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Abstract
Objectives: The research aims to develop a comprehensive classification sys-
tem for metaheuristics, categorize metaphor metaheuristics, and present the
development trend and percentage representation of metaphor metaheuris-
tics within each metaphor group. Method: A descriptive-based systematic
reviewwas conducted to collect data on studies concerning the classification of
metaheuristics and the proposal of newmetaheuristics. Datawas sourced from
Google Scholar, Science Direct, Springer, ResearchGate, and IEEE Xplore. For
the first research objective, 148 studies were screened, resulting in the selec-
tion of six studies. The second and third research objectives involved screen-
ing 1145 studies, of which 654 were ultimately selected. This review considers
studies published up to August 2023. The extracted data includes the charac-
teristics of each classification and the name, abbreviation, author, year, and
metaphor group for each metaheuristic reviewed. Findings: The results reveal
that existing classifications do not cover the full range of metaheuristic char-
acteristics. The data indicates a rising trend in the introduction of new meta-
heuristics over the years, with the peak occurring in 2020, boasting 68 new
approaches, closely followed by 2022 with 57 introductions. However, between
1965 and 1992, progress was limited to only one or two new approaches annu-
ally, signifying periods of stagnation in the field. The majority of metaheuris-
tics proposed are in the physics-chemistry metaphor group (20%), followed
closely by human metaheuristics (18%). Novelty: The novelty of this study lies
in its exhaustive classification ofmetaheuristics developed from1965 to August
2023 based on the metaphor criterion, along with the development progres-
sion and percentage-wise representation of various metaphor groups using
up-to-date data.
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1 Introduction
Optimization is vital in modern decision-making across diverse fields, enhancing efficiency and performance amidst the
upsurge of optimization problems.While exact algorithms are accurate in finding the optimal solution, they tend to be inefficient
and time-consuming for complex optimization problems, as their computational time grows exponentially with the problem’s
dimension. To overcome the limitations of exact methods and address the demand for accuracy and efficiency in finding
appropriate solutions, many challenges are solved by trial and error using various optimization techniques. Thus, approximate
algorithms, are employed. These algorithms, classified as heuristics and metaheuristics, aim to offer near-optimal solutions
swiftly for complex problems.

A heuristic algorithm is used to generate satisfactory solutions for optimization problems by a trial-and-error method.
Heuristics are highly dependent on the specific situation they are applied to andmay not be effective for solving other problems.
In contrast, metaheuristics go beyond the ordinary trial-and-error techniques (1), and so is a more generic improvement over
heuristics.

Intensification and diversification, integral to metaheuristics, collaborate to find near-optimal solutions. Intensification
involves exploiting local search to focus on a specific area and efficiently find near-optimal solutions in that region. On the
other hand, diversification explores the search space globally to discover new solutions and prevent the algorithm from getting
stuck in a local optimum (2). Despite their success in many cases, metaheuristics have limitations and cannot universally solve
all optimization problems. Additionally, the No Free Lunch (NFL) theorem suggests that all metaheuristics have the same
average performance across all optimization problems (3,4). The NFL theorem, along with other driving factors, has spurred the
emergence of a multitude of metaheuristic algorithms, in particular, metaphor metaheuristics, that are specifically designed to
adapt to various types of optimization problems, including continuous, discrete, constrained, unconstrained, multi-objective,
single objective and so on.

The proliferation of new metaheuristics in recent years has prompted the necessity for their classification. While various
classification schemes have been proposed, existing reviews have limitations. For instance, Rajwar et al. (5) focus primarily on
parameter settings, whereas Ma et al. (6) concentrate on population and single-solution metaheuristics. Stegherr (7) overlooks
metaphorical criteria. On the other hand, Pazhaniraja et al. (8) incorporate factors for classifying optimization problems in
general rather thanmetaheuristics. AlthoughAkyol andAlatas (9) present amultilevel scheme, they omit consideration of critical
factors such as parameterized criteria. Similarly, Anantharaj et al. (10) focus exclusively on nature-inspired criteria.

The proposed classification in this study is a comprehensive scheme that incorporates all the critical factors. With
eleven levels, including three levels under the metaphor group. This scheme provides a structured approach for organizing
and communicating ideas in the field. Further, this review distinguishes itself by providing an exhaustive list of existing
metaheuristics proposed from 1965 to August 2023, totalling 654, each classified under a distinct metaphor group. The
categorization of the numerous existing metaheuristics would aid researchers in identifying areas for improvement and
selecting the most effective ones for specific optimization problems. Additionally, this study presents the development trends
and percentage-wise distribution of these classified metaheuristics. This work is poised to facilitate the development and
improvement of new algorithms, offering invaluable insights for researchers (7).

1.1 Statement of the Problem
Despite their value, a comprehensive and up-to-date classification system for metaheuristic algorithms is lacking in the
literature, especially one that captures all the diverse landscapes. Furthermore, the absence of a current and thorough
categorization hinders researchers’ ability to track the development trends and understand the percentage representation of
existing metaheuristics within different metaphor groups.

1.2 Objectives
1. To create a comprehensive classification system for metaheuristics.
2. To categorize metaphor metaheuristics.
3. To present the development trend and percentage representation of the metaphor metaheuristics within each metaphor

group.

2 Methodology
The systematic literature review undertaken is descriptive. Descriptive reviews analyse the current state of the literature
concerning a particular research objective, question, topic, or concept.
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2.1 Search Strategy

Two distinct searches were performed to achieve the research objectives. For each, we used all possible combinations of terms
from each set. To achieve the first research objective, the combination of keywords used is provided in Figure 1. Set A1 merged
with Sets A2, through A5. To accomplish the second and third objectives, the combinations of keywords used for the search
are provided in Figure 1. Set B1 was combined with Sets B2, B3 and B4. The keywords used were derived from the research
objectives. The concepts in the search statement were taken and extended by synonyms and related terms. For instance, in the
first search, Set A1 terms like “Multilevel” or “Comprehensive” or “Extensive” or “Detail” or “Exhaustive” were combined with
Set A2 terms such as “Classification” or “Categorization” or “Framework” or “Taxonomy,” along with Set A3 terms including
“Metaheuristic” or “Nature-inspired” or “Bio-inspired” or “Trial and error” or “Global” or “Local” or “Swarm” or “Higher-level,”
and Set A4 terms such as “Optimization” or “Optimizer” or “Search” or “Heuristic,” and finally, Set A5 terms like “Algorithm”
or “Technique” or “Method” or “Approach”. Likewise, in the second search, Set B1 terms like “Novel” or “New” were combined
with Set B2 terms such as “Metaheuristic” or “Nature-inspired” or “Bio-inspired” or “Trial and error” or “Global” or “Local” or
“Swarm” or “Higher-level,” along with Set B3 terms including “Optimization” or “Optimizer” or “Search” or “Heuristic,” and Set
B4 terms such as “Algorithm” or “Technique” or “Method” or “Approach”.

2.2 Exclusion keywords

The keywords excluded include hybrid, enhance, improve, advance, adaptive, chaotic, variant, augmented lagrangian, fuzzy
logic, binary encoding, and quantization.

Fig 1. Search keywords combinations

2.3 Research Resources

The systematic literature search drew frommultiple databases.The following digital libraries were used to search for the needed
research studies since no database includes the complete set of published materials: Google Scholar, Science Direct, Springer,
ResearchGate, and IEEE Xplore. Forward search was conducted to identify relevant work cited by the articles and backward
searches were conducted to find all articles that have since cited the articles reviewed. Figure 2 and Figure 3 provide the number
of documents reviewed per database for each search.
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Fig 2. Number of documents reviewed per database for first search

Fig 3. Number of documents reviewed per database for the second search

2.4 Inclusion criteria screening
Regarding the first research objective, 148 research materials were obtained from the mentioned resources using the search
keywords while the second search had 1145 results regarding the second and third objectives. Further, filtration was done by
the authors to ensure only the valid and relevant materials were included as shown in Figure 4. The filtration included:

1. Publication must be in English language.
2. The year limit should be up to August 2023.
3. Read the title and select studies that relate to the research.
4. Read the abstract and conclusion of each paper and remove the irrelevant and duplicate.
5. Read the full research paper and choose the ones relevant to the topic.

