INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

GOPEN ACCESS

Received: 05-01-2024 **Accepted:** 28-03-2024 **Published:** 18-06-2024

Citation: Singh S (2024) Analyzing the Non-compositionality of Conceptual Combinations. Indian Journal of Science and Technology 17(25): 2577-2590. https://doi.org/10.17485/IJST/v17i25.41

*Corresponding author.

swati121302@dei.ac.in

Funding: None

Competing Interests: None

Copyright: © 2024 Singh. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

ISSN

Print: 0974-6846 Electronic: 0974-5645

Analyzing the Non-compositionality of Conceptual Combinations

Swati Singh^{1*}

1 Department of Physics, GLA University, Mathura, Uttar Pradesh, India

Abstract

Objectives: This research is first of its kind to investigate the application of quantum mechanics and related mathematical models to cognitive science, specifically focusing on the challenge of modeling how the human mind assigns meaning to combinations of words. The primary objective is to classify whether given word combinations are compositional or non-compositional. **Methods:** The author introduces the "WWW method," which leverages the World Wide Web (WWW) as an experimental tool in place of human subjects, which makes this method cheaper and handy in comparison to the earlier methods which used human subjects for spoken and sign language studies and robots as nonhuman subjects. The "WWW method" involves checking the adherence to Bell inequalities and marginal selectivity. The term "meaning bound" is introduced to quantify the extent to which two words influence each other's meaning within a combination. This concept proves instrumental in devising a method for assessing compositionality using the WWW method. Findings: When the WWW serves as the information space, the verification of whether a word combination adheres to Bell inequalities entails determining if the meaning bound for the word combination (AB & C) exceeds that of its constituent parts (A & C, B & C) within the conceptual combination AB. Marginal selectivity is evaluated by establishing a vector model for grammatically framed word combinations, utilizing the WWW to collect data. If the word combination 'A then B' yields an equivalent number of hits as 'B then A,' it signifies that the word combination AB satisfies marginal selectivity. Novelty: Consequently, this research presents an accessible approach to identifying entangled pairs of word combinations using the WWW method, eliminating the need for human subject experiments. The earlier studies which include human subjects are costly and cannot be replicated anytime-anywhere, for obvious reasons.

Keywords: Quantum cognition; Marginal selectivity; Compositionality; WWW method; CHSH inequality

1 Introduction

The study explores quantum computers' myriad applications across diverse life domains, underscoring quantum mechanics' transformative impact⁽¹⁾. Quantum game theory emerges as a potent tool, surpassing traditional game theory in solving real-world

challenges ⁽²⁾. Games serve as arenas where intellectual engagement intersects with competitive drive, with cognitive prowess enhancing winning probabilities ⁽³⁾. Human decision-making, intrinsic to every facet of life, navigates complexities blending emotions, logic, and reason ⁽⁴⁾.

Compositionality is that meaning of a complex word can be understood by breaking it into smaller parts. Earlier works have studies whether compositionality is strictly obeyed or not by taking into account human subjects, considering both spoken and signed languages⁽⁵⁾. On the other hand, in this study author has performed the study on WWW without taking any human subjects. Thus, providing the easiest and user- friendly way to perform the compositionality test.

The paper ⁽⁶⁾ attempt to study whether non-human agents such as robots also understand and obey compositionality. In the present study, the author checked whether conceptual combinations obey compositionality using WWW. WWW is a non-human subject, thus presenting a way cheaper method. And the results obtained are astonishing that non-human subjects also obey compositionality.

In (7), to be able to completely mimic human intelligence, Artificial Intelligence needs to learn to identify contexuality. In the present study, the author used WWW as an experimental tool to study whether a conceptual combination obeys compositionality. Thus, user can easily train Google Bard, ChatGPT, etc. to perform this study.

A given word can be understood by breaking it into parts and combining the meaning obtained from each of the parts. For example:

```
'a red hat' = 'a' + 'red' + 'hat.'
```

'The girl is playing football' = 'the' + 'girl' + 'is' + 'playing' + 'football'.

'PET' is described as 'furry and warm,' a typical 'FISH' is 'greyish,' but a typical 'PET FISH' is a 'GUPPY,' which is neither 'furry and warm' nor 'greyish.'

Many times, the meaning of a combined word differs from the meanings of its constituent words. A typical

'APPLE CHIP' could refer to CHIPS made from the fruit 'APPLE' or integrated circuit (IC) 'CHIPS' manufactured by 'Apple Inc.'

If A_1 , A_2 , B_1 , and B_2 are bivalent random variables with joint distributions $Pr(A_i, B_j)$, where i, $j \in \{1, 2\}$, then the necessary and sufficient condition for a joint distribution $Pr(A_1, A_2, B_1, B_2)$ is that the following system of inequalities is satisfied:

```
-1 \le \Pr(A_1, B_1) + \Pr(A_1, B_2) - \Pr(A_2, B_1) + \Pr(A_2, B_2) - \Pr(A_1) - \Pr(B_2) \le 0
-1 \le -\Pr(A_1, B_1) + \Pr(A_1, B_2) + \Pr(A_2, B_1) + \Pr(A_2, B_2) - \Pr(A_2) - \Pr(B_2) \le 0
```

$$-1 \le \Pr(A_1, B_1) + \Pr(A_1, B_2) + \Pr(A_2, B_1) - \Pr(A_2, B_2) - \Pr(A_1) - \Pr(B_1) \le 0$$

$$-1 \le \Pr(A_1, B_1) - \Pr(A_1, B_2) + \Pr(A_2, B_1) + \Pr(A_2, B_2) - \Pr(A_2) - \Pr(B_1) \le 0$$

