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Abstract

Objectives: This study presents a resilient deep learning method for vehicle
detection and classification in traffic aerial images. Methods: The Roboflow
dataset used for model training includes 220 aerial images, annotated in
YOLOv8 format in four classes of moving objects. Our suggested YOLO
version eight-based approach uses real-time photos from Aerial cameras for
the training and testing and validation for the classification and detection
of moving objects. Findings: YOLOv8, a state-of-the-art object detection
algorithm, enhances the accuracy and efficiency of traffic monitoring on the
Roboflow dataset. This approach achieves a mean average precision (MAP)
of 0.86, demonstrating the robustness of our model in detecting traffic-
related objects. The precision and recall values of 0.89 and 0.96, respectively,
further affirm the model's effectiveness in accurately identifying and classifying
objects. Novelty: The research introduces a novel application of YOLOV8 for
traffic analysis, demonstrating its advanced object detection and classification
capabilities and achieving an impressive mean average precision of 0.86,
enhancing computer vision for real-time traffic monitoring, which offers high
precision and recall, enabling traffic flow optimization, anomaly detection, and
intelligent transportation systems, paving the way for smart city solutions and
data-driven urban planning.

Keywords: Object Detection; YOLOVS; RealTime Monitoring; Intelligent
Transportation Systems; Aerial Images

1 Introduction

Road traffic management is essential for urban planning and transportation networks,
traffic patterns and congestion management which generally driven by aerial photos
and machine intelligence. Aerial imagery and machine learning algorithms can help city
officials and transportation planners to understand traffic flow, identify issues, and find
solutions to reduce congestion. Advanced technologies can also predict traffic patterns
and optimize traffic signal timing for efliciency. Data privacy problems, algorithm
biases, and the need for specific training make these technologies difficult to use.
Although these challenges remain, aerial pictures and machine learning may improve
road traffic management and justify additional study. Real-time traffic flow insights are
one benefit of aerial pictures and machine learning in road traffic management.
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Transportation officials can immediately spot bottlenecks, accidents, and construction zones by examining high-resolution
aerial photographs. They can target solutions like signal timing or traffic rerouting to reduce congestion and improve traffic
flow. Machine learning systems can also forecast traffic trends and optimize traffic signal timing using past data. Cities may
increase traffic efficiency and plan for long-term infrastructure improvements to handle expanding populations and changing
transportation needs by using this innovative technology.

Intelligent traffic management systems optimize traffic flow in smart cities using modern technologies and data analytics
to reduce congestion, improve transportation efficiency, and improve urban livability by providing commuters with correct
information V). Traffic incidents are detected and addressed by intelligent traffic management systems using sensors, cameras,
and complex algorithms to ensure safety and well-being. They promote sustainable commuting and environmental sustainability
by integrating transport modes. This integrative strategy minimizes congestion and improves urban living?. Fusion-based
intelligent traffic congestion control system employing machine learning to collect and route traffic data. The remote visibility
of traffic flow and vehicle availability reduces congestion and improves traffic flow®. Urban planning and smart cities require
ITS to improve safety, efficiency, and the environment. Scalability, different service needs, and large data creation make them
difficult. Investigates the use of machine learning (ML) in ITS applications including cooperative driving and road hazard
warning and suggests ways to improve ITS using ML®. Fuzzy logic traffic signal system includes two fuzzy controllers for
the main and secondary driveways to adjust to traffic conditions. VISSIM and MATLAB simulations showed this strategy
improves low-volume traffic conditions. ANN and fuzzy controllers are employed in this smart traffic signal system. The
system uses sliding window algorithms to segment, normalize, and convert traffic camera images to grey scale. Segmented
images are transmitted through the ANN and used in a fuzzy controller to set green and red-light timings. System execution
takes 1.5 seconds and averages two errors®). Yolo machine learning algorithm is utilized for various type of object detection
efficiently®”). Deep learning-based fire detection requires more diversified and larger datasets for training and testing due to
low-quality cameras or bad illumination conditions influencing algorithm accuracy. It needs better YOLO algorithms ®)

Recent advances in yolo shows the success in forest fire detection and tracking®, detection of tiny targets and multiple
scales better procedure Remote sensing photos on SIMD dataset use Yolo-SE '), The rise in cars in metropolitan areas leads to
road capacity decline and service issues, with fixed signal timings causing traffic problems. New Intelligent Transport System
technologies are needed to address this issue. Current traffic control techniques include manual control, static timer traffic
lights, and vehicle classification. An innovative solution incorporating advanced sensors and machine learning algorithms is
proposed.