2.5 Data Extraction Strategy
For research objective 1, the data extracted were the descriptive characteristics of eachmetaheuristic classification. For research
objectives 2 and 3, the data extracted include the name, abbreviation, author, year and metaphor group.
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Fig 4. Filtration criteria

3 Results and Discussion

3.1 Research objective 1: Classification of metaheuristics

Rajwar et al. (5) emphasize the significance of parameter settings in metaheuristics, highlighting that the performance of
these algorithms heavily relies on the chosen parameter values. They discuss the intricate nature of parameter tuning
and propose a classification framework based on the number of primary control parameters employed in the algorithms:
Free-parameter-based algorithms (FPAs) for 0 parameters, Mono-parameter-based algorithms (MPAs) for 1 parameter, Bi-
parameter-based algorithms (BPAs) for 2 parameters, Tri-parameter-based algorithms (TrPAs) for 3 parameters, Tetra-
parameter-based algorithms (TePAs) for 4 parameters, and Penta-parameter-based algorithms (PPAs) for 5 parameters. A
miscellaneous category is designated for algorithms with more than five parameters.Their classification is limited to parameter
settings.

Ma et al. (6) provide a tabulation of over 500metaheuristics, conduct a comparative analysis of 11 newly proposed algorithms
and 4 state-of-the-art algorithms on benchmark problems, statistically examine their performance, investigate search bias,
and identify efficient and robust algorithms. Before these, the authors present a rough classification of metaheuristics into
population-based optimization algorithms (POAs) and single-solution-based optimization algorithms (SOAs) with POAs
further categorized as evolutionary algorithms (EAs), swarm intelligence algorithms (SIAs), and physics or chemistry-
based algorithms (P/CBAs). The number of solutions for each algorithm iteration is the primary factor used. The 500-plus
metaheuristics listed were not categorized.The suggested classification system does not take into account the following criteria:
hybrid and non-hybrid, parameterized and non-parameterized, deterministic and stochastic, one-neighbourhood and multi-
neighbourhood, local and global search, memory and memoryless, and single and multi-objective function.

Stegherr et al. (7) propose a classification system for metaheuristics. The system consists of seven levels: structure, behaviour,
search, algorithm, specific features, evaluation, and metaheuristic, each with specific criteria commonly used in previous
classification schemes.The paper illustrates the application of the proposed system by classifying only three basicmetaheuristics
(genetic algorithm, evolution strategy, and tabu search) based on the criteria from the structure, behaviour, search, and
algorithm levels. The authors could not classify the selected three based on the criteria of specific features, evaluation, and
metaheuristic levels. The proposed classification does not consider the metaphor and non-metaphor, and hybrid and non-
hybrid criteria.

Abdel-Basset et al. (11) provide a categorization of metaphor-based metaheuristics into various groups: biology, chemistry,
music, math, physics, and social and sports. The authors compile a list of metaphor-based and non-metaphor-based
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metaheuristics while providing examples of each category. However, given the evolving nature of the field since the paper’s
publication in 2018, there may have been significant breakthroughs and advancements leading to the development of new
metaphor-based metaheuristics not included in their list. Therefore, updating the paper’s inventory of metaphor-based
metaheuristics to reflect recent advancements could be imperative. Further, the classification system does not consider static
objective function and dynamic objective function, local search and global search, hybrid and non-hybrid, and parameterized
and non-parameterized criteria.

The factors delineated by Pazhaniraja et al. (8) encompass various elements crucial for optimization problem analysis,
including constraint presence, the problem’s physical structure (optimal control, non-optimal control, etc.), equation
type (linear, quadratic, polynomial, nonlinear), decision variable value domain (integer or real-valued), variable nature
(deterministic or stochastic), function separability, and the number of objective functions. Factors are generally for classifying
optimization problems and not metaheuristics.

Akyol and Alatas (9) developed a multi-level classification scheme for metaheuristics. The first level includes physics, social,
music, chemistry, biology, sports, math and hybrid-based methods, while the second level involves single and multi-point
methods.The third level has a fixed objective function and a variable objective function.The single neighbourhood and variable
neighbourhood structures are at the fourth level while the fifth level has memory and memoryless methods. The classification
scheme does not account for parameterized and non-parameterized, nature-inspired and non-nature-inspired, local and global
search, and greedy and iterative criteria.

Anantharaj et al. (10) categorize nature-inspired algorithms into four groups: evolutionary, physical, swarm intelligence, and
bio-inspired, with an extra category for others. The study is limited to nature-inspired criteria.

Birattari et al. (12) proposed a classification scheme to categorizemetaheuristics.The factors considered include trajectory and
discontinuous, population-based and single-point search, memory usage and memoryless, one and various neighbourhood
structures, dynamic and static objective function, and nature-inspired and non-nature-inspired criteria. The classification
system does not consider hybrid and non-hybrid, parameterized and non-parameterized, greedy and iterative, local and global
search, and metaphor and non-metaphor criteria.

Table 1. Review of metaheuristic classification
Citation Characteristics Limitation
(5) Number of control parameters -Limited to parameter settings
(6) Population (evolutionary, swarm intelligence, and

physics/chemistry-based) and single solution optimiza-
tion

-The list was not categorized -Does not consider
hybrid and non-hybrid, parameterized and non-
parameterized, deterministic and stochastic, one-
neighbourhood and multi-neighbourhood, local
and global search, memory and memoryless, and
single and multi-objective function criteria

(7) Structure, behaviour, search, algorithm, specific features,
evaluation and metaheuristic

-Does not consider metaphor and non-metaphor,
and hybrid and non-hybrid criteria.

(11) Metaphor and non-metaphor-based, nature-inspired and
non-nature inspired, trajectory and population-based, deter-
ministic and stochastic, one andmulti-neighbourhood struc-
ture, iterative and greedy, and memory usage and memory-
less criteria.

-List must be updated -Does not consider static
objective function and dynamic objective function,
local search and global search, hybrid and non-
hybrid, and parameterized and non-parameterized
criteria.

(8) Physical structure, equation type, decision variable value
domain, variable nature, function separability, and the
number of objective functions

-Generally, for classifying optimization problems
but not metaheuristics

(9) Biology, physics, social, music, chemical, sports, mathe-
matics, swarm, hybrid, single-point and multi-point, fixed
and variable objective function, single neighbourhood struc-
tured, variable neighbourhood structured, and memory and
memoryless

-Does not consider parameterized and non-
parameterized, nature-inspired and non-nature-
inspired local and global search and greedy and
iterative criteria

(10) Nature-inspired: Evolutionary, physical, swarm intelligence,
and bio-inspired, others

-Limited to nature-inspired criterion.

Continued on next page
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Table 1 continued
(12) Trajectory and discontinuous, population-based and single-

point search, memory and memoryless, one neighbourhood
and multi-neighbourhood structures, dynamic and static
objective functions, and nature-inspired and non-nature-
inspired

-Does not consider hybrid and non-hybrid, param-
eterized and non-parameterized, greedy and iter-
ative, local and global search, and metaphor and
non-metaphor criteria.

3.2 Proposed classification of metaheuristics

Metaheuristic algorithms are best classified based on how they operate within the search space and the metaphor of the search
procedures. Figure 5 depicts the classification of metaheuristics.

The classes of metaheuristics are:

• Metaphor vs. non-metaphor

Non-metaphor and metaphor metaheuristics are the two classifications of metaphor-based metaheuristics. Metaphor
metaheuristics mimic natural mechanisms, and human behaviour in real life, mathematics, etc. Non-metaphor metaheuristics
do not employ the simulation of natural mechanisms for defining the search strategy (11). The metaphor metaheuristics are
human, sports, music, physics-chemistry, maths, and bio metaheuristics. Refer to Table 2 for the groupings of all six hundred
and fifty-four (654) metaheuristics that fall under these metaphor classes.

• Human Metaheuristics

These metaheuristic algorithms mimic human behaviour, opinions, activities, and social interactions using mathematical
simulations of these phenomena (13). Researchers design the algorithms by evaluating the activities of human beings bearing in
mind that every human has his way of doing things which might affect his or her performance. Well-known algorithms in this
category are the election-based optimization algorithm (14), and the Great Wall Construction algorithm (15).

• Sports Metaheuristics

Sports metaheuristics is a strong tool for solving optimization in sports or games (16). Optimization is relevant in every area
of sports such as optimal line-ups, team selection, object detection, scheduling and ranking, data mining for predictions
in sports, player recovery mechanisms, performance analysis, and manufacturing of sports outfits and types of equipment.
Sports metaheuristics are also referred to as gamemetaheuristics. Some proposed metaheuristics include the quad tournament
optimizer (17) and squid game optimizer (18).

• Music Metaheuristics

Rules, concepts, processes and activities in music have inspired some metaheuristic algorithms. Harmony search (19) is the first
music-based metaheuristic algorithm founded on the processes to enrich the harmonies of music. It is an algorithm created to
improve the processes of musicians. Melody search algorithm (20) was established to enhance the effectiveness of the harmony
search algorithm.

