𝑠). The techniques and methods of writing generating functions and the results
are discussed in (1,2,6,7,12–15,17). This motivated us to find the relation between Modified Laguerre polynomial 𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) and
the new integral transform.

2 Methodology

2.1 New General Integral Transform of Modified Laguerre’s Polynomial 𝐿𝐚,𝐛,𝐜,𝐧 (𝐭)

𝑇 {𝐿𝑎,𝑏,𝑐,𝑛 (𝑡)} = 𝑝(𝑠)∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒−𝑞(𝑠)𝑡 𝑑𝑡

= 𝑝(𝑠)∫
∞

0
{

𝑏𝑛(𝑐)𝑛
𝑛!

∞
∑
𝑘=0

(−𝑛)𝑘 ( 𝑎𝑡
𝑏 )𝑘

(𝑐)𝑘 𝑘! } 𝑒−𝑞(𝑠)𝑡 𝑑𝑡

𝑇 {𝐿𝑎,𝑏,𝑐,𝑛 (𝑡)} = 𝑇
⎧{{
⎨{{⎩

𝑏𝑛(𝑐)𝑛
𝑛!

∞
∑
𝑘=0

(−𝑛)𝑘 (𝑎𝑡
𝑏 )

𝑘

(𝑐)𝑘 𝑘!

⎫}}
⎬}}⎭

, (2.1)

= 𝑇 {
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘 ( 𝑎
𝑏 )𝑘 𝑡𝑘

(𝑐)𝑘 𝑘! },

=
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘( 𝑎
𝑏 )𝑘

(𝑐)𝑘 𝑘! 𝑇 {𝑡𝑘},
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=
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘( 𝑎
𝑏 )𝑘

(𝑐)𝑘 𝑘!
Γ(𝑘 +1) 𝑝(𝑠)

(𝑞 (𝑠))𝑘+1 ,

=
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘 ( 𝑎
𝑏 )𝑘

(𝑐)𝑘 𝑘! { 𝑘! 𝑝(𝑠)
(𝑞 (𝑠))𝑘+1 },

=
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘 ( 𝑎
𝑏 )𝑘

(𝑐)𝑘
{ 𝑝(𝑠)

(𝑞 (𝑠))𝑘+1 },

=
𝑏𝑛(𝑐)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘 𝑝(𝑠)
(𝑐)𝑘 𝑞 (𝑠) {( 𝑎

𝑏 𝑞 (𝑠))
𝑘

}. (2.2)

If we put 𝑐 = 1 in Equation (2.2), then we have the following form of the transform

𝑇 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} =
𝑏𝑛(1)𝑛

𝑛!
∞
∑
𝑘=0

(−𝑛)𝑘 𝑝(𝑠)
(1)𝑘 𝑞 (𝑠) {( 𝑎

𝑏 𝑞 (𝑠))
𝑘

},

𝑇 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑏𝑛 𝑛!
𝑛!

∞
∑
𝑘=0

(−𝑛)𝑘 𝑝(𝑠)
𝑘! 𝑞 (𝑠) {( 𝑎

𝑏 𝑞 (𝑠))
𝑘

},

𝑇 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑏𝑛 𝑝(𝑠)
𝑞 (𝑠)

∞
∑
𝑘=0

(−𝑛)𝑘
𝑘! {( 𝑎

𝑏 𝑞 (𝑠))
𝑘

},

𝑇 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑏𝑛 𝑝(𝑠)
𝑞 (𝑠) (1− 𝑎

𝑏 𝑞 (𝑠))
𝑛

. (2.3)

2.2 The following transforms of the Modified Laguerre’s Polynomial are obtained after using the
relationship between the New Transform and other transforms:

2.2.1: For 𝑝(𝑠) = 1 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠 in this new transform, we get the Laplace transform
Then from Equation (2.3) we get,

𝐿{𝐿𝑎,𝑏,1,𝑛 (𝑡)} = ∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒−𝑠𝑡 𝑑𝑡 = 𝑏𝑛

𝑠 (1− 𝑎
𝑏𝑠)

𝑛
.

2.2.2: For 𝑝(𝑠) = 1 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠 1𝛼 in this new transform, we get the 𝛼-Laplace transform
Then from Equation (2.3) we get,

𝐿𝛼 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = ∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒−𝑠 1𝛼 𝑡 𝑑𝑡 = 𝑏𝑛

𝑠 1𝛼
(1− 𝑎

𝑏 𝑠 1𝛼
)

𝑛
.

