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Abstract
Objectives: Deriving a new numerical method to solve uncertain differential
equations of larger order. Method: Uncertain differential equations of larger
order are dealt numerically with Seikkala findings. Runge-Kutta method with
linear combinations of means is followed. Findings: The fourth-order Runge-
Kutta method based on a linear combination of arithmetic mean, geometric
mean and contraharmonic mean is applied to determine the numerical
solution. Novelty: This approach is illustrated by solving second and third
order FIVP problems. The comparative analysis of the results between the
existing and the proposed method shows that the results produced by the
proposed method yield more accurate result than the existing classical RK
method of order 4. The findings indicate that the proposed approach is well
suited for obtaining the approximate solution of nth-order FIVPs.
Keywords: Fuzzy numbers; FIVP Problems; RungeKutta method; Arithmetic
mean; Contra harmonic Mean; Geometric mean; Lipschitz condition

1 Introduction
The arithmetic operations of fuzzy numbers are analysed in (1). Fuzzy Initial Value
Problems are solved by using a new approach in (2). For Solving Fuzzy Differential
Equations, Higher Order Runge-Kutta Method is employed in (3). Runge-kutta method
of order 3 based on linear combination of three means is proposed in (4). A newmethod
is proposed to solve Fuzzy Initial Value Problem using explicit Runge-Kutta method
in (5). The second order Fuzzy Initial Value Problems are taken and solved in (6). The
Arithmetic operations of Trigonal fuzzy numbers using Alpha cuts are proposed in (7).
For solving ordinary differential equations, the Iterative methods have been proposed
in (8). A detailed review over Fuzzy Differential Equations is made in (9). In (10), proposed
RKM methods to solve higher-order fuzzy differential equations. The traditional
Range-Kutta Cash–Karp method is illustrated in (11). The Numerical Solutions of Delay
Differential Equations has been done in (12). Solving uncertain differential equations is
done by Rao T. D and S. Chakraverty in (13). In (14) solved fuzzy differential equations
using orthogonal polynomials. In (15), analysed Computational Techniques Based on
Runge-Kutta Method of Various Orders. The significant role of
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Convergence of numerical methods in ensuring the accurate results for differential equations of fuzzy conditions is explained
in (16).

This study introduces an innovative numerical approach for evaluating linear uncertain initial value problems of larger order
and done for nth-order. So far there is no formula for fourth-order Runge-Kutta method with combination of three means.
Hence, it will be a novel attempt to solve Fuzzy Initial Value Problems using a combination of means.

The organisation of this paper is as given below: Section 2 provides fundamental insights into fuzzy numbers. Following this,
Section 3 delves into fuzzy derivative concepts. Section 4 introduces the new fourth-order Runge-Kuttamethod combiningwith
a variety of means. Section 5 presents two illustrative examples, while Section 6 offers the comparative analysis of the proposed
method with the existing method. Section 7 presents the paper’s conclusions.

2 Preliminaries
Definition 2 .1 (fuzzy set):
“A fuzzy set 𝐴 = {(𝑥,𝜇𝐴(𝑥)) ∶ 𝑥𝜖𝑋,𝜇𝐴(𝑥)𝜖 [0,1]}. In the pair (𝑥,𝜇𝐴(𝑥)) the first variable 𝑥 belongs to the classical set

and the second variable 𝜇𝐴(𝑥) belongs to the interval [0, 1], known membership function”.
Definition 2.2 (𝛼 -cut of a fuzzy set):
“The 𝛼−level set (or interval of confidence at level 𝛼 or 𝛼−cut) of the fuzzy set 𝐴 of X is a crisp set 𝛼 that includes all the

elements of X whose membership values are ≥ 𝛼; that is, 𝐴 = {𝑥 ∶ 𝜇𝐴(𝑥) ≥ 𝛼,𝑥𝜖𝑋,0 ≤ 𝛼 ≤ 1}.”
Definition: 2 .3 (Triangular Fuzzy Number):
“The definition of a triangular fuzzy number is the three numbers 𝑏1< 𝑏2< 𝑏3 where the graph of v(x), the membership

function of the fuzzy number v, is a triangle with base on the interval [𝑏1, 𝑏3] and vertex at x = b2. We specify v as (𝑏1/𝑏2/𝑏3).
The membership function for the triangular fuzzy number v= (𝑏1/𝑏2/𝑏3) is defined as the following