• Physics-chemistry Metaheuristics

The concepts of physics and chemistry also inspired scientists to create the physics-chemistry group. Algorithms that deal
with the movement of water, gravitation forces, electromagnetism and electric charges form the physics aspect of this group.
Algorithms that are known for the fact that they replicate chemical phenomena such as the movement of particles of gases and
chemical reactions form the chemistry aspect of this group.

• Maths Metaheuristics

This group of metaheuristics is inspired by the concepts and rules in mathematics. Examples include the subtraction-average-
based optimizer (SABO) (21), exponential distribution optimizer (EDO) (22), and tangent search algorithm (TSA) (23).

• Bio Metaheuristics
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Bio metaheuristics are founded on the principles of biological evolution and are classified as plant, swarm intelligence, and
evolutionary algorithms. Plant algorithms are introduced into the search field by the metaheuristics of plants. The agents in
this category do not communicate among themselves as happens in other categories such as the swarm intelligence-based
subgroup. A typical example is the plum tree algorithm (PTA) (21) which takes its inspiration from the biology of the plum trees.
The name makes evolutionary algorithms comprehensible. This category takes its inspiration from natural evolution. To start
their process, a random populace of solutions is initially generated.The optimum solutions are combined to form new solutions
by applying mutation and crossover. The Algorithms of this category have several individuals that can breed and produce new
descendants. The breeding nature of the algorithms within this category makes it distinctive. The famous algorithm belonging
to the evolutionary subgroup is the genetic algorithm (22) which was inspired by Darwin’s theory of evolution and proposed
initially by John Holland in the 70s. Algorithms based on the reproduction of several biological organisms such as weeds and
queen bees are also in this group.

Swarm intelligence (SI) is an established concept in research and was first proposed by Gerardo Beni and Jing Wang in
1989. SI is the group behaviour of self-organized and decentralized systems living in natural or artificial environments. The
concept was initially presented in robotics settings but has been used generally for some time now to signify the development
of a group of intelligence from a collection of simple agents ruled by simple rules of behaviour. The bioinspired aspect of SI
has stimulated the creation of many SI metaheuristics. SI-based algorithms are first categorized by the kind of animal and
foraging andmovement patterns inspiring eachmetaheuristic.Thus, the subcategories of SI algorithms are the aquatic animals,
flying animals, microorganisms, and terrestrial animals’ metaheuristics. The aquatic animals’ metaheuristics are inspired by
how aquatic animals like fish schools move and forage. The movement of flying animals like birds is the stimulus for flying
animals’ metaheuristics. The metaheuristics of microorganisms are derived from those of algae, viruses, bacteria and related
species. The metaheuristic of terrestrial animals is motivated by how land animals forage and hunt. The various subgroups
under SI algorithms are discussed:

• Aquatic Animals Metaheuristics

This subgroup of metaheuristics is inspired by the aquatic ecosystem of animals like krill herds, dolphins and so on. Some
typical algorithms of this group include leopard seal optimization (23) and walrus optimization algorithm (24)

• Flying Animals Metaheuristics

This group ofmetaheuristic algorithms is inspired by themovements of birds, bats and other insects that fly. Some of the popular
algorithms in this sub-group are the mantis search algorithm (25) and the nutcracker optimization algorithm (26)

• Microorganisms Metaheuristics

Themetaheuristic algorithms based onmicroorganisms are connected to howbacteriamove to find food.As soon as the bacteria
find and eat food, they split apart to look for more in their surroundings. Another group are connected to the virus, like the
coronavirus metamorphosis optimization (27).

• Terrestrial Animals Metaheuristics

This subgroup of metaheuristics takes its inspiration from the movements or foraging of terrestrial animals. A typical example
is the ant colony optimization metaheuristic algorithm which imitates how ants locate sources of food and inform other ants
in the colony about the existence of the food sources. Other algorithms included in this subcategory are the coati optimization
algorithm (13) which replicates the natural behaviours of coatis and the dung beetle optimizer (28) which is motivated by the
ball-rolling, dancing, foraging, stealing, and reproduction behaviours of dung beetles.

• Nature-inspired methods vs. non-nature-inspired methods

The algorithms that imitate processes inspired by nature are known as nature-inspired algorithms. Methods such as ant colony
optimization, lion optimization, and whale optimization are inspired by the natural world. The algorithms that do not imitate
processes of nature are classified as non-nature-inspired such as the tabu search (29)

• Single vs. population metaheuristics
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The number of solutions involved at a time would determine whether the metaheuristic is single-based or population-based.
Single metaheuristics algorithms start with a single candidate solution and are enhanced in iterations. The single methods
are also referred to as the trajectory methods. Simulated Annealing (30) is one of the first wave metaheuristic algorithms that
involves steps motivated by annealing; a thermal process that reaches low free energy states in a solid through repeated
heating and slow cooling phases. Another well-known example is the greedy randomized adaptive search procedure (31). The
population metaheuristic algorithms perform optimization using a set of solutions or populations. In population methods, the
search processes are done as an evolution of a group of points like evolutionary computation (32) or evolution of a probability
distribution over the search space like ant colony optimization (33).

• Deterministic vs. stochastic

Here we distinguish between two decision-making rules based on randomization namely, deterministic and stochastic
(combinatorial).Most of the optimizationmethods used in practice are stochastic. A typical example of a deterministic approach
is a basic local search in which an algorithm substitutes a starting solution with a better one. Stochastic problems have uncertain
or dynamic information included in their parameters.Theobjective function value and violation of constraints are some random
variables. Assessment of an objective function value of a solution is done either exactly or approximately or based on Monte
Carlo simulation. An example of a stochastic algorithm is simulated annealing [30] in which the solution election is induced
probabilistically depending on the values associated with the objective functions.

• One vs. various neighbourhood structures

Mostmetaheuristic algorithms employ solutionswhose neighbourhood structure is single.The topology of the search landscape
does not vary as the algorithm is executed. Some metaheuristics such as variable neighbourhood search (34) use several
neighbourhood structures that allow alternating among various search landscapes.

• Local vs. global search

Metaheuristics can be classified based on the search procedures namely local or global search metaheuristics. Local search
metaheuristics are created based on the structure of a distinct single neighbourhood. This describes the nature of permitted
movements, generally starting with a neighbourhood till a local optimum is identified and a strategy is employed to direct the
search to another point in the search space. Some hybridmethods, however, associate local search techniques with global search
or population metaheuristics. Local methods are mostly exploitative whereas global search methods are explorative.

• Greedy vs. iterative

Another vital group of metaheuristic algorithms is iterative algorithms. These algorithms work in the solutions space of the
problem and are put into two groups; single-based algorithms and population-based algorithms based on the number of
alternative solutions generated and estimated. Greedy algorithms generally construct a solution piece by piece, by choosing
the best local optimal solution in the hope that it generates the best global optimal solution. Such algorithms do not produce
optimal solutions always. A typical example of a greedy algorithm is a greedy search genetic algorithm (35). A metaheuristic
algorithm can incorporate iterative and greedy factors, such as in (36).

• Memory vs. memoryless

A key criterion for classifying metaheuristics is the use of search history. Methods that use the completed portion of the search
are methods with memory. On the other hand, memory-less methods depend on the current solution to determine where to
search in subsequent iterations. Even memory-based algorithms are classified as short-term or long-term memory algorithms.
A few iterated solutions are kept in short-term memory instead of long-term memory algorithms which keep lots of data
on iterated solutions. Currently, memory has become an important aspect of designing an effective metaheuristic. Typical
examples of memory metaheuristics include memory-based hybrid CSA with particle swarm optimization algorithm (37) and
dual memory simulated annealing algorithm (38).

• Static vs. dynamic objective function

Metaheuristics are categorised as dynamic or static based on how their objective function is applied. An algorithm that does
not vary its’ objective function when executed is static whereas one that varies its objective function is dynamic. The goal is to
have the chance to search a new region in the search space when local optima are identified. An example of a problem solved
using a dynamic objective function is described in (39).
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• Non-hybrid vs. hybrid

Hybrid metaheuristics have proved to be effective at solving hard problems. Combining two or more metaheuristics through
hybridization has yielded higher performance than a singular method. The number of algorithms to hybridize, the type of
algorithms to hybridize, the order of execution and the level of hybridization are the four important factors that must be
considered in designing a new hybrid metaheuristic algorithm (40). Typical examples of hybrid metaheuristics include hybrid
cat and particle swarm optimization (CPSO) (41) and beam-ACO (42).