The main contribution of this work is as follows

o Create Al Enable framework that can classify and detect vehicle classes and track vehicle in Aerial Images.
« Propose a method for counting automobiles In Aerial View.

The use of smart grid technology goes beyond simple vehicle categorization to include anomaly and possible danger
identification on the road. The suggested system can quickly intervene and mitigate abnormalities like accidents, stuck cars, or
unpredictable driving behavior by integrating anomaly detection algorithms. This dual purpose helps with road safety, which
is an important aspect of urban planning and administration, in addition to streamlining traffic.

2 Methodology

Smart traffic management system requires a good annotated date set for the training the model. We employed a systematic
approach to implement land vehicle detection using machine learning algorithms on aerial images. The Roboflow dataset
utilized for training and evaluation was carefully curated, consisting of high-resolution aerial imagery captured under diverse
environmental conditions.

2.1 Overview of the proposed system

The suggested system is a smart traffic control system that uses YOLOV8 to recognize traffic for each lane and track and count
the different vehicles. The suggested solution is flexible and dynamic in response to varying incoming traffic. Compared to the
current static system, the suggested one will be able to handle traffic in a more dynamic manner. The goal of the suggested
system is to create a desktop stand- alone program for YOLOV8-based smart traffic control.

The typical YOLO-based object identification approach detects the input image’s car, bus, bike, and truck. YOLO models’
standard object identification technique is shown in Figure 1. The input image is segmented into Sx S grids, with ‘n’ bounding
boxes for item detection. Each grid predicts bounding boxes with confidence scores to indicate object presence. The confidence
score is zero if there are no objects in the grid and close to one if there are. Bounding box coordinates are predicted by the
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confidence score versus the ground truth. As indicated in Eq. (1), the confidence score is the product of object probability and
intersection over union truth prediction.

Bounding Boxex + confidence

Class probability map

Fig 1. Yolo object detection process

CS = P(O) x T (1) P(IOU) (1)

where O object, IOU intersection over union, P probability, TP true prediction, and CS confidence score

Furthermore, each grid provides an estimation of the conditional class probability for every object, in addition to the
confidence score. The conditional class probability in each grid cell is what we refer to as the probability that the detected
object belongs to a particular class, and equation (2) represents it.

CcP = P(C|0) @)

Each grid cell specifies a single set of class probabilities, were CP conditional class probability, C class that is regardless
the quantity of boxes. As stated in Equation (3), the conditional probability is multiplied by the individual box confidence
predictions in order to provide the class-specific confidence ratings for each box.

P(C|0) x P(0) x T (3) P(IOU) = P(C) x TP(IOU) 3)

Not only do these ratings indicate the likelihood of the class being included in the box, but they also indicate the degree to which
the predicted box corresponds to the actual item. After everything is said and done, a bounding box that has a class probability
that is greater than a threshold value is chosen and utilized in order to locate the objects in the image.

Algorithm for car and truck detection and counting is given below, which gives the steps from detection and counting.