2.2.3: For 𝑝(𝑠) = 1𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Sumudu transform
Then from Equation (2.3) we get,

𝑆 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 1
𝑠 ∫

∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑏𝑛 (1− 𝑎𝑠

𝑏 )
𝑛

.
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2.2.4: For 𝑝(𝑠) = 1𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 1 in this new transform, we get the Aboodh transform
Then from Equation (2.3) we get,

𝐴{𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 1
𝑠 ∫

∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒−𝑡 𝑑𝑡 = 𝑏𝑛

𝑠 (1− 𝑎
𝑏 )

𝑛

2.2.5: For 𝑝(𝑠) = 𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠2 in this new transform, we get the Pourreza transform
Then from Equation (2.3) we get,

𝐻𝐽 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑠∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒−𝑠2𝑡 𝑑𝑡 = 𝑏𝑛

𝑠 (1− 𝑎
𝑏𝑠2 )

𝑛

2.2.6: For 𝑝(𝑠) = 𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Elzaki transform
Then from Equation (2.3) we get,

𝐸 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑠∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑏𝑛𝑠2 (1− 𝑎𝑠

𝑏 )
𝑛

2.2.7: For 𝑝(𝑠) = 𝑢 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠𝑢 in this new transform, we get the Natural transform
Then from Equation (2.3) we get,

𝑁 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑢∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑢𝑡) 𝑒− 𝑠𝑢 𝑡 𝑑𝑡 = 𝑏𝑛 𝑢2

𝑠 (1− 𝑎𝑢
𝑏𝑠 )

𝑛

2.2.8: For 𝑝(𝑠) = 𝑠2 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠 in this new transform, we get the Mohand transform
Then from Equation (2.3) we get,

𝑀 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑠2 ∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒−𝑠𝑡 𝑑𝑡 = 𝑏𝑛𝑠 (1− 𝑎

𝑏𝑠)
𝑛

2.2.9: For 𝑝(𝑠) = 1
𝑠2 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Sawi transform

Then from Equation (2.3) we get,

𝑆𝑎{𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 1
𝑠2 ∫

∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑏𝑛

𝑠 (1− 𝑎𝑠
𝑏 )

𝑛

2.2.10: For 𝑝(𝑠) = 1 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Kamal transform
Then from Equation (2.3) we get,

𝐾 {𝐿𝑎,𝑏,1,𝑛 (𝑡)} = ∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑏𝑛𝑠 (1− 𝑎𝑠

𝑏 )
𝑛

2.2.11: For 𝑝(𝑠) = 𝑠𝛼 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the G_transform
Then from Equation (2.3) we get,

𝐺{𝐿𝑎,𝑏,1,𝑛 (𝑡)} = 𝑠𝛼 ∫
∞

0
𝐿𝑎,𝑏,𝑐,𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑏𝑛𝑠𝛼+1 (1− 𝑎𝑠

𝑏 )
𝑛

2.3 Particular case:

If 𝑎 = 𝑏 = 1, then the Equation (2.3) reduces to

𝑇 {𝐿𝑛 (𝑡)} = 𝑝(𝑠)
𝑞 (𝑠) (1− 1

𝑞 (𝑠))
𝑛

, (2.4)

𝑇 {𝐿𝑛 (𝑡)} = 𝑝(𝑠)∫
∞

0
𝐿𝑛 (𝑡) 𝑒−𝑞(𝑠)𝑡 𝑑𝑡 = 𝑝(𝑠)

𝑞 (𝑠) (1− 1
𝑞 (𝑠))

𝑛
.
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2.4 Using the relation between the New Transform and other transforms,we get the following
transforms of Laguerre’s Polynomial

2.4.1: For 𝑝(𝑠) = 1 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠 in this new transform, we get the Laplace transform
Then from Equation (2.4) we get,

𝐿{𝐿𝑛 (𝑡)} = ∫
∞

0
𝐿𝑛 (𝑡) 𝑒−𝑠𝑡 𝑑𝑡 = 1

𝑠 (1− 1
𝑠)

𝑛
.

2.4.2: For 𝑝(𝑠) = 1 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠 1𝛼 in this new transform, we get the 𝛼-Laplace transform. Then from Equation (2.4) we get,

𝐿𝛼 {𝐿𝑛 (𝑡)} = ∫
∞

0
𝐿𝑛 (𝑡) 𝑒−𝑠 1𝛼 𝑡 𝑑𝑡 = 1

𝑠 1𝛼
(1− 1

𝑠 1𝛼
)

𝑛
.