• Non-parameterized vs. parameterized metaheuristics

Parameter settings impact the value of metaheuristics.The population size and iteration count impact nearly all metaheuristics,
but they have no direct effect on the algorithm’s internal workings. Metaheuristics are classed as parameterized or non-
parameterized based on their internal operations. Non-parameterized metaheuristics, adaptable and straightforward in
design, efficiently tackle diverse optimization challenges. Vortex search optimization (VS), black hole algorithms (BH), and
symbiotic organism search (SOS) are a few examples of non-parameter metaheuristics. On the other hand, parameterized
metaheuristics are designed to balance exploration and exploitation during different stages of algorithm execution.Themajority
of metaheuristics fall into the parameterized category. Typical examples include the spring search algorithm (SSA) (43), and the
flower pollination algorithm (FPA) (5).

Fig 5. Classification of metaheuristics
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3.3 Research objective 2: 654 metaheuristics dating back from 1965 to August 2023 are
classified in the various metaphor groups

Table 2. Classification of metaheuristics based on metaphor
No Metaphor metaheuristic Year

Human metaheuristics
1 Anti-Coronavirus Optimization Algorithm (ACVO) 2022
2 Adaptive Social Behaviour Optimization (ASBO) 2013
3 Adolescent Identity Search Algorithm (AISA) 2020
4 Algorithm of the Innovative Gunner (AIG) 2019
5 Ali baba and the Forty Thieves Optimization (AFT) 2022
6 All Members-Based Optimizer (AMBO) 2021
7 Anarchic Society Optimization (ASO) 2012
8 Artificial Showering Algorithm (ASA) 2015
9 Artificial Tribe Algorithm (ATA) 2010
10 Baby Search Algorithm (BSA) 2021
11 Brain Storm Optimization (BSO) 2011
12 Bus Transportation Algorithm (BTA) 2019
13 Buyer Inspired Meta-Heuristic Optimization Algorithm (BIMA) 2020
14 Chef-Based Optimization Algorithm (CBOA) 2022
15 City Council Evolution (CCE) 2022
16 Clan-based Cultural Algorithm (CCA) 2019
17 Cognitive Behaviour Optimization Algorithm (COA) 2016
18 Cohort Intelligence Algorithm (CI) 2017
19 Collective Decision Optimization Algorithm (CDOA) 2017
20 Community of Scientist Optimization (CoSO) 2012
21 Competitive Optimization Algorithm (COOA) 2016
22 Consultant-Guided Search (CGS) 2010
23 Cooperation Search Algorithm (CSA) 2021
24 Coronavirus Mask Protection Algorithm (CMPA) 2023
25 Creativity-Oriented Optimization Model (COOM) 2015
26 Cultural Algorithm (CA) 2011
27 Dark Forest Algorithm (DFA) 2023
28 Deep Sleep Optimiser (DSO) 2023
29 Doctor and Patient Optimization (DPO) 2020
30 Drawer Algorithm (DA) 2023
31 Driving Training-Based Optimization (DTBO 2022
32 Duelist Optimization Algorithm (DOA) 2016
33 Dynastic Optimization Algorithm (DOA) 2020
34 Election Algorithm (EA) 2015
35 Election Based Optimization Algorithm (EBOA) 2022
36 Election Campaign Algorithm (ECA) 2010
37 Election Survey Algorithm (ESA) 2010
38 Exchange Market Algorithm (EMA) 2014
39 Find-Fix-Finish-Exploit-Analyze Metaheuristic (F3EA) 2017
40 Fireworks Optimization Algorithm (FAO) 2010
41 Following Optimization Algorithm (FOA) 2020
42 Forensic-Based Investigation (FBI) 2020
43 Future Search Algorithm (FSA) 2019
44 Gaining Sharing Knowledge-based algorithm (GSK) 2020
45 Giza Pyramids Construction (GPC) 2021
46 Global-Best Brain Storm Optimization Algorithm (GBSO) 2017
47 Grammatical Evolution Algorithm (GEVA) 1997
48 Great Wall Construction Algorithm (GWCA) 2023
49 Greedy Politics Optimization Algorithm (GPO) 2014
50 Group Counseling Optimization (GCO) 2014
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Table 2 continued
51 Group Leaders Optimization Algorithm (GLOA) 2011
52 Group Learning Algorithm (GLA) 2023
53 Group Optimization (GO) 2020
54 Group Teaching Optimization Algorithm (GTOA) 2020
55 Growth Optimizer (GO) 2023
56 Heap-based Optimizer (HBO) 2020
57 Human Behavior-based Optimization (HBBO) 2017
58 Human Behaviour-Based Optimization (HBOA) 2021
59 Human Evolutionary Model (HEM) 2007
60 Human Group Formation Algorithm 2010
61 Human Learning Optimization (HLO) 2015
62 Human Mental Search (HMS) 2017
63 Human Urbanization Algorithm (HUA) 2020
64 Human-Inspired Algorithm (HIA) 2009
65 Ideology Algorithm (IA) 2017
66 Imperialist Competitive Algorithm (ICA) 2007
67 Intelligent Ice Fishing Algorithm (IIFA) 2021
68 Interactive Autodidactic School (IAS) 2020
69 Interior Search Algorithm (ISA) 2014
70 Jaya Algorithm (JA) 2016
71 Kidney-inspired Algorithm (KA) 2017
72 Leader-Advocate-Believer Based Optimization (LAB) 2022
73 Leaders and Followers Algorithm (LFA) 2015
74 Life Choice-Based Optimizer (LCBO) 2020
75 Migration Algorithm (MA) 2023
76 Mother Optimization Algorithm (MOA) 2023
77 Mountaineering Team-Based Optimization (MTBO) 2023
78 Nomadic People Optimizer (NPO) 2020
79 Old Bachelor Acceptance (OBA) 1995
80 Open Source Development Model Algorithm (ODMA) 2016
81 Parliamentary Optimization Algorithm (POA) 2008
82 Pastoralist Optimization Algorithm (POA) 2021
83 Political Optimizer (PO) 2020
84 Poor and Rich Optimization (PRO) 2019
85 Queuing Search Algorithm (QS) 2018
86 Real Estate Market-Based Optimization Algorithm (REMARK) 2022
87 Reincarnation Algorithm (RA) 2010
88 Running City Game Optimizer (RCGO) 2023
89 School-Based Optimization (SBO) 2018
90 Search and Rescue Optimization (SAR) 2020
91 Search In Forest Optimization (SIFO) 2022
92 Seeker Optimization Algorithm (SOA) 2007
93 Selfish Herd Optimizer (SHO) 2020
94 Sewing Training-Based Optimization (STBO) 2022
95 Shuffled Shepherd Optimization (SSO) 2020
96 Simple Human Learning Optimization Algorithm (SHLO) 2014
97 Skill Optimization Algorithm (SOA) 2023
98 Social Behavior Optimization Algorithm (SBO) 2003
99 Social Cognitive Optimization Algorithm (SCOA) 2010
100 Social Emotional Optimization Algorithm (SEA) 2010
101 Social Engineering Optimization (SEO) 2017
102 Social Group Optimization (SGO) 2016
103 Social Network Search (SNS) 2021
104 Society and Civilization (SC) 2003
105 Socio Evolution and Learning Optimization Algorithm (SELO) 2018
106 Sperm Motility Algorithm (SMA) 2017
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Table 2 continued
107 Stochastic Focusing Search (SFS) 2008
108 Success History Intelligent Optimizer (SHIO) 2022
109 Supply-Demand-Based Optimization (SDO) 2019
110 Teaching-Learning Based Optimization Algorithm (TLBO) 2011
111 Team Effectiveness Based Optimization (TEBO) 2017
112 Teamwork Optimization Algorithm (TOA) 2021
113 Thieves And Police Algorithm (TPA) 2021
114 Unconscious Search (US) 2012
115 War Strategy Optimization Algorithm (WSO) 2022
116 Weighted-Leader Search (WLS) 2023
117 Wisdom of Artificial Crowds (WoAC) 2011
118 Zombie Survival Optimization (ZSO) 2012