For all (I) image do:

divide I into S x S grids

place '’ BB within each grid to objects detection

calculate the confidence score (CS) to represent the objects within each box

calculate the coordinates (w-width, h-height) of the BB with the CS

calculate the conditional class probability (Cp) for each detected object

For all detected object do:

initialize the counter for each object

increment the counter for each detected object, respectively

end

end

Figure 2 depicts the layout of the planned architecture for the detection of automobiles, buses, bicycles, and trucks.
The architecture of the network is achieved by implementing it through a variety of different paths in order to finalise the
configuration with the least amount of error possible. The architecture is comprised of 21 layers. Following the application of
the convolution and pooling layers, the input image, which has a resolution of 416 x 416, is processed in order to get the feature
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maps. To facilitate the generation of bounding boxes through the utilisation of the convolution technique, the image is down-
sampled to a resolution of 208 x 208. For the purpose of more correctly identifying automobiles and trucks that are present in
congested areas, the image is down-sampled by a factor of 32. The performance of the network is gradually improved as a result
of the suggested architecture’s utilisation of a lower number of layers in comparison to the YOLO network. A pass-through
layer is incorporated towards the conclusion of the process. This layer is responsible for binding the 52 x 52 layers into the final
convolution layer, which aids in the detection of smaller objects that are captured by aerial photography.

2.2 Vehicle detection module

YOLOVS is a real-time object recognition method that uses a single convolutional neural network to forecast bounding boxes
and probabilities for each position in an image. This method is well-liked since it operates in real-time and produces excellent
accuracy. Predictions only need to be made once during forward propagation since the approach only makes one pass over the
image. Bounding boxes and identified objects are produced using the procedure after nonmax suppression.

YOLO va

Model Name
Input width
Input height

Mum- classes

Backbone ()

Meck ()
/ Head () \

Uses
/ Uses
Backbone laied _ Headl
List of Layers 5 tLIStt' of IEIF grbs t
. i etection of Objec
Features extraction e trarking

Meck
List of layers
Agaregate Features

Fig 2. Proposed Yolov8 for object detections

The model was trained on a dataset!?) that was produced by manually identifying images from Kaggle using Roboflow
and scraping them. The model was then trained using pertained weights®. The parameters of the video file were adjusted to
comply with the model’s specifications. The number of output neurons in the last layer was changed to match the number of
classes the model was predicted to detect. The quantity of filters was also altered. After the model was trained, the weights were
changed until the loss was significantly reduced. The weights were imported into the code to enable the detection of automobiles
using the OpenCV library. The standard for successful detection was set. . Subsequently, the model generates the results in
video file format, with labels serving as the keys and confidence and coordinates as the values. Using OpenCV, bounding boxes
may be created on the images depending on the given labels and coordinates. provides a visual description of the steps in the
categorization detection process by highlighting the key stages and the information flow in (Figure 3).

The compilation of collected datasets for the purpose of training YOLO model, we have opted to use the Roboflow dataset !!).
This is the dataset that we have taken into consideration. Roboflow is a framework that was developed with the intention of
simplifying the process of managing and preparing datasets for applications that are related to computer vision. Annotation is
a process comprised of: Annotation is comprised of a number of different components, including the identification of objects
in images, the assignment of class labels to those various items, and the providing of bounding box coordinates. The YOLO
architecture makes use of a format of annotation that is one of a kind due to its exceptional characteristics. When it comes to:
There are many distinct class designations that are assigned to various types of vehicles. Some examples of these classifications
include the terms “car;” “truck,” and “bus,” among others. It is imperative that this phase be completed in order for the model
to be able to distinguish between the several types of objects. What are the coordinates of the box that is bounded? at the box
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Fig 3. The functioning of the complete classification detection procedure

that encloses an object, the corners that are determined by the bounding box coordinates are the corners that are located at
the top-left and bottom-right corners of the box. In most instances, these coordinates are scaled to values that fall between 0
and 1, and they are relative to the dimensions of the illustration. In other words, they are scaled to the ideal range. Establishing
subdivisions: The process of image segmentation involves dividing a picture into numerous regions or segments, with each
segment representing a major piece of the overall image. The method of semantic image segmentation, which is particularly
achieved with YOLO, is responsible for doing the assignment of a class name to each pixel that is contained within an image.
Because of this, the image is successfully divided into portions that are more digestible, depending on the semantic content of
the graphic.

2.3 YOLO Algorithm

The core idea behind YOLO is to partition the input image into a grid of cells and, for each cell, estimate the probability of the
presence of an object and the bounding box coordinates of the object. The process of YOLO can be broken down into multiple
parts.