Where $Pr(A_i, B_j)$ is shorthand for $Pr(A_i=+1, B_j=+1)$, $Pr(A_i)$ for $Pr(A_i=+1)$ and $Pr(B_j)$ represents $Pr(B_j=+1)$, i, $j \in \{1,2\}$. But $Pr(B_j)$ used CHSH inequality which uses expectation values instead of probabilities.

```
-2 \le C(A_1,B_1) + C(A_1,B_2) + C(A_2,B_1) - C(A_2,B_2) \le 2
```

$$-2 \le C(A_1,B_1) - C(A_1,B_2) + C(A_2,B_1) + C(A_2,B_2) \le 2$$

$$-2 \le C(A_1,B_1) + C(A_1,B_2) - C(A_2,B_1) + C(A_2,B_2) \le 2$$

$$-2 \le -\mathsf{C}(\mathsf{A}_1, \mathsf{B}_1) + \mathsf{C}(\mathsf{A}_1, \mathsf{B}_2) + \mathsf{C}(\mathsf{A}_2, \mathsf{B}_1) + \mathsf{C}(\mathsf{A}_2, \mathsf{B}_2) \le 2$$

 $C(A_i, B_j)$ is a correlation function that computes the expectation value of the product A_i B_j ; $i,j\varepsilon$ {1, 2}. The correlations can be computed from the matrix of probabilities, e.g.,

```
C(A_1, B_1) = (Pr(A_1, B_1) + Pr(A_1, B_1)) - (Pr(A_1, B_1) + Pr(A_1, B_1)).
```

Two concepts A and B can be analyzed using four random variables $\{A_1, A_2\}$ and $\{B_1, B_2\}$ ε $\{+1, -1\}$ (Table 1).

Table 1. The table explains the dominant and subordinate senses of words

	Value	Priming is done with	Sense interpreted
A_1	+1	Dominant	Dominant
A_1	-1	Dominant	NOT Dominant
A_2	+1	Subordinate	Subordinate
B_2	-1	Subordinate	NOT Subordinate

• **Joint probability distribution**- The author models using variables A_1 , A_2 , B_1 , and B_2 - $Pr_{A1, A2, B1, B2}$. The author gets 16 joint probability distributions corresponding to the responses of the subject (Table 2).

Table 2. The table depicting sixteen probability values corresponding to the responses of subjects

				В		
			B 1		B 2	
			+1	-1	+1	-1
	\mathbf{A}_{1}	+1	P_1	P_2	P_5	P_6
A		-1	P_3	P_4	P_7	P_8
	A $_2$	+1	P_9	P_{10}	P_{13}	P_{14}
		-1	P_{11}	P_{12}	P_{15}	P ₁₆

"Marginal selectivity is analogous to the Causal communication constraint of the Special Theory of Relativity. The Causal communication constraint is mathematically expressed as follows:

$$P(A_i = m) = P(A_i = m, B_1 = n) = P(A_i = m, B_2 = n)$$

This equation asserts that the probability of obtaining $A_j = m$ is independent of which measurement (B_1 or B_2) is performed on part B.

In contrast, the probability for $B_k = n$ depends on which measurement $(A_1 \text{ or } A_2)$ is applied to part A.

For any given system, if two conditions are met:

- (a) a change of state of the system is provoked by the measurement, and
- **(b)** there is a lack of knowledge about the measurement process, then a violation of Bell inequalities occurs ⁽¹⁰⁾. The study explores quantum computers' myriad applications across diverse life domains, underscoring quantum mechanics' transformative impact ⁽⁸⁾. Quantum game theory emerges as a potent tool, surpassing traditional game theory in solving real-world challenges ⁽⁹⁾.

Games serve as arenas where intellectual engagement intersects with competitive drive, with cognitive prowess enhancing winning probabilities (10).

2 Methodology

As an example, consider the case of 'APPLE CHIP' in a free association experiment – 'APPLE CHIPS.' The associated probabilities are as follows:"

 $P_1 = Pr(A_1, B_1)$

 $P_4 = Pr(A_1; B_1')$

 $P_2 = Pr(A_1, B_1')$

 $P_3 = Pr(A_1; B_1)$

Where random variables corresponding to events are

A₁: -APPLE interpreted as a fruit

A2:- APPLE as a computer

B₁:- CHIP as a food item

B₂:- CHIP as a circuit

Two cases arise-

(a) Perfect Correlation- Priming with fruit sense of APPLE and food sense of CHIP.

P₁- APPLE interpreted fruit and CHIPS as food

P₄- APPLE, not fruit, and CHIPS, not food

 $P_1 + P_4 = 1$

 $P_3 + P_2 = 0$

P₁, P₂, P₃, and P₄ are the probabilities associated with individual cases.

(b) Perfect Anti-correlation-

"Priming is employed with the fruit sense of 'APPLE' and the electronic sense of 'CHIP'.

P₃ - 'APPLE' is not interpreted as fruit, and 'CHIP' is interpreted as an electronic circuit.

 P_2 - 'APPLE' is interpreted as fruit, and 'CHIP' is not interpreted as a circuit.

For a given conceptual combination, three cases may arise:

- (a) If Marginal selectivity fails, then the conceptual combination is non-compositional.
- (b) If Marginal selectivity holds, but the Bell/CH/CHSH inequality fails, then the conceptual combination is non-compositional (Entangled).
- (c) If Marginal selectivity holds, and the Bell/CH/CHSH inequality also holds, then the conceptual combination is compositional.

Let's discuss each case:

(c) If Marginal selectivity fails, then the conceptual combination is non-compositional.

