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Abstract
Objectives: To investigate the existence and uniqueness of a solution to the
non-local Cauchy problem of order 0 < 𝛼 < 1using the Atangana Baleanu (AB)
fractional derivative operator.Methods: Using Schauder’s fixed point theorem
and the Arzela-Ascoli theorem, the study proved the existence of a solution
to the given problem. Further, it obtains results for the uniqueness of the
solution. Findings: This study proves the existence of a solution to the non-local
Cauchy problem under the given conditions. Results are also provided for the
uniqueness of the solution.Novelty :Anovel approach to fractional differential
equations is represented by applying Atangana-Baleanu fractional derivative
operator to the non-local Cauchy problem. Schauder’s fixed point theorem and
Arzela-Ascoli’s theorem, are used to show existence and uniqueness. Further,
one detailed example has been solved.
Keywords: Existence; Uniqueness; Non-local operator; Schauder fixed point
theorem; Arzela-Ascoli theorem; Cauchy problem

1 Introduction
The generalization of classical calculus that deals with operations of integration and
differentiation of an arbitrary order is called Fractional Calculus (FC). The fractional
calculus applications are successful due to new fractional-order models which are often
more accurate than integer-order ones. During the past decades, fractional calculus had
a remarkable development as shown by many researchers in (1,2). In literature, different
definitions of fractional derivative and integral exist. Determining the existence and
uniqueness of a differential equation’s solutions is crucial in analyzing any differential
equation, including FDEs. These characteristics are essential because they guarantee
that the model that the FDE describes is well-posed, which means that it has a unique
solution that depends constantly on the initial conditions. Many mathematicians study
the existence and uniqueness of solutions of fractional differential equations by applying
different operators. Several results for the existence and uniqueness of generalized
solutions for the problem of nonlinear quantitative response equations have been
expanded by delay (3) using the Leray Schauder fixed point theorem and the Banach
contraction principle. A. Shaikh, et.al. in (4) investigate the Dynamical behaviour of
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HIV/AIDS model using Fractional Derivative with Mittag-Leffler Kernel. A. Shaikh et al. (5) proposed a mathematical model
of COVID-19 using fractional derivative. They investigated the effect of several biological parameters on the dynamics of
COVID-19 transmission. Recently in 2023 Kinda Abuasbeh et al. in (6), investigated a Mathematical Modelling of COVID-19
by Using a Mild Solution with a Delay Caputo Operator. The fractional order mathematical model of diabetes and its resulting
complications was studied by Srivastava et al. in (7). They also proposed some new approximate solutions of the time-fractional
Nagumo equation involving fractional integrals without singular kernel, looked into the properties of spiral-like close-to-
convex functions associated with conic domains, and used the Jacobi collocation method to approximate the solution of some
fractional-order Riccati differential equations with variable coefficients, respectively. The Existence and Uniqueness of Positive
Solutions for the Fractional Differential Equation Involving the 𝜌(𝜏)-Laplacian Operator and Nonlocal Integral Condition have
been established by Borisut, P. and Supak, P. (8). Recently M. Manjula et al. (9) have studied the existence, uniqueness, and
approximation of the nonlocal fractional differential equation of Sobolev type with impulses. On the other hand, fractional
differential equations with boundary conditions have been investigated in a wide range of references for instance, see (10,11)

In (12), existence and uniqueness results for the solutions of the following differential equation of order 0 < 𝛼 < 1, is
obtained by Z. Mokhtary, M.B Ghaemi, and S. Salahshour.

𝐶𝐹 𝐷𝛼𝑥(𝑡)= 𝑓 (𝑡, 𝑥(𝑡)), 𝑡 ∈ [0, 1] ,

𝑥(0) = ∫
1

0
𝑔 (𝑠)𝑥(𝑠)𝑑𝑠,

Where 𝐶𝐹 𝐷𝛼 is the Caputo-Fabrizio derivative operator of order 0 < 𝛼 < 1, 𝑔 ∈ 𝐿1 ([0,1] ,𝑅+) , 𝑔 (𝑡) ∈ [0,1)and f is
E-valued function.

Many more researchers in (13–18) investigated the existence and uniqueness of solutions for various types of fractional
differential equation using local and non-local derivative operators.