𝜗(𝑥) = {
𝑥−𝑏1
𝑏2−𝑏1

, 𝑏1 ≤ 𝑥 ≤ 𝑏2
𝑥−𝑏3
𝑏2−𝑏3

, 𝑏2 ≤ 𝑥 ≤ 𝑏3

and (1) 𝜗 > 0 if 𝑏1 > 0 ; (2) 𝜗 ≥ 0 if 𝑏1 ≥ 0 ; (3) 𝜗 < 0 if 𝑏3 < 0 ; and (4) 𝜗 ≤ 0 if 𝑏3 ≤ 0.
𝛼 cut interval of this shape is as follows, ∀𝛼𝜖[0,1]
𝐴𝛼 = [(𝑏1 −𝑏2)𝛼+𝛼1, −(𝑏4 −𝑏3)𝛼+𝑏4]
Let the set of all upper semi continuous normal convex fuzzy numbers with bounded r-level intervals is taken as E.That is if

𝜗 then r-level set [𝜗]𝑟 = {𝑆/𝜗(𝑆) ≥ 𝑟},0 < 𝑟 ≤ 1, is a closed bounded interval and is denoted by [𝜗]𝑟 = [𝜗
_

(𝑟) ,𝜗(𝑟)]. Let a

real interval be𝑋 ∶ 𝐼 → 𝐸′
where 𝐼 ⊂ 𝑅 is called a fuzzy process and its r-level set is denoted by [𝑥(𝑡)]𝑟 = [𝑥

_
(𝑡;𝑟) ,𝑥(𝑡;𝑟)] , 𝑡 ∈

𝐼,𝑟 ∈ [0,1].
“Representation of an arbitrary fuzzy number is an ordered pair of functions (𝜔

_
(𝑟) ,𝜔(𝑟)) for all 𝑟 ∈ [0,1], satisfying the

following requirements [1,0]:
(i) 𝜔

_
(𝑟) is a bounded left continuous non-decreasing function over [0,1],

(ii) 𝜔(𝑟) is a bounded left continuous non-increasing function over [0,1],
(iii) 𝜔

_
(𝑟) ≤ 𝜔(𝑟) ,0 ≤ 𝑟 ≤ 1

Let E be the set of all upper semi-continuous normal convex fuzzy numbers with bounded 𝛼−level intervals.”
Lemma 2.4
“Let [𝜍

_
(𝛼) , 𝜍 (𝛼) ,𝛼𝜖[0,1]] be a given family of non-empty intervals. If

(i) [𝜍
_
(𝛼) , 𝜍 (𝛼)] ⊃ [𝜍

_
(𝛽) , 𝜍 (𝛽)] for 0 < 𝛼 ≤ 𝛽, and

(ii) [ 𝑙𝑖𝑚
𝑘→∞

𝜍
_
(𝛼𝑘) , 𝑙𝑖𝑚

𝑘→∞
𝜍 (𝛼𝑘)] = [𝜍

_
(𝛼) , 𝜍 (𝛼)]

Whenever (𝛼𝑘) is a non-decreasing sequence converging to 𝛼 ∈ [0,1], then the family [𝜍
_
(𝛼) , 𝜍 (𝛼)],𝛼𝜖[0,1],, represent

the 𝛼− level set of fuzzy number 𝑣 in E. Conversely if [𝜍
_
(𝛼) , 𝜍 (𝛼)],𝛼𝜖[0,1] are 𝛼− level set of fuzzy number 𝑣 ∈ 𝐸 then the

conditions (i) and (ii) hold true.”
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3 Fuzzy Derivatives
Definition 3.1

“Let 𝐼be a real interval. A mapping 𝜍 ∶ 𝐼 → 𝐸 is called a fuzzy process and we denoted the 𝛼−level set by [𝜍(𝑡)]𝛼 =
[𝜍
_
(𝑡,𝛼) , 𝜍 (𝑡,𝛼)]. The Seikkala derivative 𝜍 ′(𝑡) of 𝜍 is defined by[𝜍′(𝑡)]𝛼 = [𝜍′

_
(𝑡,𝛼) , 𝜍′ (𝑡,𝛼)] a equation defines a fuzzy

number 𝜍′(𝑡)𝜖𝐸”.
Definition 3.2
“Suppose 𝑢 𝑎𝑛𝑑 𝑣 are fuzzy sets in E. Then their Hausdorff distance is as follows.