Example: For APPLECHIPS Free association experiment (Table 3) –

Table 3. Probability values for the APPLECHIP and TOASTGAG association experiment

	APPLE CHIP								
		B ₁		B 2	_				
		+1	-1	+1	-1				
A $_1$	+1	$P_1 = 0.94$	$P_2 = 0.06$	$P_5=0$	$P_6 = 0.75$				
	-1	$P_3 = 0$	$P_4 = 0$	$P_7 = 0.25$	$P_8=0$				
A $_2$	+1	$P_9 = 0$	$P_{10} = 0.35$	$P_{13} = 0.47$	$P_{14} = 0$				
	-1	$P_{11} = 0.65$	$P_{12} = 0$	$P_{15} = 0$	$P_{16} = 0.53$				
		TO	AST GAG						
		B ₁		B 2					
		+1	-1	+1	-1				
A $_1$	+1	$P_5 = 0.50$	$P_6 = 0.4375$	$P_1 = 0.625$	$P_2 = 0.375$				
	-1	$P_7 = 0.0625$	$P_8=0$	$P_3=0$	$P_4 = 0$				
A $_2$	+1	$P_{13} = 0.29$	$P_{14} = 0$	$P_9 = 0.07$	$P_{10} = 0.21$				
	-1	$P_{15} = 0.29$	$P_{16} = 0.42$	$P_{11} = 0.57$	$P_{12} = 0.14$				

Checking for Marginal selectivity:

$$P_1 + P_2 = 1.00$$

$$P_5 + P_6 = 0.75$$

$$(P_1+P_2) - (P_5+P_6) = 0.25 \neq 0$$

Marginal selectivity is not obeyed.

a) If Marginal selectivity holds and Bell/CH/CHSH inequality fails, then the conceptual combination is non-compositional (entangled):

Example: For BATTERY CHARGE Free association experiment –

To check for marginal selectivity:

Diff $(A_1) = 0.067$

Diff $(A_2) = 0.048$

Diff $(B_1) = 0.116$

Diff $(B_2) = 0.120$

Marginal selectivity approximately holds.

Checking for Bell/CH/CHSH inequality:

 $C(A_1,B_1)=0$

 $C(A_1,B_2) = 0.025$

 $C(A_2,B_1)=-0.057$

 $C(A_2,B_2) = 0.42$

BATTERY CHARGE slightly violates the CHSH inequalities (CHSH= 2.01), so it would be deemed "Entangled".

If Marginal selectivity and Bell/CH/CHSH inequality hold, then the conceptual combination is compositional:

Example: Free association experiment for word combination "TOAST GAG" (Table 3)

To check for marginal selectivity

 $P_1 + P_2 = 0.93$

$$P_5 + P_6 = 1.00$$

Diff
$$(A_1) = [(P_1 + P_2) - (P_5 + P_6)] = -0.07 \sim 0$$

 $P_9 + P_{10} = 0.29$

$$P_{13} + P_{14} = 0.28$$

$$Diff(A_2) = [(P_9 + P_{10}) - (P_{13} + P_{14})] = 0.01$$

 $P_1 + P_3 = 0.5625$

$$P_9 + P_{11} = 0.580$$

$$Diff(B_1) = [(P_1 + P_3) - (P_9 + P_{11})] = -0.0165$$

```
\begin{split} &P_5 + P_7 = 0.625 \\ &P_{13} + P_{15} = 0.640 \\ &\text{Diff}(B_2) = \left[ (P_5 + P_7) - (P_{13} + P_{15}) \right] = -0.015 \end{split}
```

As difference between the one-marginal and the other second marginal is approximately zero for four cases therefore Marginal selectivity holds. Checking for Bell/CH/CHSH inequality:

```
\begin{array}{l} C(A_1,B_1)\!=\!0 \\ C(A_2,B_2)\!=\!0.025 \\ C(A_2,B_1)\!=\!-0.057 \\ C(A_2,B_2)\!=\!.42 \\ C(A_1,B_1)+C(A_1,B_2)+C(A_2,B_1)\!-\!C(A_2,B_2)=-2\!\leq\!0+0.025+0.42+0.057\!=\!0.502\leq\!2 \\ C(A_1,B_1)-C(A_1,B_2)+C(A_2,B_1)\!+\!C(A_2,B_2)=-2\!\leq\!0+0.025+0.42-0.057\!=\!0.338\leq\!2 \\ C(A_1,B_1)+C(A_1,B_2)-C(A_2,B_1)\!+\!C(A_2,B_2)=-2\!\leq\!0+0.025-0.42-0.057\!=\!-0.45\leq\!2 \\ -C(A_1,B_1)+C(A_1,B_2)+C(A_2,B_1)\!+\!C(A_2,B_2)=-2\!\leq\!-0+0.025+0.42-0.057\!=\!0.388\leq\!2 \\ \end{array}
```

The Bell/CH/CHSH inequality is satisfied in four cases, assuming that the word combination is compositional. Instead of human subjects, the author uses WWW (World Wide Web) as a reference - examining the 'Guppy effect' on WWW (11). Conceptual combinations like 'PET FISH' tend to yield more likely interpretations when searched on the web, as in the case of 'GUPPY,' which is a particular type of American fish. These conceptual combinations, as identified by Bruza (9), are considered non-compositional as these word combinations violate the principle of semantic compositionality. However, it's important to note that the 'GUPPY' is neither a well-known PET nor a standard example of FISH. This leads to the intriguing 'GUPPY effect' on the WWW.

A violation of Bell inequalities is equivalent to a departure from classical probability theory $^{(12)}$. In $^{(11)}$, Aerts suggests employing the analysis used in $^{(8)}$ and $^{(13)}$ to demonstrate how the Pet-Fish problem violates Bell inequalities.

Regarding 'meaning bound,' as analyzed in ⁽⁹⁾, if 'APPLE' is interpreted as a fruit, then 'CHIP' is more likely to be understood as a potato CHIP. Conversely, if 'APPLE' is seen as a computer, 'CHIP' is more likely to be interpreted as an electronic circuit. In the case of 'APPLE CHIP,' the concept of 'meaning bound' provides insight into how these two words influence each other's interpretation. When it comes to the 'GUPPY effect,' meaning bound measures the degree of correlation between 'PET' and 'GUPPY,' FISH' and 'GUPPY,' and 'PET FISH' and 'GUPPY.'