Motivated and persuaded by the work specified above, we study the existence and uniqueness of solutions to the nonlocal
Cauchy problem for the following fractional differential equations using the Atangana Baleanu derivative operator in Banach
space E:

𝐴𝐵𝐷𝑤𝑦(𝑡)= 𝐹 (𝑡, 𝑦(𝑡)), 0≤𝑡≤1, (1)

𝑦 (0) = ∫
1

0
ℎ(𝑝)𝑦 (𝑝)𝑑𝑝,

Where 𝐴𝐵𝐷𝑤 is the Atangana Baleanu derivative operator of order 0 < 𝑤 < 1, ℎ ∈ 𝐿1 ([0,1] ,𝑅+) , ℎ(𝑡) ∈ [0,1), and F is
E-valued function.

2 Methodology
This section introduces several definitions, notations, and fractional calculus results that will be used to get the desired result.

Define E as Banach space. Let 𝐶([0, 1], 𝐸) as Banach space of all of the continuous functions where 𝑦 ∶ [0,1] → 𝐸, and
||𝑦||𝑐 = 𝑆𝑢𝑝𝑡∈[0,1] ||𝑦 (𝑡)|| ,are defined on 𝐶 ([0, 1] , 𝐸) . 𝐿1([0, 1], 𝐸) is set as the Banach space of measurable function
𝑦 ∶ [0, 1] → 𝐸, as integral and is equipped with

∥ 𝑦 ∥𝐿1 = ∫1
0 ∥ 𝑦(𝑝) ∥𝑑𝑝.

Definition 2.1. (Equicontinuous)
𝐹 ⊂ 𝐶(𝑋) is equicontinuous if for every 𝜖 > 0, ∃ 𝛿 > 0 (which depends only on 𝜖) such that for 𝑥, 𝑦 ∈ 𝑋, 𝑑 (𝑥 − 𝑦) <

𝛿 ⇒ |𝑓 (𝑥)− 𝑓 (𝑦)| < 𝜖, ∀𝑓 ∈ 𝐹 , where 𝑑 is metric on 𝑋.
Definition 2.2. (Atangana Baleanu Fractional Derivative Operator)
If 𝑓 (𝑥) ∈ 𝐶2[𝑎, 𝑏] and 𝑎 < 𝑥 < 𝑏 then Atangana Baleanu Fractional Derivative is denoted by 𝐴𝐵𝐷𝛼𝑓 (𝑥) and is defined

as follows

𝐴𝐵𝐷𝛼𝑦 (𝑡) = 𝑀(𝛼)
1−𝛼 ∫

𝑥

0
𝐸𝛼 (−𝛼(𝑥−𝑡)

1−𝛼 )𝑓 ′ (𝑡)𝑑𝑡.

https://www.indjst.org/ 3882

https://www.indjst.org/


Shaikh & Sajjan / Indian Journal of Science and Technology 2024;17(37):3881–3888

Definition 2.3. (Atangana Baleanu Fractional Integral Operator)
If 𝑓 (𝑥) ∈ 𝐶2[𝑎, 𝑏] and 𝑎 < 𝑥 < 𝑏 then Atangana Baleanu Fractional integral is denoted by 𝐴𝐵𝐼𝛼𝑓 (𝑥) and is defined as

follows

𝐴𝐵𝐼𝛼𝑓 (𝑥) = 1−𝛼
𝑀 (𝛼)𝑓 (𝑥)+ 𝛼

𝑀 (𝛼)Γ𝛼∫
𝑥

0
𝑓 (𝑠)(𝑥−𝑠)𝛼−1𝑑𝑠.

Theorem 2.1. (Arzela AscoliTheorem)
Let (𝑋, 𝑑) be a compact space. A subset 𝐹 of 𝐶(𝑋) is relatively compact if and only if 𝐹 is uniformly bounded and

equicontinuous.
Theorem 2.2. (Schauder’s Fixed PointTheorem)
Let (𝐸, 𝑑) be a complete metric space, let 𝑈 be a closed convex subset of 𝐸, and Let 𝐴 ∶ 𝑈 → 𝑈 be a mapping such that

the set {𝐴𝑢 ∶ 𝑢 ∈ 𝑈 } is relatively compact in 𝐸. Then A has at least one fixed point.
Lemma 2.1.The solution of the fractional differential Equation (1) with boundary condition y(0) = c is given below

𝑦 (𝑡) = 𝑦 (0)+ (1 − 𝑤)𝐹 (𝑡, 𝑦 (𝑡))+ 𝑤∫
𝑡

0
(𝑡−𝑝)𝑤−1𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝, 𝑤 ∈ (0,1) .