𝐷 ∶ 𝐸 ×𝐸 → 𝑅+ ⋃{0} , 𝐷(𝑢,𝑣) = 𝑠𝑢𝑝
𝛼𝜖[0,1] 𝑚𝑎𝑥{∣𝑢

_
(𝛼)−𝑣

_
(𝛼)∣ , |𝑢(𝛼)−𝑣(𝛼)|}

i.e D(u,v) is maximal distance between 𝛼 level sets of 𝑢 𝑎𝑛𝑑 𝑣 .
Fuzzy Initial Value Problem 3.3
“Let’s examine the initial value problem.
(𝑝(𝑛) (𝑡) = 𝜓(𝑡,𝑝,𝑝′ ,…..𝑝(𝑛−1)),𝑝(0) = 𝑎1,….𝑝(𝑛−1) (0) = 𝑎𝑛
Here, p represents a continuous functionmapping fromR toR and𝛼 and𝛽 are fuzzy numbers in R.Wemodify theNth-order

fuzzy differential equation by altering variables. 𝑞1(𝑡) = 𝑝(𝑡) , 𝑞2(𝑡) = 𝑝′ (𝑡) ,….,𝑞𝑛(𝑡) = 𝑝(𝑛−1) (𝑡) ,
converts to the following fuzzy system

⎧{
⎨{⎩

𝑞′
1(𝑡) = 𝑓1(𝑡,𝑞1,…..,𝑞𝑛)

𝑞𝑛′(𝑡) = 𝑓𝑛(𝑡,𝑞1,…..,𝑞𝑛)
𝑞1 (0) = 𝑞[0]

1 = 𝑞1,….𝑞𝑛 (0) = 𝑞[0]
𝑛 = 𝑎𝑛

(3.2)

where 𝑓𝑖(1 ≤ 𝑖 ≤ 𝑛) are continuous mapping from 𝑅+ ×𝑅𝑛 into 𝑦𝑖
[0] are fuzzy numbers in E with 𝛼 - level intervals.

[𝑞[0]
𝑖 ]

𝛼
= [𝑞

_
(0]

𝑖
(𝛼) ,𝑞(0]

𝑖 (𝛼)] for i=1,.......n and 0≤ 𝛼 ≤ 1 .

We call 𝑞 = (𝑞1,….𝑞𝑛)𝑇 is a fuzzy solution of Equation (3.2) on an interval I, if

𝑞
_

′

𝑖
(𝑡,𝛼) = 𝑚𝑖𝑛{ 𝑓𝑖 (𝑡,𝑢1,…..,𝑢𝑛) ;𝑢𝑗𝜖[𝑞

_𝑗
(𝑡,𝛼) ,𝑞𝑗 (𝑡,𝛼)]} = 𝑓

_ 𝑖
(𝑡,𝑞(𝑡,𝛼))

𝑞′

𝑖 (𝑡,𝛼) = 𝑚𝑎𝑥{𝑓𝑖 (𝑡,𝑢1,…..,𝑢𝑛) ;𝑢𝑗𝜖[𝑞
_𝑗

(𝑡,𝛼) ,𝑞𝑗 (𝑡,𝛼)]} = 𝑓𝑖(𝑡,𝑞(𝑡,𝛼)

(3.3)

and

𝑞
_

′

𝑖
(𝑡,𝛼) = 𝑞

_𝑖

[0] (𝛼) ,𝑞′

𝑖 (𝑡,𝛼) = 𝑞𝑖
[0] (𝛼) (3.4)

Therefore, for a fixed t, we get a system of initial value problems in 𝑥. Once solved uniquely, we merely need to confirm that the
intervals [𝛼(𝑡) ,𝛽(𝑡)] define a fuzzy number. 𝑞𝑖(𝑡) ∈ 𝐸 Now let 𝑞