A convolutional neural network (CNN) is used to process the input image in order to extract hierarchical features. This
process is referred to as feature extraction. Because of this, the network is able to effectively capture information at a variety
of different levels of abstraction, ranging from low-level features such as edges to high-level features such as object forms.
Fully Connected Layers: After the features have been retrieved, they are then put through fully connected layers, which are
responsible for providing predictions regarding class probabilities and bounding box coordinates. These fully connected layers
are responsible for making global predictions by utilizing the features that were extracted by the convolutional layers that came
before them. The image is separated into a grid of cells, which is referred to as grid division. Predicting a collection of bounding
boxes and the class probabilities that are connected with them is the responsibility of each individual cell. As a result of the
predictions being localised to particular cells, the network is able to concentrate on various parts of the image. Bounding Box
and Class Prediction: The network makes a prediction about the bounding box coordinates (x, y, width, and height) for each grid
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cell based on the position of the cell. A further prediction is made on the class probabilities of the objects that are contained
within that cell. Each enclosing box is connected to a certain class probability because of its association. The output of the
network is a collection of bounding boxes, each of which has associated probabilities for each object. This type of suppression
is known as non-max suppression. Non-maximum suppression is utilized in order to improve the accuracy of the forecasts. By
taking into consideration the bounding box that has the highest probability for each object, this technique eliminates bounding
boxes that are redundant and have a low level of confidence. By doing so, it helps to ensure that only the predictions that are
the most accurate and relevant are included. Final Output: Following the non-max suppression step, the final output consists
of a collection of predicted bounding boxes together with the class labels that are connected with them. Each bounding box
is connected to a particular class, and the combination of these bounding boxes and classes is what represents the objects that
have been identified in the image.

2.4 Evaluation Metrics

We used many well-known assessment metrics, including recall, precision, accuracy, F1-score, and mean average precision
(mAP), to assess the prediction performance of the algorithms in this work. The most widely used metric for Assessing accuracy
is the ratio of instances that were properly classified to all test photos. This can be demonstrated in Eq (4)

Accuracy:(TP—I—%—FFN—&-FP—%TN)*IOO (4)

Precision, also referred to as a positive predictive value, is defined as the proportion of correctly identified labels in patients
who are truly positive. It is expressed in Eq. (5)

TP

T ) 100 5
TP+FP>* )

Precisions = (

The F1-score, also referred to as the F-measure, is a weighted average that combines precision and recall. The notation for the
F-measure in Eq. (6)

precision * Recall )
F1— =2 6
seore i (Precisions + Recall (©)
Recall or sensitivity are used to calculate the percentage of correctly classified objects. And it is shown in Eq (7)
Recall = | =———== | *100 7
ccall = (75 )+ )

3 Results and Discussion

3.1 Evaluation of Vehicle Detection Module

Good precision rate was attained when testing the vehicle detection module with multiple photos that had varying numbers
of vehicles the proposed model shows detection of real word traffic objects with average efficiency of 0.577 and the previous
model reported in®and 1?) are fail to detect the real time traffic or rode objects like car and bus. Real-world video from traffic
cameras may be utilized to train the model and increase the accuracy and precision of the system.

3.2 Performance of Object Detection

Accuracy and Precision of the Yolov8 Model: Robust performance was shown by the YOLOv8 model in precisely identifying
items in the smart grid environment. The model’s performance in recognizing and categorizing things connected to traffic,
such cars, bike, truck and bus is demonstrated by the Precision and recall metrics shown in (Figure 4 ) provides a graphical
representation of the model’s performance across different confidence thresholds.