Lemma 2.2. (15)

𝐺(𝜏)
Γ𝑤 < 𝑒,

∫𝑡
0 (𝑡−𝑝)𝑤−1 𝑑𝑝

Γ𝑤 < 𝑒, (2)

where 𝐺(𝜏) = ∫1
𝜏 ℎ(𝑝)(𝑝 −𝜏)𝑤−1𝑑𝑝, 𝑝,𝜏 ∈ [0,1] .

Proof: Let us consider

𝐺(𝜏)
Γ𝑤 =

∫1
𝜏 ℎ(𝑝)(𝑝 −𝜏)𝑤−1𝑑𝑝

∫∞
0 𝑝𝑤−1 𝑒−𝑝𝑑𝑝

≤
∫1
𝜏 (𝑝 −𝜏)𝑤−1𝑑𝑝
∫∞
0 𝑝𝑤−1 𝑒−𝑝𝑑𝑝

=
∫1−𝜏
0 𝑝𝑤−1𝑑𝑝

∫∞
0 𝑝𝑤−1 𝑒−𝑝𝑑𝑝

≤ 𝑒
∫1−𝜏
0 𝑝𝑤−1𝑒−𝑝𝑑𝑝
∫∞
0 𝑝𝑤−1 𝑒−𝑝𝑑𝑝

< 𝑒

and

∫𝑡
0 (𝑡−𝑝)𝑤−1𝑑𝑝

Γ𝑤 =
∫𝑡
0 𝑝𝑤−1𝑑𝑝

∫∞
0 𝑝𝑤−1 𝑒−𝑝𝑑𝑝 ≤ 𝑒

∫𝑡
0 𝑝𝑤−1𝑒−𝑝𝑑𝑝

∫∞
0 𝑝𝑤−1 𝑒−𝑝𝑑𝑝 < 𝑒
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3 Results and Discussion
Assume the following conditions hold:

(𝐴1) Let 𝐹 ∈ 𝐶([0, 1], 𝐸) such that there is a constant 𝑀 > 0,𝑃𝐹 (𝑡) ≤ 𝑀 𝑓𝑜𝑟 𝑡 ∈ [0, 1]
and every 𝑦 ∈ 𝐸, there is 𝑃𝐹 (𝑡) ∈ 𝐿1 ([0,1] ,𝑅+) such that ∥ 𝐹 (𝑡, 𝑦) ∥ ≤ 𝑃𝐹 (𝑡) ∥ 𝑦 ∥ .
(𝐴2) for each 𝑡 ∈ [0, 1] and 𝑅 > 0,𝐹(𝑡,𝐵𝑅) = {𝐹 (𝑡,𝑦)|𝑦 ∈ 𝐵𝑅}is relatively compact in 𝐸 where
𝐵𝑅 = {𝑦 ∈ 𝐶([0, 1], 𝐸), ∥ 𝑦 ∥𝐶 ≤ 𝑅}, 𝜆1 = 2−𝜇1

1−𝜇1
𝑀 (𝑒 + 1) < 1 and 𝜇1 = ∫1

0 ℎ(𝑝)𝑑𝑝.
Lemma 3.1. Assume that the condition 𝐴1hold then the problem 1 (Equation (1)) is equivalent to equation

𝑦 (𝑡) = 1−𝑤
1−𝜇1

∫
1

0
ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫

1

0
𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂 +(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))

+𝑤∫
𝑡

0
(𝑡−𝑝)𝑤−1𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝.