_
[0] (𝛼) = (𝑞

_
[0]

1
(𝛼) ,……,𝑞

_
[0]

𝑛
(𝛼))𝑇 and

𝑞[0] (𝛼) = (𝑞[0]
1 (𝛼) ,……,𝑞[0]

𝑛 (𝛼))𝑇
with respect to the above-mentioned indicators, system Equation (3.2) can be written

as with assumption

{ 𝑞′ (𝑡) = 𝐹 (𝑡,𝑞 (𝑡)) ,
𝑞 (0) = 𝑞[0] ∈ 𝐸𝑛 (3.5)

With assumption,

𝑞
_
(𝑡,𝛼) = [𝑞

_
(𝑡,𝛼) ,……,𝑞

_
(𝑡,𝛼)]

𝑇
,

𝑞 (𝑡,𝛼) = [𝑞
_
(𝑡,𝛼) ,𝑞 (𝑡,𝛼)] 𝑎𝑛𝑑 𝑞′ (𝑡,𝛼) = [𝑞

_
′ (𝑡,𝛼) ,𝑞′ (𝑡,𝛼)]

(3.6)
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𝑞 (𝑡,𝛼) = [𝑞 (𝑡,𝛼) ,……,𝑞 (𝑡,𝛼)]𝑇 , (3.7)

𝑞
_

′ (𝑡,𝛼) = [𝑞
_

′ (𝑡,𝛼) ,……,𝑞
_

′ (𝑡,𝛼)]
𝑇

, (3.8)

𝑞′ (𝑡,𝛼) = [𝑞′ (𝑡,𝛼) ,……,𝑞′ (𝑡,𝛼)]𝑇 , (3.9)

and under the assumption that

𝐹 (𝑡,𝑞 (𝑡,𝛼)) = [𝐹
_

(𝑡,𝑞 (𝑡,𝛼) ,𝐹 (𝑡,𝑞 (𝑡,𝛼))]
𝑛
, where

𝐹
_

(𝑡,𝑞 (𝑡,𝛼)) = [𝑓
_1

(𝑡,𝑞 (𝑡,𝛼))),…….𝑓
_𝑛

(𝑡,𝑞 (𝑡,𝛼))]
𝑛

(3.10)

𝐹 (𝑡,𝑞 (𝑡,𝛼)) = [𝑓1(𝑡,𝑞 (𝑡,𝛼))),…….𝑓𝑛(𝑡,𝑞 (𝑡,𝛼))]𝑛 (3.11)

q(t) constitutes a fuzzy solution of Equation (3.5) across an interval I for all ∈[0,1] 𝛼∈[0,1], provided that

⎧{{
⎨{{⎩

𝑞
_

′(𝑡,𝛼)) = 𝐹
_

(𝑡,𝑞(𝑡,𝛼));

𝑞′ (𝑡,𝛼) = 𝐹(𝑡,𝛼))
𝑞
_
(0,𝛼) = 𝑞

_
[0] (𝛼) ,𝑞 (0,𝛼) = 𝑞[0](𝛼)

(3.12)

Or

{ 𝑞′ (𝑡,𝛼) = 𝐹(𝑡,𝑞(𝑡,𝛼)),
𝑞 (0,𝛼) = 𝑞[0] (𝛼) . (3.13)

4 FRK4AMGMCONTHM Formula for Solving Fuzzy Initial Value Problems

4.1. Runge – Kutta Method for Problems with Initial Values

The problem with initial values is,

{ 𝑦′ (𝑡) = 𝑓 (𝑡,𝑦 (𝑡)) ;𝑎 ≤ 𝑡 ≤ 𝑏
𝑦 (𝑎) = 𝛼,

The basis of all Runge-Kutta method is to express the difference between the value of y at

𝑠𝑦𝑛+1 −𝑦𝑛 = ∑𝑚
𝑖=1 𝑤𝑖𝑘𝑖 (3.2)

where for i =1, 2, …,m, wi’s are constants and

𝑘𝑖 = ℎ𝑓(𝑡𝑛 +𝑐𝑖ℎ,𝑦𝑛 +∑𝑖−1
𝑗=1 𝑎𝑖𝑗𝑘𝑗) (3.3)