Furthermore, the analysis reveals that the meaning bound shows a stronger correlation between 'PET FISH' and 'GUPPY' than between 'PET' and 'GUPPY' or 'FISH' and 'GUPPY'. This implies that 'PET FISH' is more likely to be interpreted as 'GUPPY' than the likelihood of 'PET' or 'FISH' being interpreted as 'GUPPY'. The author can define meaning bound as a representation of the degree of relatedness between two words in a conceptual combination. Mathematically, the author calculates the meaning bound between words A and B by dividing the relative weight of word B concerning A by the absolute weight of word B."

```
M(A,B) = P(A,B) \div \{P(A)P(B)\} = [n(A,B) * n(WWW)] \div [n(A)n(B)],
```

where n(A) and n(B) are the number of web pages containing the words A and B, respectively,

n(A, B) is the number of web pages containing the words A and B, and

n(WWW) is the total number of web pages on WWW.

P(A) Represents the probability that the word A would be present on WWW.

```
P(A) = n(A) \div n(WWW)
```

There could be three types of meaning bounds:

- (a) Attractive meaning bound: M > 1,
- (b) Repulsive meaning bound: M < 1, and
- (c) No meaning bound.

If the measure of the presence of a word 'B' in the 'meaning context' of another word 'A' equals the measure of the overall presence of this word 'B,' this would indicate that there is no specific 'meaning bound' between 'A' and 'B.' The author can also define the meaning bound in terms of conditional probabilities.

```
M (A, B) = P (A|B) \div P (A) = P (B|A) \div P (B), where conditional probability is given by P(A|B) = n(A, B) \div n(B)
```

Venn diagram: For P(A|B), the shaded white portion represents the probability that pages containing 'B' also contain 'A.' Conjunction fallacy (14): According to Fuzzy Set Theory, the membership of an item in the intersection of two fuzzy sets is the minimum of its membership in either one. However, violations occur: Just like Guppy, a goldfish is neither a typical pet nor

 $M_{net}(goldfish) = M_{fish}(goldfish) = 0.5$

However, the goldfish is a typical pet fish; let's say $M_{pet^-fish}(goldfish)=0.9$. These violations of classical fuzzy set theory can be seen in two forms:

Overextension:

 $M_{A\wedge B}(x) > \min(m_A(x), m_B(x))$

"Overextension occurs when the meaning of a combination of two words is more likely to occur than that of the individual words."

Underextension:

 $M_{A \vee B}(x) < \max(m_A(x), m_B(x))$

When the meaning of a combination of two words is less likely to occur than that of the individual words, the conjunction fallacy occurs when people judge the conjunction of two events as more likely than one of the two events taken separately (10).

Overextension effects (**Example**): Let A = pet, B = fish, AB = pet fish, C = goldfish; in terms of conditional probability, overextension results in:

P(C|AB) > P(C|A) and/or P(C|AB) > P(C|B)

Meaning bound:

 $P(C|AB)/P(C|A) = M(C, AB)/M(C, A) = n_{AB,C} * n_A / n_{A,C} * n_{AB} > 1^{(10)}$

When attempting to translate ⁽⁹⁾'s paper using the World Wide Web (WWW), the author aims to fulfill the objectives: 'to find possibly entangled pairs of word combinations.' As per Bruza's analysis ⁽⁹⁾, conceptual combinations that adhere to marginal selectivity but violate Bell inequalities are considered entangled.

3 Results and Discussion

In this study, the World Wide Web (WWW) has been used as an information space instead of using human subjects. The word combinations on the WWW and the number of hits represent probabilities associated with that word, denoted as 'n (word to be searched) as shown in the Table 4.

Table 4. Verifying if (9)'s compositionality definition obeys the WWW experiment

	With quotes	Meaning bound	Without quotes	Meaning bound
	1	(M)(with quotes)	1	(M)(Without quotes
1- non-compositional				
Pet	1,34,00,00,000			
Fish	93,50,00,000			
Guppy	1,05,00,000			
"Pet fish"	5,27,000		9,64,00,000	
Pet guppy	4,57,000	1.786425017768301		
Fish guppy	6,23,000	3.490196078431373		
"Pet fish" guppy	1,37,000	173.9405439595193	4,51,000	24.50602647698083
2- non-compositional				
APPLE	2,09,00,00,000			
CHIP	49,70,00,000			
"APPLECHIP"	11,50,000		5,68,00,000	
Food	3,39,00,00,000			
Apple food	29,90,00,000	2.32106815711846		
CHIP food	10,80,00,000	3.525578248250565		
"APPLECHIP" food	69,700	0.9833269206104912	2,22,00,000	6.341144210395114
3-entangled				
Battery	69,10,00,000			
CHARGE	1,20,00,00,000			
Crime	71,40,00,000			
"BatteryCHARGE"	4,72,000		11,50,00,000	
Battery crime	2,77,00,000	3.087921130825702		
CHARGE crime	24,90,00,000	15.98389355742297		
"BatteryCHARGE" crime	1,56,000	25.45933627688363	1,03,00,000	6.899281451711119
4- non-compositional				