Proof. Using lemma (2.1) we have

𝑦 (𝑡) = 𝑦(0)+(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))+𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 (3)

Then we find

𝑦 (0) = ∫
1

0
ℎ(𝑝)𝑦(𝑝)𝑑𝑝

𝑦 (0) = ∫
1

0
ℎ(𝑝)(𝑦(0)+(1−𝑤)𝐹 (𝑝,𝑦 (𝑝))+𝑤∫

𝑝

0
(𝑝 −𝜂)𝑤−1𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂)𝑑𝑝

= ∫1
0 ℎ(𝑝)𝑦 (0)𝑑𝑝

+(1−𝑤)∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 +𝑤∫1

0 ℎ(𝑝)∫𝑝
0 (𝑝 −𝜂)𝑤−1 𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂𝑑𝑝

𝑦 (0)(1−∫1
0 ℎ(𝑝)𝑑𝑝)

= (1−𝑤)∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 +𝑤∫1

0 ℎ(𝑝)(∫𝑝
0 (𝑝 −𝜂)𝑤−1 𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂)𝑑𝑝

Here 0 ≤ 𝜂 ≤ 𝑝 ≤ 1 by change of order of integration we get 𝜂 ≤ 𝑝 ≤ 1, 0 ≤ 𝜂 ≤ 1.

∴∫
1

0
ℎ(𝑝)(∫

𝑝

0
(𝑝 −𝜂)𝑤−1𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂)𝑑𝑝 = ∫

1

0
𝐹 (𝜂,𝑦 (𝜂))(∫

1

𝜂
ℎ(𝑝)(𝑝 −𝜂)𝑤−1𝑑𝑝)𝑑𝜂

Let

𝐺(𝜂) = ∫
1

𝜂
ℎ(𝑝)(𝑝 −𝜂)𝑤−1𝑑𝑝

𝑦 (0)(1−∫
1

0
ℎ(𝑝)𝑑𝑝) = (1−𝑤)∫

1

0
ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 +𝑤∫

1

0
𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂

𝑦 (0) = (1−𝑤)
(1−𝜇1)∫

1

0
ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 + 𝑤

(1−𝜇1)∫
1

0
𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂
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From Equation (3) we get

𝑦 (𝑡) = 1−𝑤
1−𝜇1

∫
1

0
ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫

1

0
𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂 +(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))

+𝑤∫
𝑡

0
(𝑡−𝑝)𝑤−1𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

Conversely, consider the solution of the problem1 (Equation (1)) is y(t), thenusing the definition ofAtanganaBaleanu fractional
derivative, for each 𝑡 ∈ [0, 1], we get

𝐴𝐵𝐷𝑤𝑦 (𝑡) =𝐴𝐵 𝐷𝑤 (
1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂

+(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))+𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1 𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 )

= 𝐴𝐵𝐷𝑤 ((1−𝑤)𝐹 (𝑡,𝑦 (𝑡))+𝑤∫
𝑡

0
(𝑡−𝑝)𝑤−1𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝)

= 𝐴𝐵𝐷𝑤 (𝐴𝐵𝐼𝑤𝐹 (𝑡,𝑦 (𝑡)))

𝐴𝐵𝐷𝑤𝑦 (𝑡) = 𝐹 (𝑡,𝑦(𝑡))

This completes the proof.
Theorem3.1.Assume that both𝐴1 and𝐴2 are true and function satisfied Lipschitz condition, then problem1 (Equation (1))

has at least one solution.
Proof. Consider the operator
𝐴 ∶ 𝐶([0, 1], 𝐸) → 𝐶([0, 1], 𝐸),
given below

𝐴𝑦(𝑡) = 1−𝑤
1−𝜇1

∫
1

0
ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫

1

0
𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂+

(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))+𝑤∫
𝑡

0
(𝑡−𝑝)𝑤−1𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝,

The fixed point of operator A is a solution of problem 1 (Equation (1)).
Now consider 𝐵𝑅 = {𝑦 ∈ 𝐶([0, 1], 𝐸), ∥ 𝑦 ∥𝐶 ≤ 𝑅}.
Clearly, 𝐵𝑅 is convex, closed, and bounded.
The above theorem is proved in the several steps shown below:
Step 1: Initially, we show the continuity of operator A.
Take
𝑦𝑛, −𝑦 ∈ 𝐶 ([0, 1] , 𝐸) , ∥ 𝑦𝑛 − −𝑦 ∥𝐶 → 0,Then we have 𝑟 = 𝑠𝑢𝑝𝑖∥ 𝑦𝑖 ∥𝐶 < ∞, ∥ 𝑦 ∥𝐶 ≤ 𝑟,
For each 𝑡 ∈ [0, 1]

||𝐴𝑦𝑛 −𝐴𝑦|| =
∥
∥
∥
∥

1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦𝑛 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦𝑛 (𝜂))𝑑𝜂