Equation (3.2) is to be exact for powers of h through hm, because it is to be coincident with Taylor series of order m.
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4.2. RK4AmGmContHm for IVPs

The newly developed fourth-order Runge-Kutta method, which relies on a linear combination of the Arithmetic Mean,
Geometric Mean, And Contra-Harmonic Mean for solving initial value problems is presented here,

𝑦𝑛+1 = 𝑦𝑛 + ℎ
135 [7(𝜅1 +2𝜅2 +2𝜅3 +𝜅4)−(√𝜅1 +𝜅2 +√𝜅2 +𝜅3 +√𝜅3 +𝜅4)+32(𝜅2

1 +𝜅2
2

𝜅1 +𝜅2
+ 𝜅2

2 +𝜅2
3

𝜅2 +𝜅3
+ 𝜅2

3 +𝜅2
4

𝜅3 +𝜅4
)]

Where

𝜅1 = 𝑓(𝑥𝑛,𝑦𝑛)
𝜅2 = 𝑓(𝑥𝑛 +0.5ℎ,𝑦𝑛 +0.5ℎ𝜅1)

𝜅3 = 𝑓(𝑥𝑛 +0.5ℎ,𝑦𝑛 +(0.09028)ℎ𝜅1 +0.4097𝜅2)
𝜅4 = 𝑓(𝑥𝑛 +ℎ,𝑦𝑛 +(0.18055)ℎ𝜅1 −0.48046ℎ𝜅2 +1.2991ℎ𝜅3)

(4.1)

with the grid points 𝑎 = 𝑐0 ≤ 𝑐1 ≤ … ≤ 𝑐𝑁 = 𝑏 and ℎ = (𝑏−𝑎)
𝑁 = 𝑐𝑖+1 −𝑐𝑖

4.3. Procedure for Solving system of FIVPs using RK4AmGmContHm (FRK4AMGMCONTM)

For finding the unique solution of Equation (3.2) and approximate solution of Equation (3.2) by applying the proposed method
(FRK4AMGMCONTM), let us proceed as follows:

𝑞
_
(𝑠𝑛+1;𝛼)−𝑞

_
(𝑠𝑛;𝛼) = ∑4

𝑖=1 𝜇𝑖𝜅
_ 𝑖

(𝑠𝑛, 𝑞(𝑠𝑛;𝛼),ℎ),

𝑞 (𝑠𝑛+1;𝛼)−𝑞 (𝑠𝑛;𝛼) = ∑4
𝑖=1 𝜇𝑖𝜅𝑖(𝑠𝑛, 𝑞(𝑠𝑛;𝛼),ℎ)

(4.2)

where the w𝑖’s are constants and

[𝜅𝑖(𝑠,𝑞(𝑠𝑛;𝛼),ℎ)]𝑟 = [𝜅
_ 𝑖

(𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) ,𝜅𝑖(𝑠,𝑞(𝑠𝑛;𝛼),ℎ)], 𝑖 = 1,2,3,4
𝜅
_ 𝑖

(𝑠𝑛, 𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑓(𝑠𝑛 +𝑐𝑖ℎ,𝑞
_
(𝑠𝑛)+∑𝑖−1

𝑗=1 𝑎𝑖𝑗𝑘
_𝑗

(𝑠𝑛, 𝑞 (𝑠𝑛;𝛼) ,ℎ)),

𝜅𝑖(𝑠𝑛, 𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑓(𝑠𝑛 +𝑐𝑖ℎ,𝑞 (𝑠𝑛)+∑𝑖−1
𝑗=1 𝑎𝑖𝑗𝜅𝑗(𝑠𝑛, 𝑞 (𝑠𝑛;𝛼) ,ℎ)),

(4.3)

𝜅
_ 𝑖𝑗

(𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑖𝑛{𝑓𝑖 (𝑠𝑛,𝑋1,…….,𝑋𝑛) �𝑥𝑗 ∈ [𝑞
_𝑗