Continued on next page

Table 4 continued				
Boxer	19,40,00,000			
Bat	41,30,00,000			
Sports	3,86,00,00,000			
"Boxer bat"	1,150		6,88,000	
Boxer sports	3,88,00,000	2.849740932642487		
Bat sports	14,10,00,000	4.86456987291272		
"Boxer bat" sports	945	11.70871817977022	4,46,00,000	923.6805639233643
5-non-compositional				
Boxer animal	1,59,00,000	3.363979073703647		
Bat animal	3,29,00,000	3.269668606121933		
"Boxer bat" animal	1,280	45.68462037637897	48,60,000	289.9383894481083
Animal	1,34,00,00,000		.,,	
6-non-compositional	-,,,,			
Spring	1,59,00,00,000			
Plant	91,00,00,000			
Manufacturing unit	22,90,00,000			
"Spring plant"	4,00,000		15,70,00,000	
Spring manufacturing unit	3,00,00,000	4.531597594133641	13,70,00,000	
Plant manufacturing unit		17.28729785498344		
	6,55,00,000		1 (2 00 000	24 70225 47 4001 175
"Spring plant" manufacturing	48,400	29.06113537117904	1,62,00,000	24.78235474091175
unit				
7-non-compositional				
Spring green	4,57,00,000	0.1209500849321265		
Plant green	36,60,00,000	1.692492664183559		
"Spring plant" green	3,84,000	4.039785768936496	8,85,00,000	2.372087583272823
Green	13,07,00,00,000			
1- compositionality				
Toast	12,70,00,000			
GAG	11,00,00,000			
Food	3,39,00,00,000			
"Toast GAG"	849		7,29,000	
Toast food	9,32,00,000	11.90625508094674		
GAG food	1,50,00,000	2.212389380530973		
"Toast GAG" food	382	7.299929467602003	7,30,000	16.24644419356536
2- compositionality				
Toast wedding	3,17,00,000	9.467825142546837		
GAG wedding	9,87,000	0.3403448275862069		
"Toast GAG" wedding	171	7.639819666138662	5,49,000	28.56534695615155
Wedding	1,45,00,00,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,12,000	201000010,0010100
3- compositionality	1,12,00,00,000			
BILL	1,04,00,00,000			
SCALE	81,40,00,000			
Currency "BILL SCALE"	63,50,00,000		17 20 00 000	
	7,750	6 562690270224712	17,30,00,000	
BILL Currency	7,88,00,000	6.562689279224712		
SCALE currency	7,98,00,000	8.491168333688019	1 (0 00 000	0.411005343405333
"BILL SCALE" currency	1,560	17.43459486918974	1,68,00,000	8.411087342405899

By analyzing the observed data, the author may formulate the following hypotheses:

- **Hypothesis 1:** If M(AB, C)>M(B, C) and M(AB, C)>M(A, C) or M(AB, C)<M(B, C) and M(AB, C)<M(A, C), then the conceptual combination is non-compositional.
- **Hypothesis 2:** If either M (A, C) or M(B, C) is greater than M(AB, C), the conceptual combination is compositional. Thus, the author has a method to determine if a conceptual combination is compositional.

Figure 1, represents the meaning bound of each conceptual combination. And in the end of this paper, both of the hypotheses have been verified.

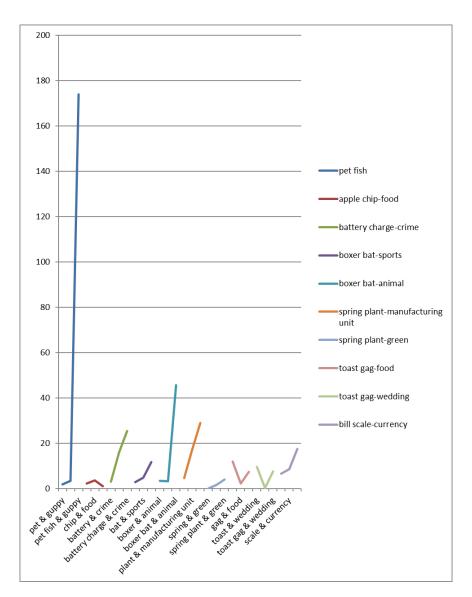


Fig 1. Each curve represents the meaning bound of a word combination on the Y-axis. Non-compositional word combinations are those with monotonic plots, while compositional ones exhibit non-monotonic behavior

Table 5. Compositionality and marginal probability analysis for TOAST GAG

Compositionality	for T	OAST GAG						
Nov-25		For toast						
		GAG (com-						
		positional)						
			GAG					
		Choke(B ₁)			Joke(B ₂)			
		1	-1		1	-1		
$Jam(A_1)$	1	6,36,000	14,90,000	$A_1B_1+A_1B_1$	8,95,000	9,23,000	$A_1B_2+A_1B_2$	$Diff(A_1)$
				= 21,26,000			= 18,18,000	=
								3,08,000

Continued on next page

Table 5 continued	l							
Toast	-1	8,29,000	5,30,000	$A_1'B_1 + A_1'B_1'$ = 13,59,000	8,50,000	4,41,000	A ₁ 'B ₂ +A ₁ 'B ₂ ' = 12,91,000	DIFF(A ₁ '') = 68,000
		A ₁ B ₁ +A ₁ 'B ₁ = 14,65,000	$= A_1B_1'+A_1'B_1'$ = 20,20,000		$A_1B_2 + A_1'B_2$ = 17,45,000	A ₁ B ₂ '+A ₁ 'B ₂ ' = 13,64,000		
Speech(A ₂	2) 1	13,60,000	37,80,000	$A_2B_1 + A_2B_1$ ' = 51,40,000	4,65,000	21,60,000	A ₂ B ₂ +A ₂ B ₂ ' = 26,25,000	DIFF(A ₂) = 25,15,000
	-1	7,84,000	5,19,000	$A_2B_1 + A_2B_1$ ' = 13,03,000	16,60,000	4,37,000	A ₂ B ₂ +A ₂ B ₂ ' = 20,97,000	DIFF(A ₂ ') = - 7,94,000
		$A_2B_1 + A_2B_1$ ' = 21,44,000	$A2B_1 + A_2B_1$ ' = 42,99,000		$A_2B_2 + A_2'B_2$ = 21,25,000	= 25,97,000		, ,
		DIFF(B ₁) = - 6,79,000	DIFF(B ₁ ') = - 22,79,000		DIFF(B_2) = -380000	DIFF(B ₂ ') = - 1233000		
	Diff	(\mathbf{A}_1)	Diff(A ₂)		Diff(B ₁)		Diff(B _f)	
TOAST-GAG	3,08,	,000	25,15,000		-6,79,000		-3,80,000	
(compositional) APPLE- CHIP (non-	12,80	0,000	22,32,00,000		-1,03,89,000		-23,15,50,000	
compositional) BILL-SCALE (compositional)	3,00,	,00,000	2,10,000		2,20,80,000		3,25,70,000	
BATTERY- CHARGE (entangled)	1,67,	,10,000	19,03,000		1,50,24,000		49,55,000	