Sports metaheuristics
119 Athletic Run Based Optimization (ARBO) 2021
120 Battle Royale Optimization (BRO) 2021
121 Billards-Inspired Optimization Algorithm (BIOA) 2020
122 Boxing Match Algorithm (BMA) 2022
123 Chaos Game Optimization (CGO) 2021
124 Darts Game Optimizer (DGO) 2020
125 Dice Game Optimizer (DGO) 2019
126 Football Game Algorithm (FGA) 2016
127 Football Optimization Algorithm (FOA) 2012
128 Golden Ball Algorithm (GBA) 2014
129 Golf Optimization Algorithm (GOA) 2023
130 Hide Objects Game Optimization (HOGO) 2020
131 Jigsaw Puzzle Algorithm (JPA) 2013
132 Kho-Kho Optimization (KKO) 2020
133 League Championship Algorithm (LCA) 2014
134 Ludo Game-based Swarm Intelligence (LGSI) 2019
135 Most Valuable Player Algorithm (MVPA) 2020
136 Oriented Search Algorithm (OSA) 2019
137 Puzzle Optimization Algorithm (POA) 2022
138 Quad Tournament Optimizer (QTO) 2023
139 Ring Toss Game-Based Optimization (RTGBO) 2021
140 Shell Game Optimization (SGO) 2020
141 Soccer Game Optimization (SGO) 2017
142 Soccer League Competition Algorithm (SLC) 2014
143 Squid Game Optimizer (SGO) 2023
144 Team Game Algorithm (TGA) 2018
145 Tiki-Taka Algorithm (TTA) 2021
146 Tug of War Optimization (TWO) 2016
147 Volleyball Premier League Algorithm (VPL) 2018
148 Wingsuit Flying Search (WFS) 2020
149 World Cup Optimization (WCO) 2016

Maths metaheuristics
150 Arithmetic Optimization Algorithm (AOA) 2021
151 Base Optimization Algorithm (BOA) 2012
152 Deterministic Oscillatory Search (DOS) 2017
153 Exponential Distribution Optimizer (EDO) 2023
154 Fractal-based Algorithm (FBA) 1996
155 Generalized Normal Distribution Optimization (GNDO) 2020
156 Geometric Octal Zones Distance Estimation (GOZDE) 2022
157 Golden Sine Algorithm (Gold-SA) 2017
158 Gradient-based Optimizer (GBO) 2020
159 K-means Optimizer (KO) 2022
160 Matheuristics 2009
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Table 2 continued
161 RUNge kutta algorithm(RUN) 2021
162 Simulated Kalman Filter Algorithm (SKF) 2016
163 Sine Cosine Algorithm (SCA) 2016
164 Spiral Dynamics Inspired Optimization (SDIO) 2011
165 Stochastic Fractal Search (SFS) 2015
166 Subtraction-Average-Based Optimizer (SABO) 2023
167 Tangent Search Algorithm (TSA) 2022
168 Weighted Vertices Optimizer (WVO) 2018

Physics-Chemistry metaheuristics
169 Al-Biruni Earth Radius (BER) 2023
170 Archimedes Optimization Algorithm (AOA) 2021
171 Artificial Atom Algorithm (AAA) 2017
172 Artificial Chemical Process (ACP) 2005
173 Artificial Chemical Reaction Optimization Algorithm (ACROA) 2011
174 Artificial Ecosystem-Based Optimization (AEO) 2020
175 Artificial Electric Field Algorithm(AEFA) 2019
176 Artificial Physics Optimization (AEFA) 2009
177 Artificial Raindrop Algorithm (ARD) 2015
178 Artificial Reaction Algorithm (ARA) 2011
179 Atmosphere Clouds Model Optimization (ACMO) 2012
180 Atom Search Optimization (ASO) 2019
181 Atom Stabilization Algorithm (ASA) 2016
182 Atomic Orbital Search (AOS) 2021
183 Balancing Composite Motion Optimization (BCMO) 2020
184 Big Bang-Big Crunch (BB-BC) 2012
185 Black Hole (BH) 2013
186 Black Hole Mechanics Optimization (BHMO) 2020
187 Car Tracking Optimization (CTO) 2018
188 Central Force Optimization (CFO) 2007
189 Charged System Search (CSS) 2010
190 Chemical Reaction Algorithm (CRA) 2013
191 Chemical Reaction Optimization (CRO) 2010
192 Chemotherapy Science Algorithm (CSA) 2017
193 Cloud Particles Differential Evolution Algorithm (CPDE) 2015
194 Colliding Bodies Optimization (CBO) 2014
195 Crystal Energy Optimization Algorithm (CEO) 2016
196 Crystal Structure Algorithm (CryStAI) 2021
197 Curved Space Optimization (CSO) 2012
198 Dark-Matter Search Optimizer (DSO) 2023
199 Drone Squadron Optimization (DSO) 2018
200 Droplet Optimization Algorithm (DOA) 2018
201 Drops Contact Optimization (DCO) 2016
202 Drops on Surface Optimization (DSO) 2022
203 Electrical Search Algorithm (ESA) 2022
204 Electromagnetic Field Optimization (EFO) 2016
205 Electro-Magnetism Optimization (EMO) 2012
206 Electromagnetism-Like Mechanism Optimization (EMO) 2003
207 Electron Radar Search (ERSA) 2020
208 Equilibrium Optimizer (EO) 2020
209 Extremal Optimization (EO) 1999
210 Fick’s Law Optimization (FLA) 2023
211 Flow Direction Algorithm (FDA) 2021
212 Flow Regime Algorithm (FRA) 2019
213 Galactic Swarm Optimization (GSO) 2016
214 Galaxy-Based Search Algorithm (GBSA) 2011
215 Gas Molecules Dispersion (GMD) 2023
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Table 2 continued
216 Gases Brownian Motion Optimization (GBMO) 2013
217 General Relativity Search Algorithm (GRSA) 2015
218 Gravitation Field Algorithm (GFA) 2010
219 Gravitational Clustering Algorithm (GCA) 1999
220 Gravitational Emulation Local Search (GELS) 2009
221 Gravitational Interactions Optimization (GIO) 2011
222 Gravitational Search Algorithm (GSA) 2009
223 Grenade Explosion Algorithm (GEA) 2010
224 Heat Transfer Search (HTS) 2015
225 Henry Gas Solubility Optimization (HGSO) 2019
226 Hurricane Based Optimization Algorithm (HO) 2014
227 Hydrological Cycle Algorithm (HCA) 2017
228 Hysteretic Optimization (HO) 2001
229 Integrated Radiation Optimization (IRO) 2007
230 Intelligent Water Drops (IWD) 2007
231 Ions Motion Optimization (IMO) 2015
232 Kepler optimization algorithm (KOA) 2023
233 Kinetic Gas Molecules Optimization (KGMO) 2014
234 Lens Law Optimization (LLO) 2023
235 Lichtenberg Algorithm (LA) 2021
236 Light Ray Optimization Algorithm (LRO) 2009
237 Lightning Attachment Procedure Optimization (LAPO) 2017
238 Lightning Search Algorithm (LSA) 2015
239 Limited Memory Q-BFGS algorithm (LMQA) 2021
240 Magnetic Optimization Algorithm (MOA) 2008
241 Material Generation Algorithm (MGA) 2021
242 Mine Blast Algorithm (MBA) 2012
243 Momentum Search Algorithm (MSA) 2020
244 Multi-verse Optimizer (MVO) 2016
245 Newton Metaheuristic Algorithm (NMA) 2020
246 Nuclear Reaction Optimization (NRO) 2019
247 Optics Inspired Optimization (OIO) 2015
248 Particle Collision Algorithm (PCA) 2005
249 Passing Vehicle Search (PVS) 2016
250 Photon Search Algorithm (PSA) 2020
251 Photosynthetic Learning Algorithm (PLA) 1998
252 Plasma Generation Optimization (PGO) 2020
253 PopMusic Algorithm (PopMusic) 2019
254 Projectiles Optimization (PRO) 2020
255 Quantum Superposition Algorithm (QSA) 2015
256 Quantum-inspired Gravitational Search Algorithm (QIGSA) 2014
257 Radial Movement Optimization (RMO) 2014
258 Rain Optimization Algorithm (ROA) 2020
259 Rain Water Algorithm (RWA) 2017
260 Raindrop Algorithm (RDA) 2013
261 Rainfall Optimization (RO) 2017
262 Ray Optimization (RO) 2012
263 Rime Optimization Algorithm (RIME) 2023
264 River Formation Dynamics (RFD) 2007
265 SaMW 2021
266 Self-Driven Particles (SPP) 1995
267 Self-Propelled Particles (SPP) 2017
268 Simulated Annealing (SA) 1983
269 Simulated Raindrop (SRD) 2014
270 Small World Optimization Algorithm (SWOA) 2006
271 Snow Ablation Optimizer (SAO) 2023
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Table 2 continued
272 Solar System Algorithm (SSA) 2020
273 Sonar Inspired Optimization (SIO) 2017
274 Space Gravitational Algorithm (SGA) 2005
275 Special Relativity Search (SRS) 2022
276 Spring Search Algorithm (SSA) 2017
277 States Matter Search (SMS) 2014
278 Stochastic Diffusion Search (SDS) 1999
279 StringTheory Algorithm (STA) 2022
280 Supernova Optimizer (SO) 2018
281 Synergistic Fibroblast Optimization (SFO) 2017
282 Thermal Exchange Optimization (TEO) 2017
283 Transient Search Optimization Algorithm (TSO) 2020
284 Turbulent Flow of Water-based Optimization (TFWO) 2020
285 Vapor-Liquid Equilibrium (VLE) 2020
286 Vibrating Particles System (VPS) 2017
287 Volcano Eruption Algorithm (VEA) 2021
288 Vortex Search (VS) 2015
289 Water Cycle Algorithm (WCA) 2012
290 Water Evaporation Optimization (WEO) 2016
291 Water Flow Algorithm 2011
292 Water Flow Optimizer (WFO) 2022
293 Water Flow-Like Algorithm (WFA) 2007
294 Water Optimization Algorithm (WOA) 2022
295 Water Wave Optimization (WWO) 2015
296 WeIghted meaN oF vectOrs (INFO) 2022
297 Weighted Superposition Attraction (WSA) 2017
298 Wind Driven Optimization (WDO) 2010
299 Yin-Yang-pair Optimization (YYO) 2016
300 Young’s Double-Slit Experiment (YDSE) 2023