(𝑠;𝛼) ,𝑞𝑗 (𝑠;𝛼)]},(1 ≤ 𝑖,𝑗 ≤ 𝑛)

𝜅𝑖𝑗 (𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑎𝑥{𝑓𝑖 (𝑠𝑛,𝑋1,…….,𝑋𝑛) �𝑥𝑗 ∈ [𝑞
_𝑗

(𝑠;𝛼) ,𝑞𝑗 (𝑠;𝛼)]},(1 ≤ 𝑖,𝑗 ≤ 𝑛)

𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑖𝑛{𝑓𝑖 (𝑠+ ℎ
2 ,𝑋1,…….,𝑋𝑛)�𝑥𝑗 ∈ [𝑚

_ 𝑗1
(𝑠;𝛼) ,𝑚𝑗1 (𝑠;𝛼)]},

𝜅𝑖2 (𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑎𝑥{𝑓𝑖 (𝑠+ ℎ
2 ,𝑋1,…….,𝑋𝑛)�𝑥𝑗 ∈ [𝑚

_ 𝑗1
(𝑠;𝛼) ,𝑚𝑗1 (𝑠;𝛼)]},

𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑖𝑛{𝑓𝑖 (𝑠+ ℎ
2 ,𝑋1,…….,𝑋𝑛)�𝑥𝑗 ∈ [𝑚

_ 𝑗2
(𝑠;𝛼) ,𝑚𝑗2 (𝑠;𝛼)]},
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𝜅𝑖3 (𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑎𝑥{𝑓𝑖 (𝑠+ ℎ
2 ,𝑋1,…….,𝑋𝑛)�𝑥𝑗 ∈ [𝑚

_ 𝑗2
(𝑠;𝛼) ,𝑚𝑗2 (𝑠;𝛼)]},

𝜅
_ 𝑖4

(𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑖𝑛{𝑓𝑖 (𝑠+ℎ,𝑋1,…….,𝑋𝑛) �𝑥𝑗 ∈ [𝑚
_ 𝑗3

(𝑠;𝛼) ,𝑚𝑗3 (𝑠;𝛼)]},

𝜅𝑖4 (𝑠,𝑞 (𝑠𝑛;𝛼) ,ℎ) = 𝑚𝑎𝑥{𝑓𝑖 (𝑠+ℎ,𝑋1,…….,𝑋𝑛) �𝑥𝑗 ∈ [𝑚
_ 𝑗3

(𝑠;𝛼) ,𝑚𝑗3 (𝑠;𝛼)]} (4.4)

Such that

𝑚
_ 𝑗1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ) = 𝑞
_𝑗

(𝑠,𝛼)+0.5ℎ𝜅
_𝑗1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)

𝑚𝑗1 (𝑠,𝑞 (𝑠;𝛼) ,ℎ) = 𝑞𝑗 (𝑠,𝛼)+0.5ℎ𝜅𝑗1(𝑠,𝑞 (𝑠;𝛼) ,ℎ)

𝑚
_ 𝑗2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ) = 𝑞
_𝑗

(𝑠,𝛼)+0.09028ℎ𝜅
_𝑗1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+0.4097ℎ𝜅
_𝑗2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)

𝑚𝑗2 (𝑠,𝑞 (𝑠;𝛼) ,ℎ) = 𝑞𝑗 (𝑠,𝛼)+0.09028ℎ𝜅𝑗2(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+0.4097ℎ𝜅𝑗2 (𝑠,𝑞 (𝑠;𝛼) ,ℎ)

𝑚
_ 𝑗3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)

= 𝑞
_𝑗

(𝑠,𝛼)+0.18055ℎ𝜅
_𝑗1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)−48046ℎ𝜅
_𝑗2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+1.29991ℎ𝜅
_𝑗3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)

𝑚𝑗3 (𝑠,𝑞 (𝑠;𝛼) ,ℎ)
= 𝑞𝑗 (𝑠,𝛼)+0.18055ℎ𝜅𝑗3 (𝑠,𝑞 (𝑠;𝛼) ,ℎ)−48046ℎ𝜅𝑗2 (𝑠,𝑞 (𝑠;𝛼) ,ℎ)+1.29991ℎ𝜅𝑗3 (𝑠,𝑞 (𝑠;𝛼) ,ℎ) (4.5)

now consider the following relations

𝐹𝑖 (𝑠,𝑞 (𝑠;𝛼)) = [7((𝜅
_ 𝑖1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+2(𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+2(𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖4