2.4.3: For 𝑝(𝑠) = 1𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Sumudu transform
Then from Equation (2.4) we get,

𝑆 {𝐿𝑛 (𝑡)} = 1
𝑠 ∫

∞

0
𝐿𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = (1−𝑠)𝑛 .

2.4.4: For 𝑝(𝑠) = 1𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 1 in this new transform, we get the Aboodh transform
Then from Equation (2.4) we get,

𝐴{𝐿𝑛 (𝑡)} = 1
𝑠 ∫

∞

0
𝐿𝑛 (𝑡) 𝑒−𝑡 𝑑𝑡 = 0

2.4.5: For 𝑝(𝑠) = 𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠2 in this new transform, we get the Pourreza transform
Then from Equation (2.4) we get,

𝐻𝐽 {𝐿𝑛 (𝑡)} = 𝑠∫
∞

0
𝐿𝑛 (𝑡) 𝑒−𝑠2𝑡 𝑑𝑡 = 1

𝑠 (1− 1
𝑠2 )

𝑛

2.4.6: For 𝑝(𝑠) = 𝑠 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Elzaki transform
Then from Equation (2.4) we get,

𝐸 {𝐿𝑛 (𝑡)} = 𝑠∫
∞

0
𝐿𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑠2 (1−𝑠)𝑛

2.4.7: For 𝑝(𝑠) = 𝑢 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠𝑢 in this new transform, we get the Natural transform
Then from Equation (2.4) we get,

𝑁 {𝐿𝑛 (𝑡)} = 𝑢∫
∞

0
𝐿𝑛 (𝑢𝑡) 𝑒− 𝑠𝑢 𝑡 𝑑𝑡 = 𝑢2

𝑠 (1− 𝑢
𝑠 )

𝑛

2.4.8: For 𝑝(𝑠) = 𝑠2 𝑎𝑛𝑑 𝑞(𝑠) = 𝑠 in this new transform, we get the Mohand transform
Then from Equation (2.4) we get,

𝑀 {𝐿𝑛 (𝑡)} = 𝑠2 ∫
∞

0
𝐿𝑛 (𝑡) 𝑒−𝑠𝑡 𝑑𝑡 = 𝑠 (1− 1

𝑠)
𝑛

2.4.9: For 𝑝(𝑠) = 1
𝑠2 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Sawi transform

Then from Equation (2.4) we get,

𝑆𝑎{𝐿𝑛 (𝑡)} = 1
𝑠2 ∫

∞

0
𝐿𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 1

𝑠 (1−𝑠)𝑛

2.4.10: For 𝑝(𝑠) = 1 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the Kamal transform
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Then from Equation (2.4) we get,

𝐾 {𝐿𝑛 (𝑡)} = ∫
∞

0
𝐿𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑠 (1−𝑠)𝑛

2.4.11: For 𝑝(𝑠) = 𝑠𝛼 𝑎𝑛𝑑 𝑞(𝑠) = 1𝑠 in this new transform, we get the G_transform
Then from Equation (2.4) we get,

𝐺{𝐿𝑛 (𝑡)} = 𝑠𝛼 ∫
∞

0
𝐿𝑛 (𝑡) 𝑒− 1𝑠 𝑡 𝑑𝑡 = 𝑠𝛼+1 (1−𝑠)𝑛

3 Results and Discussion
This study has obtained a new general integral transform of Modified Laguerre’s Polynomial. Using this obtained transform
and its relation with the transforms like, Laplace, 𝛼-Laplace, Sawi, Elzaki, Sumudu, Natural, Aboodh, Pourreza, Mohand,
G_transform, and Kamal transforms, and derived the above transforms of the polynomial 𝐿𝑎,𝑏,𝑐,𝑛 (𝑡). Then, for the Laguerre
polynomial 𝐿𝑛 (𝑡), the new general integral transform is used to achieve all of the above transformations. These findings are
innovative and easy to obtain.

4 Conclusion
This study has used a general integral transform and its relation with transforms like, Laplace, 𝛼-Laplace, Sawi, Elzaki, Sumudu,
Natural, Aboodh, Pourreza, Mohand, G_ and Kamal to compute transforms of the Modified Laguerre polynomial 𝐿𝑎,𝑏,𝑐,𝑛(𝑡)
and Laguerre polynomial 𝐿𝑛(𝑡). The new integral transform covers the existing Laplace, 𝛼-Laplace, Sawi, Elzaki, Sumudu,
Natural, Aboodh, Pourreza, Mohand, G_transform, and Kamal transforms for various values of 𝑝(𝑠) and 𝑞(𝑠).The new integral
transform provides a simple way of writing the different transforms of special functions.
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