Finding if a similar method exists for marginal selectivity- Marginal selectivity is given by (9)

 $Diff(A_1) = [Pr(A_1,B_1) + Pr(A_1,B_1')] - [Pr(A_1,B_2) + Pr(A_1,B_2')] \sim 0$

Furthermore, by $^{(11)}$, if the measure of the presence of a word 'B' in the 'meaning context' of another word 'A' equals the measure of the overall presence of 'B', this would indicate that there is no specific 'meaning bound' between 'A' and 'B'. M(A,B)=1 would imply that n(B)/n(WWW)=n(A,B)/n(A). Thus, the author may use M=1 as a constraint for the satisfaction of marginal selectivity. The author has not been able to achieve the desired result for marginal selectivity over the WWW until now, as indicated in the table in Section 3.2.1. Consequently, the author attempted a variant: searching if 'APPLE fruit with CHIP-potato' yields approximately the same number of hits as 'APPLE fruit with CHIP-circuit' (Table 5).

However, it does not provide a method to differentiate the words that obey Marginal selectivity from those that do not. In grammatical analysis ⁽¹⁴⁾, specifically Pre-group grammar, the author suggests considering the grammar of the sentence instead of solely focusing on the subject, object, or adjective. For instance, in the sentence 'JAMES SHOOTS BALLOONS,' while in Bruza's ⁽⁹⁾ analysis the author would have only considered 'James balloons' as a conceptual combination, ⁽¹⁴⁾ suggests also considering 'Shoots.' By using Pre-group grammar (Table 6):

Pre group: is a partially ordered monoid, each element p ε Pre group satisfies

 p^l . $p \le 1 \le p.p^l$ and $p.p^r \le 1 \le p^r.p$

Where p^l is the left adjoint, and p^r is the right adjoint. JAMES SHOOTS BALLOONS can be reduced as

 $N(n^{r}sn^{l}) n \le 1.sn^{l}n \le 1.s.1 \le s$

In Pre-group grammar, parts of speech have unique representations: 'n' stands for noun, 's' for declarative sentence, 'nrsnl' for transitive verb, and 'nnl' for adjective.

Mapping Pre-group grammar to vector spaces involves the following steps:

1-Define 'N' and 'S' as vector spaces for 'n' and 's,' respectively.

- For vector spaces over \mathbb{R} , 'N' has only one adjoint, denoted as 'N*', which is isomorphic to 'N.'
- Therefore, 'nr' and 'nl' belong to 'N,' while 'sr' and 'sl' belong to 'S.
- 2-Composites of words are formed by tensor product \otimes

JAMES SHOOTS BALLOONS = $n (n^r s n^l) n = N \otimes N \otimes S \otimes N \otimes N$

3-Reductions

$$E^{r}$$
: $nn^{r} \le 1$, ε^{l} : $n^{l}n \le 1$

$$E: \mathbb{N} \otimes \mathbb{N} \to \mathfrak{R} :: \sum_{i,j} c_{ij} \mathbf{v}_i \otimes \mathbf{w}_j \to \sum_{i,j} c_{ij} < \mathbf{v}_i \big| \mathbf{w}_j >$$

4-Type introductions:

$$H^{r}$$
: $1 \leq n^{r}n$, η^{l} : $1 \leq nn^{l}$

$$H: \mathfrak{R} \rightarrow N \otimes N :: 1 \rightarrow \sum_{i} e_{i} \otimes e_{i}$$

5- Meaning of sentences computed by calculating the cosine of the angle between the vector representations, given by the degree of synonymy

$$Sim (A, B) = s_a. S_b / || s_a || || s_b ||$$

Frobenious algebra: A vector space V ε \Re :

$$\Delta$$
:: $\mathbf{v} \rightarrow \mathbf{v} \otimes \mathbf{v}$

$$\iota$$
:: $v \rightarrow 1$

$$M:: \mathbf{v} \otimes \mathbf{v} \rightarrow \delta_{ij} \mathbf{v}$$

$$\zeta:: 1 \to \sum_i \mathbf{v}$$

For swap map:

$$\sigma: X \otimes Y \to Y \otimes X$$

$$\Sigma$$
 o $\Delta = \Delta$ and μ o $\sigma = \mu$

$$M \circ \Delta = 1$$

Understanding the algebras through examples- James shoots balloons

Shoots – a transitive verb

Shoots =
$$\sum_{ijk} c_{ijk} e_i \otimes s_j \otimes e_k \in N \otimes S \otimes N$$

James shoots balloons = $\varepsilon_n \otimes 1_S \otimes \varepsilon_n$ (James \otimes shoots \otimes balloons)

$$= \sum_{ijk} c_{ijk} < \text{James} | \mathbf{e}_i > \otimes \mathbf{s}_j \otimes < \mathbf{e}_k | \text{balloons} > = \sum_j \sum_{ik} c_{ijk} < \text{James} | \mathbf{e}_i > < \mathbf{e}_k | \text{balloons} > \mathbf{s}_j |$$

A Noun phrase

James who shoots balloons

Who - interrogative pronoun (Table 6)