(𝑠,𝑞 (𝑠;𝛼) ,ℎ))−

(√𝜅
_ 𝑖1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+√𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+√𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖4

(𝑠,𝑞 (𝑠;𝛼) ,ℎ))

+ 32(
(𝜅
_

2
𝑖1

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_

2
𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ)
(𝜅
_ 𝑖1

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_ 𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ) +
(𝜅
_

2
𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_

2
𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ)
(𝜅
_ 𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_ 𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ) +
(𝜅
_

2
𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_

2
𝑖4

(𝑠,𝑞(𝑠;𝛼),ℎ)
(𝜅
_ 𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_ 𝑖4

(𝑠,𝑞(𝑠;𝛼),ℎ) )]

𝐺𝑖 (𝑠,𝑞 (𝑠;𝛼)) = [7((𝜅
_ 𝑖1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+2(𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+2(𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖4

(𝑠,𝑞 (𝑠;𝛼) ,ℎ))

−(√𝜅
_ 𝑖1

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+√𝜅
_ 𝑖2

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+√𝜅
_ 𝑖3

(𝑠,𝑞 (𝑠;𝛼) ,ℎ)+(𝜅
_ 𝑖4

(𝑠,𝑞 (𝑠;𝛼) ,ℎ))

+32(
(𝜅
_

2
𝑖1

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_

2
𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ)
(𝜅
_ 𝑖1

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_ 𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ) +
(𝜅
_

2
𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_

2
𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ)
(𝜅
_ 𝑖2

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_ 𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ) +
(𝜅
_

2
𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_

2
𝑖4

(𝑠,𝑞(𝑠;𝛼),ℎ)
(𝜅
_ 𝑖3

(𝑠,𝑞(𝑠;𝛼),ℎ)+(𝜅
_ 𝑖4

(𝑠,𝑞(𝑠;𝛼),ℎ) )]
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5 Numerical Example
Example 5.1

Following is a secondorderFuzzyDifferential Equation
⎧{
⎨{⎩

𝑞″ (𝑠)−4𝑞′ (𝑠)+4𝑞 (𝑠) = 0,(𝑠 ≥ 0)
𝑞 (0) = (2+𝑟,4−𝑟)

𝑞′ (0) = (5+𝑟,7 −𝑟)
𝑤𝑖𝑡ℎ 𝐹𝑢𝑧𝑧𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑉 𝑎𝑙𝑢𝑒

The exact solution to this problem is outlined below
𝑞
_
(𝑠,𝛼) = (2+𝛼)𝑒2𝑠 +(1−𝛼)𝑠𝑒2𝑠

𝑞 (𝑠,𝛼) = (4−𝛼)𝑒2𝑠 +(𝛼−1)𝑠𝑒2𝑠

Figure 1 represents the absolute error of the fourth order Runge-Kutta Method based on the linear combination of RK4AM,
RK4GM, RK4CONTM (FRK4AMGMCONTM), for Example 5.1 with h=0.1,s=0.1.

Fig 1. Comparison between Approximate and Exact Solution of example 5.1

Example 5.2 :

Following is a greater order FIVP

⎧{{
⎨{{⎩

𝑝‴ (𝑠) = 2𝑝″ (𝑠)+3𝑝′ (𝑠) , (0 ≤ 𝑠 ≤ 1)
𝑝(0) = (3+𝑟,5−𝑟)

𝑝′ (𝑠) = (−3+𝑟,−1−𝑟)
𝑝″ (𝑠) = (8+𝑟,10−𝑟)

The analytical solution of this problem is as follows :

𝑝(𝑠,𝛼) = [(−1
3 + 7

4)𝑒3𝑠 +(11
4 +𝛼)𝑒−𝑠,(−1

3 + 7
4)𝑒3𝑠 +(19

4 −𝛼)𝑒−𝑠]

The approximate and exact solution for example 5.2 using FRK4AMGMCONTM with h=0.1,s=0.1 is displayed here.