+(1−𝑤)𝐹 (𝑡,𝑦𝑛 (𝑡))+𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1 𝐹 (𝑝,𝑦𝑛 (𝑝))𝑑𝑝 − 1−𝑤

1−𝜇1
∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

− 𝑤
1−𝜇1

∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂 −(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))−𝑤∫1

0 (𝑡−𝑝)𝑤−1 𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

∥
∥
∥
∥

‖𝐴𝑦𝑛 −𝐴𝑦‖ ≤ 1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)‖𝐹 (𝑝,𝑦𝑛 (𝑝))−𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝
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+ 𝑤
1−𝜇1

∫1
0 𝐺(𝜂)‖𝐹 (𝜂,𝑦𝑛 (𝜂))−𝐹 (𝜂,𝑦 (𝜂))‖𝑑𝜂

+(1−𝑤)‖𝐹 (𝑡,𝑦𝑛 (𝑡))−𝐹 (𝑡,𝑦 (𝑡))‖+
𝑤∫𝑡

0 (𝑡−𝑝)𝑤−1 ‖𝐹 (𝑝,𝑦𝑛 (𝑝))−𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝
By Equation (2) we get

‖𝐴𝑦𝑛 −𝐴𝑦‖ ≤ 1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)‖𝐹 (𝑝,𝑦𝑛 (𝑝))−𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝

+ 𝑒𝑤Γ𝑤
1−𝜇1

∫1
0 ‖𝐹 (𝜂,𝑦𝑛 (𝜂))−𝐹 (𝜂,𝑦 (𝜂))‖𝑑𝜂

+(1−𝑤)‖𝐹 (𝑡,𝑦𝑛 (𝑡))−𝐹 (𝑡,𝑦 (𝑡))‖+𝑤∫1
0 (𝑡−𝑝)𝑤−1 ‖𝐹 (𝑝,𝑦𝑛 (𝑝))−𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝

As 𝑛 → ∞, 𝐹 (𝑡,𝑦𝑛(𝑡)) → 𝐹 (𝑡,𝑦(𝑡)), ‖𝐴𝑦𝑛 − 𝐴𝑦‖ → 0 𝑎𝑠 𝑛 → ∞.
Hence A is a continuous operator.
‖𝐹 (𝑡,𝑦𝑛 (𝑡))−𝐹 (𝑡,𝑦 (𝑡))‖ ≤ 𝑃𝐹 (𝑡)(‖𝑦𝑛‖+‖𝑦‖) ≤ 2𝑀𝑟
Step 2: Claim 𝐴(𝐵𝑅) is equicontinuous.
Let 𝑡1, 𝑡2 ∈ [0,1] , 𝑡1 < 𝑡2, and 𝑦 ∈ 𝐵𝑅, then

‖𝐴𝑦 (𝑡2)−𝐴𝑦(𝑡1)‖ =

∥
∥
∥
∥
∥
∥

1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂

+(1−𝑤)𝐹 (𝑡2,𝑦 (𝑡2))
+𝑤∫𝑡2

0 (𝑡2 −𝑝)𝑤−1 𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝 − 1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

− 𝑤
1−𝜇1

∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂 −(1−𝑤)𝐹 (𝑡1,𝑦 (𝑡1))
−𝑤∫𝑡1

0 (𝑡1 −𝑝)𝑤−1 𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

∥
∥
∥
∥
∥
∥

≤ (1−𝑤)‖𝐹 (𝑡2,𝑦 (𝑡2))−𝐹 (𝑡1,𝑦 (𝑡1))‖
+𝑤[∫𝑡2

0 (𝑡2 −𝑝)𝑤−1 −∫𝑡2
0 (𝑡1 −𝑝)𝑤−1]‖𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝

≤ (1−𝑤)‖𝐹𝑡2,𝑦 (𝑡2)−𝐹 (𝑡1,𝑦 (𝑡1))‖
+𝑤[∫𝑡1

0 (𝑡2 −𝑝)𝑤−1 +∫𝑡2
𝑡1

(𝑡2 −𝑝)𝑤−1 −∫𝑡1
0 (𝑡1 −𝑝)𝑤−1]‖𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝

≤ (1−𝑤)‖𝐹 (𝑡2,𝑦 (𝑡2))−𝐹 (𝑡1,𝑦 (𝑡1))‖+
𝑤∫𝑡1

0 [(𝑡2 −𝑝)𝑤−1 −(𝑡1 −𝑝)𝑤−1]‖𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝+
𝑤∫𝑡2