Table 6. Decomposing a sentence

James	Who	Shoots	Balloons
N	$N^{r}nsn$	N ^r sn ^l	N

= $(\mu_n \otimes \iota_s \otimes \varepsilon_n)$ (James \otimes shoots \otimes balloons)

Thus, James who shoots balloons = James \odot (shoots X balloons)

Where ⊙ - element-wise multiplication

X – matrix multiplication

Shoots - matrix representing verb shoot

a) PET FISH: They may consider this sentence in two ways:

1- Pet as an adjective that modifies the meaning of the noun fish:

 $Pet = nn^{l}$

Matrix for pet =
$$\sum_{ij} \mathbf{p}_{ij} \ \mathbf{e}_i \otimes \mathbf{e}_j$$

pet fish =
$$\sum_{i,j} p_{i,j} e_i < e_j | \text{ fish} > = \text{pet}_{adj} \odot \text{ fish }_{noun}$$

Sim(pet X fish, goldfish) > sim(fish, goldfish)

2- Fish which is a pet = fish \odot (is X pet)

Experiment (14) involves using the grammar 'fish \odot (is X pet)' with vector representations of 'fish,' 'pet,' and the matrix of the verb 'to be.' The author can also create a grammar for the conceptual combination 'APPLE CHIP' to check it for marginal selectivity.

A- CHIP(circuit)⊙ (of X APPLE (banana))

B- CHIP(circuit)⊙ (of X APPLE (computer))

As per the definition of marginal selectivity, the probability of 'CHIP' as a circuit should not be affected whether 'APPLE' is a banana or a computer.

Hypothesis: Ideally, the matrices obtained from steps 1 and 2 should have identical respective entries if marginal selectivity is obeyed. Otherwise, the entries must be different.

The World Wide Web (WWW) serves as an information space. Instead of relying on human subjects, the author utilizes the word combination 'WWW' and the number of hits to represent probabilities associated with that word, denoted as 'n (word to be searched).'

Experimental Data:

- 1-For APPLECHIP
- A- CHIP (circuit)⊙ (of X APPLE (banana))
- B- CHIP (circuit)⊙ (of X APPLE (computer)) (Table 7)

Table 7. Search result counts and analysis table for APPLE CHIP

Search result counts								
28 November - For APPLECHIP	APPLE	CHIP	APPLE CHIP food	APPLE CHIP computer	APPLE CHIP Tom Jerry	APPLE CHIP nail art	APPLE CHIP gulab jamun	APPLE CHIP shin chan
"APPLE (noun) food"	3,47,000	87,500	1,31,000	76,800	6,560	22,900	1,390	113
CHIP (noun) food	7,66,000	72,800	7,66,000	17,600	1,210	5,060	217	24
APPLE (adjective)	6,950	9	6,960	2	1	2	0	0
CHIP food								
APPLE (noun) computer	93,30,000	4,22,000	28,90,000	5,00,000	3,33,000	43,000	627	3,750
CHIP (noun) computer	42,200	3,20,000	40,200	42,400	6,260	1,320	4	692
APPLE (adjective) CHIP computer	456	454	201	452	2	1	0	0
Analysis table								
	APPLE B	anana	APPLE cor	nputer	CHIP circui	it	CHIP po	tato
"APPLE (noun) food"	1,32,000		34,000		7,04,000		6,01,000	
CHIP (noun) food	7,60,000		17,000		8,19,000		22,600	
APPLE (adjective) CHIP food	4		3		5		7	
APPLE (noun) computer	2,50,000		26,80,000		4,22,000		2,79,000	
CHIP (noun) com-	22,500		1,56,000		3,21,000		41,000	
puter APPLE (adjective) CHIP computer	5		447		5		2	
Analysis table								
Of X APPLE banana		Of X APPI	E computer	CHIP circui computer	it. Of X APPLE	CHIP circuit	t. Of X APPL	E banana
1.53463407*10^11		1.172371878	8*10^11	8.253498021	*10^16	1.080382385*	10^17	

According to ⁽⁹⁾, APPLECHIP does not obey marginal selectivity, so its matrix entries in the third table are dissimilar.

5.254887374*10^16

3.112924239*10^18

1.508980972*10^17

6.375531430*10^9

6.32758720*10^8

6.41622329*10^10

7.376597723*10^12

 $4.700875302*10^11$

126551744

1275106286

2- For TOAST GAG

1.236637315*10^11

3.599761555*10^12

7.57864743*10^10

5284097810

155590780

- A- TOAST (jam)⊙ (of X GAG (choke))
- B- TOAST (jam)⊙ (of X GAG (joke))(Table 8)

Table 8. Analysis table for TOAST GAG

Analysis table for TOAST GA	G			
	TOAST jam	TOAST Speech	GAG choke	GAG joke
"TOAST (noun) food"	54,800	1,80,000	1,560	7,470
GAG (noun) choke	1,890	11,400	1,18,000	2,25,000

Continued on next page

1.012805961*10^17

2.642048905*10^10

1.519099376*10^18

2.432745825*10^16

7.77953900*10^8

Table 8 continued						
TOAST(adjective) G		0		0	0	0
TOAST (noun) wedo	ling	11,900		1,31,000	662	4,470
GAG (noun) joke		1,780		11,500	29,100	1,96,000
TOAST (adjective)		7		0	0	0
Analysis table for T	OAST GAG					
	"TOAST	GAG (noun)	TOAST (adjective)	TOAST (noun) wed-	GAG (noun)	TOAST
	(noun)	choke	GAG food	ding	joke	(adjec-
	food"					tive) GAG
						wedding
"TOAST (noun)	1,80,000	1,560	26,200	72,700	7,470	4,51,000
food"						
GAG (noun) choke	9,990	1,18,000	9,980	10,200	2,25,000	10,100
TOAST(adjective)	0	0	0	0	0	0
GAG food						
TOAST (noun)	8,76,000	662	8,210	1,31,000	4,470	49,200
wedding						
GAG (noun) joke	8,580	29,100	8,510	8,720	1,96,000	8,720
TOAST (adjective)	0	0	0	0	0	0
GAG wedding						
Analysis table for T	OAST GAG					
Of X GAG choke		Of X GAG joke		TOAST jam. Of X	TOAST jam.	Of X GAG
				GAG joke	choke	
730384400		3484689000		1.909609572*10^14	4.002506512*10	
2.04938368*10^10		7.07702193*10^	10	1.337557145*10^14	3.873335155*10	^13
0		0		0	0	
1661475000		8154360000		9.7036884*10^13	1.97715525*10^	13
9156557440		4.5066571*10^1	0	8.021849638*10^13	1.629867224*10	^13
0		0		0	0	