Table 1.The Approximate and Exact solution for Example 5.2
r S Approximate value Exact value Absolute Error for

Lower Cut of y
Absolute Error
for Upper Cut of
y

0 0.1 2.913520 2.942387 4.7078a37 4.752062 2.886731e-02 4.422495e-02
0.1 0.1 3.003441 3.032871 4.618194 4.661578 2.942950e-02 4.338451e-02
0.2 0.1 3.093305 3.123355 4.528548 4.571095 3.004944e-02 4.254658e-02
0.3 0.1 3.183126 3.213838 4.438899 4.480611 3.071242e-02 4.171146e-02
0.4 0.1 3.272914 3.304322 4.349248 4.390127 3.140836e-02 4.087948e-02
0.5 0.1 3.362676 3.394806 4.259592 4.299643 3.213009e-02 4.005104e-02
0.6 0.1 3.452417 3.485290 4.169933 4.209160 3.287238e-02 3.922660e-02
0.7 0.1 3.542142 3.575773 4.080269 4.118676 3.363134e-02 3.840672e-02
0.8 0.1 3.631853 3.666257 3.990600 4.028192 3.440399e-02 3.759204e-02

Continued on next page
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Table 1 continued
0.9 0.1 3.721553 3.756741 3.900925 3.937708 3.518803e-02 3.678336e-02
1 0.1 3.811243 3.847225 3.811243 3.847225 3.598163e-02 3.598163e-02

6 Comparative Analysis
The problem given in example 5.2 is solved by both the classical Range-Kutta method of order 4 and by the proposed
RK4AMGMCONTM methods. We find that, the newly attained method FRK4AMGMCONTM to solve FIVPs gives nearer
values to the exact value than the classical Range-Kutta method of order 4.Thus, the newly proposedmethod gives the minimal
error value and thus produces good accuracy in the result.

Table 2 represents the comparison between the newly attained FRK4AMGMCONTM method with the existing classical
FRK4 method for example 5.2 with h = 0.1, s = 0.1.

Table 2. Comparative Analysis betweenThe Classical RK4 Method and the Proposed Method for Example 5.2
FRK4AMGMCONTM FRK4

R S Absolute Error for
Lower Cut of y

Absolute Error for
Upper Cut of y

Absolute Error for
Lower Cut of y

Absolute Error for
Upper Cut of y

0 0.1 2.886731e-02 4.422495e-02 1.380767e-01 3.002923e-01
0.1 0.1 2.942950e-02 4.338451e-02 1.475510e-01 2.928623e-01
0.2 0.1 3.004944e-02 4.254658e-02 1.567360e-01 2.853960e-01
0.3 0.1 3.071242e-02 4.171146e-02 1.656807e-01 2.778905e-01
0.4 0.1 3.140836e-02 4.087948e-02 1.744226e-01 2.703426e-01
0.5 0.1 3.213009e-02 4.005104e-02 1.829911e-01 2.627486e-01
0.6 0.1 3.287238e-02 3.922660e-02 1.914097e-01 2.551044e-01
0.7 0.1 3.363134e-02 3.840672e-02 1.996975e-01 2.474053e-01
0.8 0.1 3.440399e-02 3.759204e-02 2.078704e-01 2.396460e-01
0.9 0.1 3.518803e-02 3.678336e-02 2.159414e-01 2.318204e-01
1 0.1 3.598163e-02 3.598163e-02 2.239216e-01 2.239216e-01

7 Conclusion
The attempt of solving FIVPs of order n has been a continuous focus of research, employing wide range of methodologies.
Initially, the FIVPs of order n are transformed into a system of fuzzy equations. Then, these systems of equations are solved by
using Runge-Kutta method of order four which relies on a linear combination of the Arithmetic Mean, Geometric Mean, and
Contra-Harmonic Mean.

By comparing the absolute error values at s=0.1 and s=0.2 from the numerical examples 5.1 and 5.2, and also based on the
data presented in Table 1 and from Figure 1, the efficiency of the discussedmethod is clearly demonstrated.The obtained results
revealed that the proposed method is more efficient than the classical RK method of order four.
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