𝑡1
(𝑡2 −𝑝)𝑤−1 ‖𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝

∵‖𝐹 (𝑝,𝑦 (𝑝))‖ ≤ 𝑀𝑅
≤ (1−𝑤)‖𝐹 (𝑡2,𝑦 (𝑡2))−𝐹 (𝑡1,𝑦 (𝑡1))‖+𝑤𝑀𝑅∫𝑡1

0 [(𝑡2 −𝑝)𝑤−1 −(𝑡1 −𝑝)𝑤−1]𝑑𝑝
+𝑤𝑀𝑅∫𝑡2

𝑡1
(𝑡2 −𝑝)𝑤−1𝑑𝑝

≤ (1−𝑤)‖𝐹 (𝑡2,𝑦 (𝑡2))−𝐹 (𝑡1,𝑦 (𝑡1))‖+𝑀𝑅[𝑡𝑤
2 −𝑡𝑤

1 ]
As 𝑡1 → 𝑡2 R.H.S of the above inequality is zero. Hence 𝐴(𝐵𝑅) is equicontinuous.
Step 3:

‖𝐴𝑦(𝑡)‖ =
∥
∥
∥
∥

1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

+ 𝑤
1−𝜇1

∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦 (𝜂))𝑑𝜂 +(1−𝑤)𝐹 (𝑡,𝑦 (𝑡))
+𝑤∫𝑡

0 (𝑡−𝑝)𝑤−1 𝐹 (𝑝,𝑦 (𝑝))𝑑𝑝

∥
∥
∥
∥

≤ 1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)‖𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝 + 𝑤

1−𝜇1
∫1
0 𝐺(𝜂)‖𝐹 (𝜂,𝑦 (𝜂))‖𝑑𝜂

+(1−𝑤)‖𝐹 (𝑡,𝑦 (𝑡))‖+𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1 ‖𝐹 (𝑝,𝑦 (𝑝))‖𝑑𝑝

∵‖𝐹 (𝑡,𝑦 (𝑡))‖ ≤ 𝑃𝐹 (𝑡)‖𝑦‖𝑐 ≤ 𝑀‖𝑦‖𝑐
≤ 2−𝜇1

1−𝜇1
𝑀 (1+𝑒)‖𝑦‖𝑐

Choose 𝜆1 = 2−𝜇1
1−𝜇1

𝑀 (1+𝑒) < 1
‖𝐴𝑦(𝑡)‖ ≤ ‖𝑦‖𝑐 ≤ 𝑅
Hence uniformly bounded condition is proven. Therefore it is relatively compact. By Schauder’s fixed point theorem, there

exist a fixed point of operator A in 𝐵𝑅.
Theorem 3.2. Under the assumptions of the above theorem and‖𝐹 (𝑡,𝑦)−𝐹 (𝑡,𝑧)‖ ≤ 𝐿‖𝑦 −𝑧‖,,where 𝑦,𝑧 ∈ 𝐵𝑅, 0 < 𝐿 <
1−𝜇1

(2−𝜇1)(𝑒+1) then 𝑦(𝑡) is the solution of problem (1). Moreover, it is unique in 𝐵𝑅.
Proof.We have to prove that, there exists a unique solution to IVP (1).
Consider 𝑦1 (𝑡) ,𝑦2 (𝑡) ∈ 𝐵𝑅 be the two solutions of IVP (1), then we have
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‖𝑦1 (𝑡)−𝑦2 (𝑡)‖ =
∥
∥
∥
∥
∥

1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦1 (𝑝))𝑑𝑝 + 𝑤

1−𝜇1
∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦1 (𝜂))𝑑𝜂

+(1+𝑤)𝐹 (𝑡,𝑦1 (𝑡))+𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1 𝐹 (𝑝,𝑦1 (𝑝))𝑑𝑝

− 1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)𝐹 (𝑝,𝑦2 (𝑝))𝑑𝑝 − 𝑤

1−𝜇1
∫1
0 𝐺(𝜂)𝐹 (𝜂,𝑦2 (𝜂))𝑑𝜂 −1(1−𝑤)𝐹 (𝑡,𝑦2 (𝑡))

−𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1 𝐹 (𝑝,𝑦2 (𝑝))𝑑𝑝

∥
∥
∥
∥
∥

≤ 1−𝑤
1−𝜇1

∫1
0 ℎ(𝑝)‖𝐹(𝑝,𝑦1 (𝑝))−𝐹 (𝑝,𝑦2 (𝑝))‖𝑑𝑝

+ 𝑤
1−𝜇1

∫1
0 𝐺(𝜂)‖𝐹 (𝜂,𝑦1 (𝜂))−𝐹 (𝜂,𝑦2 (𝜂))‖𝑑𝜂 +(1−𝑤)‖𝐹 (𝑡,𝑦1 (𝑡))−𝐹 (𝑡,𝑦2 (𝑡))‖

+𝑤∫𝑡
0 (𝑡−𝑝)𝑤−1 ‖𝐹 (𝑝,𝑦1 (𝑝))−𝐹 (𝑝,𝑦2 (𝑝))‖𝑑𝑝

≤ [ 1−𝑤
1−𝜇1

𝐿+ 𝑒𝑤Γ𝑤𝐿
1−𝜇1

+(1−𝑤)𝐿+𝑤𝐿]‖𝑦1 (𝑝)−𝑦2 (𝑝)‖𝑐
≤ [ 𝐿(2−𝜇1)(𝑒+1)

1−𝜇1
]‖𝑦1 (𝑝)−𝑦2 (𝑝)‖𝑐

Hence we get
‖𝑦1 −𝑦2‖ ≤ [ 𝐿(2−𝜇1)(𝑒+1)

1−𝜇1
]‖𝑦1 −𝑦2‖𝑐

∵‖𝑦1 −𝑦2‖ = 0
Hence proved.
Illustration
Example 4.1. Consider the following differential equation of order 0 < 𝑤 < 1 on 𝐸 = [0, 1]:

𝐴𝐵𝐷𝑤𝑦(𝑡)=
1+𝑡
100 𝑦 (𝑡) , 𝑡 ∈ [0,1] , 𝑦 (0) = ∫

1

0

1
2𝑦 (𝑝)𝑑𝑝, (5)

Then the solution to the equation above in [0, 1] is unique.
Solution 4.1. Let

𝐹 (𝑡,𝑦) = 1+𝑡
100 𝑦 (𝑡) , ℎ(𝑝) = 1

2
Clearly 𝐹 ∈ 𝐶 ([0, 1] , 𝐸) ,𝑃𝐹 (𝑡) ≤ 1

50 = 𝑀
𝑃𝐹 ∈ 𝐿([0,1] ,𝑅+, ‖𝐹 (𝑡,𝑦)‖ ≤ 𝑃𝐹 ‖𝑦‖)
Hence assumption (𝐴1) holds. Now we show that the assumption (𝐴2) also holds.
Take 𝜆1 = 2−𝜇1

1−𝜇1
𝑀 (𝑒+1), 𝜇1 = ∫1

0 ℎ(𝑝)𝑑𝑝
So 𝜆1 ≤ 3

50 (𝑒+1) < 1.
Hence, assumption (𝐴2) holds. It follows from Theorem 3.1, that there exists at least one solution to the problem 5

(Equation (5)).
For uniqueness, we will apply theorem 3.2.
In fact,

‖𝐹 (𝑡,𝑦)−𝐹 (𝑡,𝑧)‖ = ∥1+𝑡
100 𝑦 − 1+𝑡

100 𝑧∥ ≤ 1
50 ‖𝑦 −𝑧‖

So,

𝜆2 = 1−𝜇1
(2−𝜇1)(𝑒+1) = 1

3(𝑒+1)
Hence:

𝐿 = 1
50 < 1

3(𝑒+1)

Using theorem 3.2, the Equation (5) has a unique solution in the interval [0, 1].
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4 Conclusion
First, this study has introduced several key terms and theorems that will help to understand the rest of the research. Under
certain assumptions, this study provides new results to determine the existence and uniqueness of the solution of the fractional
differential Equation (1) by applying theAtanganaBaleanu fractional derivative operator.This study has applied twowell-known
theorems: the Schauder fixed point theorem and the Arzela-Ascoli theorem to obtain the existence of a solution to Equation (1).
Further, it proved the obtained solution is unique. Additionally, it has provided one example to show the applicability of the
obtained result.
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