Figure 5 presents the Confusion Matrix, a visual representation that elucidates the model’s classification performance in
granular detail. This matrix encapsulates the true positive (TP), false positive (FP), true negative (TN), and false negative (FN)
predictions for each class, offering a comprehensive snapshot of the models ability to distinguish between different categories.
Each cell in the matrix provides insights into the model’s accuracy, highlighting areas of strength and potential improvement.
The Confusion Matrix serves as a crucial diagnostic tool, guiding further optimization strategies and refining the model’s
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Fig 5. Confusion Matrix for all four classes (bike, Bus, Car and truck) and background for the fine tune model for test dataset

classification capabilities. Effect on the Effectiveness of Traffic Management The smart grid’s ability to accurately detect objects
improves traffic control effectiveness. Prompt decision-making and response to traffic accidents are made possible by real-time
monitoring and analysis, which enhances grid resilience overall.

Figure 6 encapsulates the Predicted Results, offering a visual representation of the model’s output in terms of bounding
box predictions and class labels. Each bounding box signifies a detected object, with accompanying class labels and confidence
scores providing valuable insights into the model’s decision-making process.

This visual representation enables a qualitative assessment of the model’s performance, allowing for an examination of
correct and erroneous predictions. By juxtaposing the predicted results against ground truth annotations, this figure aids in
identifying areas of success and potential improvement in the model’s object detection capabilities. The visualization of predicted
results serves as an intuitive means to assess the model’s ability to accurately localize and classify objects in the given dataset,
contributing to a holistic understanding of its performance.

The proposed method is summarized in Table 1 which provides a comprehensive overview of the performance of our object
detection model across different classes. The evaluation metrics include precision, recall, mean. Average Precision at IoU 0.5
(mAP50), and mean Average Precision across all IoU thresholds from 0.5 to 0.95 (mAP50-95#). These metrics offer insights
into the model’s ability to accurately detect and classify objects in the given dataset. The model demonstrates a reasonable
performance across all classes, with an overall precision of 0.624 and recall of 0.601. The mean Average Precision at IoU 0.5
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T

Fig 6. Predicted Results for all four classes (bike, Bus, Car and truck) and background for the fine tune model for test dataset

(mAP50) is 0.577, indicating that the model performs well in terms of both precision and recall at a relatively relaxed intersection
over union threshold.

3.3 Class-Specific Analysis

1. Proposed method shows the good results for the selected four classes of objects
« Bike

The class "Bike’ exhibits a precision of 0.491 and a relatively high recall of 0.729, resulting in a mAP50 of 0.659. Despite a lower
precision, the model excels in capturing a significant portion of instances for this class.

« Bus

For the ’Bus’ class, the model achieves an impressive precision of 0.895 but at the cost of lower recall (0.364). The trade-off
between precision and recall is evident, reflected in the mAP50 of 0.434 and mAP50-95# of 0.366.

e Car

The ’Car’ class showcases balanced performance, with a precision of 0.751, recall 0of 0.819, and high mAP50 (0.817) and mAP50-
95# (0.47) scores. This indicates the model’s proficiency in accurately identifying and localizing cars in the dataset.

e Truck

Performance for the *Truck’ class is comparatively lower, with a precision of 0.358 and recall of 0.495. The model struggles to
achieve a satisfactory balance between precision and recall for this class, resulting in lower mAP50 (0.397) and mAP50-95#
(0.22) scores.

Table 1. Model Performance for All classes

Class Images Instances Precisions Recall mAP50° mAP50-95%
All 199 3981 0.624 0.601 0.577 0.332

Bike 199 2369 0.491 0.729 0.659 0.27

Bus 199 22 0.895 0.364 0.434 0.366

Car 199 1491 0.751 0.819 0.817 0.47

Truck 199 99 0.358 0.495 0.397 0.22

* Mean Average precisions at confidence 50% # Mean Average precisions at confidence 50-95%

4 Conclusion

The class-specific analysis sheds light on the strengths and weaknesses of the model across different object categories. These
findings can guide further improvements in the model architecture, dataset augmentation strategies, and training procedures
for specific classes with suboptimal performance.
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In conclusion, while our model demonstrates competitive object detection capabilities, ongoing efforts are required to

enhance its performance across all classes. This study contributes valuable insights for refining the model’s robustness and
generalizability in real-world scenarios, fostering advancements in object detection research.
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