Evolution metaheuristics
301 Artificial Immune System (AIS) 1995
302 Artificial Infectious Disease Optimization (AIDO) 2016
303 Asexual Reproduction Optimization (ARO) 2010
304 Backtracking Search Optimization (BSA) 2013
305 Bacterial Evolutionary Algorithm (BEA) 1996
306 Bean Optimization Algorithm (BOA) 2010
307 Bio-breeding Intelligent Swarm (BIS) 2020
308 Biogeography Based Optimization (BBO) 2008
309 Bird Mating Optimization (BMO) 2014
310 Bull Optimization Algorithm (BOA) 2015
311 Clonal Selection Algorithm (CSA) 2000
312 Coevolutionary Algorithm (CA) 1995
313 Coral Reefs Optimization (CRO) 2014
314 Covariance Matrix Adaptation–Evolution Strategy (CMA-ES) 2003
315 Dendritic Cells Algorithm (DCA) 2005
316 Differential Evolution (DE) 2009
317 Differential Search Algorithm (DSA) 2012
318 Earthworm Optimization Algorithm (EOA) 2018
319 Ecogeography-Based Optimization (EBO) 2014
320 Eco-Inspired Evolutionary Algorithm (EEA) 2011
321 Evolution Strategies (ES) 1973
322 Evolutionary Programming (EP) 1965
323 Gene Expression (GE) 2002
324 Gene Expression Programming (GEP) 2001
325 Genetic Algorithms (GA) 1973
326 Genetic Programming (GP) 1994
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Table 2 continued
327 Germinal Center Artificial Immune System (GCAIS) 2022
328 Gradient Evolution Algorithm (GEA) 2015
329 Grey Prediction Evolution Algorithm (GPEA)
330 Hyper-Spherical Search (HSS) 2014
331 Immune-Inspired Computational Intelligence (ICI) 2008
332 Kaizen Programming (KP) 2014
333 Linear Prediction Evolution Algorithm (LPE) 2021
334 Marriage In Honey Bees Optimization (MHBO) 2007
335 Memetic Algorithms (MA) 1989
336 Multivariable Grey Prediction Evolution Algorithm (MGPEA) 2020
337 Queen-Bee Evolution (QBE) 2003
338 Self-Organizing Migrating Algorithm (SOMA) 2016
339 Sheep Flock Heredity Model (SFHM) 1999
340 Shuffled Complex Evolution (SCE) 1993
341 Stem Cells Algorithm (SCA) 2012
342 SuperBug Algorithm (SuA) 2012
343 Swine Influenza Models-Based Optimization (SIMBO) 2013
344 Variable Mesh Optimization (VMO) 2012
345 Virulence Optimization Algorithm (VOA) 2016

Flying swarmmetaheuristics
346 Andean Condor Algorithm (ACA) 2019
347 Aquila Optimizer (AO) 2021
348 Artificial Bee Colony (ABC) 2007
349 Artificial Beehive Algorithm (ABHA) 2009
350 Artificial Butterfly Optimization (ABO) 2017
351 Artificial Feeding Birds (AFB) 2018
352 Artificial Hummingbird Algorithm (AHA) 2022
353 Artificial Transgender Longicorn Algorithm (ATLA) 2020
354 Bald Eagle Search (BES) 2020
355 Bat Inspired Algorithm (BIA) 2010
356 Bat Intelligence (BI) 2012
357 Bee Colony Optimization (BCO) 1988
358 Bee Colony-Inspired Algorithm (BCIA) 2009
359 Bee Swarm Optimization (BSO) 2010
360 Bee System (BS) 1998
361 BeeHive Algorithm (BHA) 2004
362 Bees Algorithm (BA) 2006
363 Bees Life Algorithm (BLA) 2012
364 Bees Swarm Optimization Algorithm (BSOA) 2010
365 Beetle Swarm Antennae Search (BSAS) 2018
366 Beetle Swarm Optimization Algorithm (BSOA) 2020
367 Bioluminescent Swarm Optimization (BSO) 2011
368 Bird Swarm Algorithm (BSA) 2016
369 Bumble Bees Mating Optimization (BBMO) 2009
370 Butterfly Optimizer (BO) 2015
371 Buzzard Optimization Algorithm (BOA) 2019
372 Chaotic Dragonfly Algorithm (CDA) 2019
373 Co-Operation Of Biology Related Algorithm (COBRA) 2013
374 Crow Search Algorithm (CSA) 2016
375 Cuckoo Search (CS) 2010
376 Cyclical Parthenogenesis (CP) 2017
377 Dragonfly Algorithm (DA) 2016
378 Dynamic Virtual Bats Algorithm (DVBA) 2016
379 Eagle Strategy (ES) 2010
380 Egyptian Vulture Optimization Algorithm (EV) 2013
381 Falcon Optimization Algorithm (FOA) 2019
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Table 2 continued
382 Fire Hawk Optimizer (FHO) 2022
383 Firefly Algorithm (FA) 2009
384 Fitness Dependent Optimizer (FDO) 2019
385 Flock by Leader (FL) 2012
386 Flocking Base Algorithms (FBA) 2006
387 Fly Optimization Algorithm (FOA) 2010
388 Flying Squirrel Optimizer (FSO) 2019
389 Fruit Fly Optimization Algorithm (FOA) 2012
390 Glowworm Swarm Optimization (GSO) 2009
391 Golden Eagle Optimizer (GEO) 2021
392 Goose Team Optimization (GTO) 2008
393 Harris Hawks Optimization Algorithm (HHO) 2019
394 Hitchcock Bird-Inspired Algorithm (HBIA 2018
395 Honeybee Social Foraging (HSF) 2007
396 Honey-Bees Mating Optimization (HBMO) 2006
397 Hoopoe Heuristic Optimization (HHO) 1989
398 Jackson’s Widowbird Mating Optimization (JWMO) 2020
399 Mantis Search Algorithm (MSA) 2023
400 Mayfly Optimization Algorithm (MOA) 2020
401 Migrating Birds Optimization (MBF) 2012
402 Modified Cuckoo Search (MCS) 2011
403 Monarch Butterfly Optimization (MBO) 2016
404 Mosquito Flying Algorithm (MFO) 2016
405 Moth Flame Optimization Algorithm (MFO) 2015
406 Moth Swarm Algorithm (MSA) 2017
407 Mox Optimization Algorithm (MOX) 2011
408 Murmuration-flight-based Dispersive Optimization (MDO) 2023
409 New Caledonian Crow Learning Algorithm (NCCLA) 2020
410 Northern Goshawk Optimization (NGO) 2021
411 Nutcracker Optimization Algorithm (NOA) 2023
412 OptBees (OB) 2013
413 Particle Swarm Optimization (PSO) 1995
414 Pigeon Inspired Optimization (PIO) 2014
415 Quantum-based Avian Navigation Optimizer (QANA) 2021
416 Raven Roosting Algorithm (RRO) 2019
417 Regular Butterfly Optimization Algorithm (RBOA) 2019
418 Sandpiper Optimization Algorithm (SOA) 2020
419 Satin Bowerbird Optimizer (SBO) 2017
420 Seagull Optimization Algorithm (SOA) 2019
421 See-See Partridge Chicks Optimization (SSPCO) 2016
422 Seven-Spot Ladybird Optimization (LBO) 2013
423 Shuffled Multi-SwarmMicro-Migrating Birds Optimization (SM2-MBO) 2016
424 Simulated Bee Colony (SBC) 2009
425 Snap-Drift Cuckoo Search (SDCS) 2017
426 Sooty Tern Optimization Algorithm (STOA) 2019
427 Sparrow Search Algorithm (SSA) 2020
428 Spider Wasp Optimization (SWO) 2023
429 Starling Murmuration Optimizer (SMO) 2022
430 Swallow Swarm Optimization (SSO) 2013
431 Swarm Inspired Projection (SIP) 2009
432 Virtual Ants Algorithm (VAA) 2006
433 Virtual Bees Algorithm (VBA) 2005
434 Wasp Swarm Optimization (WSA) 2005
435 Woodpecker Mating Algorithm (WMA) 2020

Aquatic swarmmetaheuristics
436 Archerfish Hunting Optimizer (AHO) 2022
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Table 2 continued
437 Artificial Fish Swarm Algorithm (AFSA) 2002
438 Artificial Jellyfish Search (JS) 2021
439 Barnacles Mating Optimizer (BMO) 2018
440 Beluga Whale Optimization (BWO) 2022
441 Catfish Optimization Algorithm (CAO) 2008
442 Circular Structures of Puffer Fish Algorithm (CSOPF) 2018
443 Coot Optimization Algorithm (COT) 2021
444 Cuttlefish Algorithm (CFA) 2013
445 Dolphin Echolocation (DE) 2013
446 Dolphin Partner Optimization (DPO) 2009
447 Electric Fish Optimization (EFO) 2020
448 Emperor Penguins Colony (EPC) 2019
449 Fish School Search (FSS) 2008
450 Fish Swarm Algorithm (FSA) 2002
451 Giant Trevally Optimizer (GTO) 2022
452 Group Escape Behavior (GEB) 2011
453 Hammerhead Shark Optimization (HSO) 2019
454 Hermit Crab Shell Exchange Algorithm (HCSE) 2022
455 Keshtel Algorithm (KA) 2019
456 Killer Whale Algorithm (KWA) 2017
457 Krill Herd (KH) 2012
458 Leopard Seal Optimization (LSO) 2023
459 Locust Swarms Optimization (LSO) 2009
460 Manta Ray Foraging (MRFO) 2020
461 Marine Predators Algorithm (MOA) 2020
462 Mouth Brooding Fish Algorithm (MBF) 2018
463 Mussels Wandering Optimization (MWO) 2013
464 Orca Optimization Algorithm (OOA) 2020
465 Orca Predation Algorithm (OPA) 2022
466 Pelican Optimization Algorithm (POA) 2022
467 Penguins Search Optimization Algorithm (PeSOA) 2013
468 Pufferfish Optimization Algorithm (PFOA) 2022
469 Remora Optimization Algorithm (ROA) 2021
470 Reptile Search Algorithm (RSA) 2022
471 Ring Seal Search (RSS) 2016
472 Sailfish Optimizer (SFO) 2019
473 Salp Swarm algorithm (SSA) 2017
474 Sea Lion Optimization (SLnO) 2019
475 Sea-Horse Optimizer (SHO) 2022
476 Shark Search Algorithm (SA) 1998
477 Shark Smell Optimization (SSO 2016
478 Skip Salp Swarm Algorithm (SSSA) 2022
479 SpermWhale Algorithm (SWA) 2016
480 The Great Salmon Run Algorithm (TGSR) 2012
481 Tuna Swarm Optimization (TSO) 2021
482 Tunicate Swarm Algorithm (TSA) 2020
483 Victoria Amazonica Plant (VAP) 2023
484 Walrus Optimization Algorithm (WaOA) 2023
485 Water Strider Algorithm (WSA) 2020
486 Whale Optimization Algorithm (WOA) 2016
487 White Shark Optimizer (WSO) 2022
488 Yellow Saddle Goatfish Algorithm (YSGA) 2018

Micro swarmmetaheuristics
489 Artificial Algae Algorithm (AAA) 2015
490 Bacteria for Distributed Optimization (BDO) 2002
491 Bacterial Chemotaxis Optimization (BCO) 2002
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Table 2 continued
492 Bacterial Colony Optimization (BCO) 2012
493 Bacterial Foraging Optimization (BFOA) 2009
494 Bacterial Swarming Algorithm (BSA) 2007
495 Bacterial-GA Foraging (BGAF) 2007
496 Biomimicry of Social Foraging (BSF) 2002
497 Coronavirus Herd Immunity (CHIO) 2021
498 Coronavirus Metamorphosis Optimization Algorithm (CMOA) 2023
499 Coronavirus Optimization Algorithm (CvOA) 2020
500 COVID-19 Optimizer Algorithm (CVA) 2020
501 Ebola Optimization Search Algorithm (EOSA) 2022
502 Fast Bacterial Swarming Algorithm (FBSA) 2008
503 Invasive Tumor Growth Optimization (ITGO) 2015
504 Liver Cancer Algorithm (LCA) 2023
505 Magnetotactic Bacteria Optimization (MBO) 2013
506 Physarum Optimization (PO) 2015
507 Slime Mould Algorithm (SMA) 2020
508 Sperm Swarm Optimization Algorithm (SSOP) 2018
509 Viral Systems Optimization (VSO) 2008
510 Virus Colony Search (VCS) 2016
511 Virus Optimization Algorithm (VOA) 2009
512 Wasp Colonies Algorithm (WCA) 2005
513 Worm Optimization (WO) 2014

Plants metaheuristics
514 Artificial Flora Optimization Algorithm (AF) 2018
515 Artificial Photosynthesis and Phototropism Mechanism (APPM) 2012
516 Artificial Plants Optimization Algorithm (APO) 2011
517 Brunsvigia Optimization Algorithm (BVOA) 2018
518 Dandelion Optimizer (DO) 2022
519 Farmland Fertility (FF) 2018
520 Flower Pollination Algorithm (FPA) 2012
521 Forest Optimization Algorithm (FOA) 2014
522 Grass Fibrous Root Algorithm (GRA) 2017
523 Hazelnut Tree Search (HST) 2021
524 Invasive Weed Optimization (IWO) 2006
525 Lotus Effect Algorithm (LEA) 2023
526 Mushroom Reproduction Optimization (MRO) 2018
527 Natural Forest Regeneration Algorithm (NFR) 2016
528 Orchard Algorithm (OA) 2023
529 Paddy Field Algorithm (PFA) 2009
530 Plant Growth Optimization (PGO) 2017
531 Plant Propagation Algorithm (PPA) 2014
532 Plum Tree Algorithm (PTA) 2023
533 Poplar Optimization Algorithm (POA 2022
534 Root Growth Optimizer (RGO) 2015
535 Root Tree Algorithm (RTO) 2016
536 Runner Root Algorithm (RRA) 2015
537 Saplings Growing Up Algorithm (SGA) 2006
538 Seasons Optimization (SO) 2022
539 Self-Defense Mechanism of the Plants Algorithm (SDMA) 2018
540 Smart Flower Optimization Algorithm (SFOA) 2021
541 Strawberry Algorithm (SA) 2014
542 Sun Flower Optimization Algorithm (SFOA) 2019
543 Tree Growth Algorithm (TGA) 2018
544 Tree Optimization Algorithm (TOA) 2022
545 Tree Physiology Optimization (TPO) 2013
546 Tree Seed Algorithm (TSA) 2022
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Table 2 continued
547 Trees Social Relations Algorithm (TSR) 2022
548 Victoria Amazonica Optimization (VAO) 2023
549 Waterwheel Plant technique Algorithm (WWPA) 2023
550 Weed Colonization Optimization (WCO) 2006

Terrestrial swarmmetaheuristics
551 Prairie Dog Optimization (PDO) 2023
552 African Buffalo Optimization (ABO) 2016
553 African Vultures Optimization Algorithm (AVOA) 2021
554 African Wild Dog Algorithm (AWDA) 2015
555 American Zebra Optimization Algorithm (AZOA) 2023
556 Ant Colony Optimization (ACO) 1996
557 Ant Path Integration (API) 2023
558 Aphid Optimization Algorithm (AOA) 2022
559 Artificial Gorilla Troops (AGT) 2021
560 Artificial Lizard Search Optimization (ALSO) 2021
561 Artificial Rabbits Optimizer (ARO) 2022
562 Bear Smell Search Algorithm (BSSA) 2020
563 Bison Behavior Algorithm (BBA) 2019
564 Bison Colony Algorithm (BBA) 2019
565 Black Widow Optimization Algorithm (BWO) 2020
566 Blind, Naked Mole-Rats Algorithms (BNMR) 2012
567 Blue Monkey Algorithm (BMA) 2019
568 Bonobo Optimizer (BO) 2019
569 Border Collie Optimization (BCO) 2020
570 Camel Algorithm (CA) 2016
571 Camel Herds Algorithm (CHA) 2017
572 Cat Hunting Optimization Algorithm (CHO) 2023
573 Cat Swarm Optimization (CSO) 2006
574 Chameleon Swarm Algorithm (CSA) 2021
575 Cheetah Based Algorithms (CBA) 2018
576 Cheetah Chase Algorithm (CCA) 2018
577 Cheetah Optimizer (CO) 2022
578 Chicken Swarm Optimization (CSO) 2014
579 Chimp Optimization Algorithm (ChOA) 2020
580 Coati Optimization Algorithm (COA) 2023
581 Cockroach Swarm Optimization (CSO) 2014
582 Coyote Optimization Algorithm (COA) 2018
583 Cricket Behavior-Based Algorithm (CBBE) 2016
584 Cricket Chirping Algorithm (CCA 2018
585 Cultural Coyote Optimization Algorithm (CCOA) 2019
586 Deer Hunting Optimization Algorithm (DHOA) 2019
587 Dingo Optimizer (DOX) 2021
588 DonkeyTheorem Optimization (DTO 2019
589 Dung Beetle Optimizer (DBO) 2023
590 Dwarf Mongoose Optimization (DMO) 2022
591 Elephant Clan Optimization (ECO) 2021
592 Elephant Herding Optimization (EHO) 2016
593 Elephant Search Algorithm (ESA) 2015
594 Fast Jaguar Algorithm (FJA) 2021
595 Frog Call Inspired Algorithm (FCA) 2004
596 FrogSim 2014
597 Gazelle Optimization Algorithm (GOA) 2022
598 Grasshopper Optimization Algorithm (GOA) 2017
599 Green Anaconda Optimization (GAO) 2023
600 Grey Wolf Optimizer (GWO) 2014
601 Honey Badger Algorithm (HBA) 2022

Continued on next page
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Table 2 continued
602 Horse Herd Optimization Algorithm (HOA) 2021
603 Hunter-prey Optimization (HPO) 2022
604 Hunting Search Algorithm (HuS) 2014
605 Jaguar Algorithm (JA) 2016
606 Japanese Tree Frogs Calling Algorithm (JTFC) 2012
607 Komodo Mlipir Algorithm (KMA) 2022
608 Laying Chicken Algorithm (LCA) 2017
609 Lemur Optimizer (LO) 2022
610 Lion Algorithm (LA) 2012
611 Lion Optimization Algorithm (LOA) 2016
612 Lion Pride Optimization Algorithm (LPOA) 2018
613 Lion Pride Optimizer (LPO) 2012
614 Meerkats Inspired Algorithm (MIA) 2018
615 Mobility Aware-Termite (MA-Termite) 2013
616 Monkey King Evolutionary (MKE) 2016
617 Monkey Search (MS) 2007
618 Moth Search Algorithm (MSA) 2018
619 Naked Mole-Rat (NMR) 2019
620 Pity Beetle Algorithm (PBA) 2018
621 Polar Bear Optimization (PBO) 2017
622 Porcellio Scaber Algorithm (PSA) 2017
623 Predator-Prey Optimization (PPO) 2022
624 Prey-Predator Algorithm(PPA) 2015
625 Raccoon Optimization Algorithm (ROA) 2018
626 Red Colobuses Monkey (RCM) 2021
627 Red Deer Algorithm (RDA) 2016
628 Red Fox Optimization (RFO) 2021
629 Red Panda Optimization (RPO) 2023
630 Rhino Herd Behavior (RBH) 2018
631 Rhinoceros Search Algorithm (RSA) 2017
632 Roach Infestation Problem (RIO) 2008
633 Sand Cat Swarm Optimization (SCSO) 2023
634 Shuffled Frog-Leaping algorithm (SFLA) 2006
635 Snake Optimizer (SO) 2022
636 Social Spider Algorithm (SSO) 2015
637 Spider Monkey Optimization (SMO) 2014
638 Spotted Hyena Optimizer (SHO) 2017
639 Squirrel Search Algorithm (SSA) 2019
640 Termite Colony Optimization (TCO) 2010
641 Termite Hill algorithm (TA) 2012
642 Termite Life Cycle Optimizer (TLCO) 2023
643 Termite Life Cycle Optimizer (TLO) 2023
644 Tyrannosaurus (T-Rex) Optimization Algorithm (TROA) 2023
645 Wild Horse Optimizer (WHO) 2022
646 Wild Mice Colony Algorithm (WMC) 2019
647 Wolf Colony Algorithm (WCA) 2011
648 Wolf Pack Search (WPS) 2007
649 Wolf Search Algorithm (WSA) 2012
650 Xerus Optimization Algorithm (XOA) 2019

Music metaheuristics
651 Harmony Elements Algorithm (HEA) 2008
652 Harmony Search (HS) 2001
653 Melody Search (MS) 2011
654 Method of Musical Composition (MMC) 2014
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3.4 Research objective 3: Development trend and percentage representation of metaheuristics

Over the expansive timeline from1965 toAugust 2023, theworld ofmetaheuristics has undergone a remarkable transformation,
introducing 654 distinct metaheuristics. These innovative approaches take inspiration from various classes of metaphorical
behaviours in the field.Figure 6 illustrates how these metaheuristics have evolved.

Fig 6. Metaphor metaheuristics development trend

The trend keeps inclining over the years. The peak year for such introductions was 2020, with a remarkable 68 new
metaheuristics released. This was followed closely by 2022, in which 57 new metaheuristics were introduced. As of August
2023, there have been 53 newmetaheuristics introduced, indicating that the field continues to evolve rapidly. However, it’s worth
noting that during some years in the early stages of metaheuristic development, between 1965 and 1992, the field experienced
periods of stagnation and progress was limited to only one or two new approaches per year. These were relatively quiet and
uneventful phases. Then, between 1992 and 2005, there was a gradual inclination with the numbers eventually reaching a peak
of seven per year.

A pivotal moment in the field’s history was observed in 2006 when the idea of metaheuristics gained significant traction
among researchers. This marked a turning point as 10 new metaheuristics burst onto the scene, heralding a new era of
accelerated creativity and exploration in this field. These algorithms include the flocking base algorithm (FBA), honey-bees
mating optimization (HBMO), virtual ants algorithm (VAA), small world optimization algorithm (SWOA), invasive weed
optimization (IWO), saplings growing up algorithm (SGA), weed colonization optimization (WCO), shuffled frog-leaping
algorithm (SFLA), cat swarm optimization (CSO), and bees algorithm (BA).

Emphasizing the outburst, fifteen algorithms emerged in 2007 spread over the metaphoric schemes. Notably include the
wolf pack search (WPS), monkey search (MS), water flow-like algorithm (WFA), river formation dynamics (RFD), intelligent
water drops (IWD), integrated radiation optimization (IRO), central force optimization (CFO), bacterial-GA foraging (BGAF),
bacterial swarming algorithm (BSA), seeker optimization algorithm (SOA), imperialist competitive algorithm (ICA), honeybee
social foraging (HSF), artificial bee colony (ABC), marriage in honey bees optimization (MHBO), and human evolutionary
model (HEM).

Figure 7 presents the percentage distribution of the 654 metaheuristics according to their metaphor classifications. At the
forefront, “physics-chemistry” represents the dominant force, having a substantial 20%.This is followed closely by the “human”
classification at 18%, securing the second-highest position, with “terrestrial” ranking third at 15%. As we explore further,
“flying animals” take up 14%, while “evolutionary” captures 7% of the landscape. “Plants” contribute 6%, “sports” bring in
5%, “microorganisms” make their mark at 4%, and the mathematical realm accounts for 3%. Surprisingly, “Music” has no
representation.
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Fig 7. Percentage of various metaphor metaheuristics contributed from 1965 to August 2023

4 Conclusion
Through this study, we investigated metaheuristic classification and presented a comprehensive classification scheme. We
classified an exhaustive list of 654 metaheuristics proposed from 1965 to August 2023 into various metaphor groups and
analyzed their development, evolution, and percentage-wise representation. Our research indicates a significant evolution
in metaheuristic development, with notable peaks in 2020 (68 new metaheuristics) and 2022 (57 new metaheuristics) and
continued growth in 2023 with 53 new introductions. Early stages between 1965 and 1992 experienced stagnation with only
one or two new approaches annually, while a pivotal increase began in 2006 with 10 new metaheuristics, marking the start
of accelerated innovation. Among the 654 metaheuristics, “physics-chemistry” leads with 20%, followed by “human” at 18%,
“terrestrial” at 15%, and “flying animals” at 14%, with other groups trailing. Notably, “music” is absent. Additionally, recent
advancements have employed several techniques to enhance the performance of standard metaheuristics. Future research
could focus on identifying and classifying various variants of classical metaheuristics, including techniques such as augmented
lagrangian search, fuzzy logic, chaotic mapping, binary encoding, quantization, and hybridization.’
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