According to ⁽⁹⁾, TOAST GAG obeys marginal selectivity, so its matrix entries in the third table are pretty similar.

3- For BATTERY CHARGE

Analysis table for BATTERY CHARGE

- A- BATTERY (car)⊙ (of X CHARGE (volt))
- B- BATTERY (car)⊙ (of X CHARGE (prosecute)) (Table 9)

Table 9. Analysis table for BATTERY CHARGE

		BATTERY car	BATTERY Assau	lt	CHARGE volt	CHARGE prose-
						cute
BATTERY car		11,40,000	18,200		1,94,000	12,000
CHARGE volt		30,900	485		35,200	57
BATTERY CHAR	RGE dead	5,590	9		3,990	3
BATTERY Assaul	lt	35,800	1,02,000		5,000	14,800
CHARGE prosecu	utes	335	305		104	11,500
BATTERY CHAR	RGE crime	8	104		4	1
Analysis table fo	r BATTERY C	HARGE	,			
•	BATTERY	CHARGE volt	BATTERY	BATTERY	CHARGE	BATTERY
	dead		CHARGE dead	Assault	criminal	CHARGE crime
BATTERY car	2,06,000	1,94,000	1,75,000	18,200	72,500	1,44,000
CHARGE volt	2,130	35,200	2,010	485	1,340	382
BATTERY	2,890	3,990	2,890	9	6	8
CHARGE dead						
BATTERY	64,400	5,000	64,300	1,02,000	42,900	59,400
Assault						
CHARGE crim-	5,040	1,580	4,830	4,430	51,300	12,500
inal						
						Continued on next pag

Table 9 contin	ıued						
BATTERY	9	4	8	104	108	176	
CHARGE							
crime							

Analysis table for BATTERY CHARGE							
Of X CHARGE volt	Of X CHARGE	BATTERY car. Of X CHARGE volt	BATTERY car. Of X CHARGE prose-				
	prosecute		cute				
4.7590166*10^10	3.586837000*10^9	5.425278924*10^16	4.08899418*10^15				
1.662845788*10^9	5.0160812*10^7	5.138193485*10^13	1.549969091*10^12				
7.12684756*10^8	3.5118308*10^7	3.983907786*10^12	1.963113417*10^11				
1.34408562*10^10	2.776287300*10^9	4.81182652*10^14	9.939108534*10^13				
1.080182900*10^9	7.16111050*10^8	3.618612715*10^11	2.398972018*10^11				
2.450656*10^6	2.889628*10^6	1.9605248*10^7	2.3117024*10^7				

According to ⁽⁹⁾, BATTERY CHARGE obeys marginal selectivity, so its matrix entries in the third table are similar.

- 4- For BILL SCALE
- A- BILL (car)⊙ (of X SCALE (weight))
- B- BILL (car)⊙ (of X SCALE (fish)) (Table 10)

Table 10. Analysis table for BILL SCALE

Analysis table for BI	LL SCALE		7515 tuble for BILL			
		BILL phone	BILL pelican		SCALE weight	SCALE fish
BILL phone		2,94,000	4,320		30,900	1,14,000
SCALE weight		2,67,000	2,550		4,68,000	1,71,000
BILL SCALE currence	y	1	0		0	0
BILL pelican		42,300	10,500		3,840	6,120
SCALE fish		89,900	3,530		68,900	2,22,000
BILL pelican aquatic		1	1		0	0
Analysis table for Bl	LL SCALE					
	BILL phone	SCALE weight	BILL	BILL pelican	SCALE fish	BILL pelican
			SCALE			aquatic
			currency			
BILL phone	2,94,000	30,900	5,730	4,320	1,14,000	121
SCALE weight	2,67,000	4,68,000	1,99,000	2,550	1,71,000	290
BILL SCALE cur-	1	0	1	0	0	0
rency						
BILL pelican	42,300	3,840	2,970	10,500	6,120	5,070
SCALE fish	89,900	68,900	69,200	3,530	2,22,000	2,710
BILL pelican	1	0	0	1	0	1
aquatic						
Analysis table for Bl	ILL SCALE					
Of X SCALE weight		Of X-SCALE fish	BILL phone. Of X SCALE		BILL phone. Of X-SCALE fish	
			weight			
3.14169888*10^10		6.41343384*10^10	9.236594707*10^15		1.885549549*10^16	
2.39065992*10^11		1.48443606*10^11	6.383061986*10^16		3.96344428*10^16	
30900		114000	30900		114000	
3566178000		6.901740000*10^9	1.508493294*10^14		2.91943602*10^14	
5.03324652*10^10		7.13361036*10^10	4.524888621*10^15		6.413115714*10^15	
34740		120120	34740		120120	

According to ⁽⁹⁾, BILL SCALE obeys marginal selectivity, so its matrix entries in the third table are similar.

4 Conclusion

In this paper, the author has unveiled a novel and accessible method to determine the compositional nature of a given conceptual combination simply by conducting a web search instead of spending a huge amount of money on human subjects or costly non-human subjects like robots. Furthermore, the author has introduced a systematic approach to assessing whether a

conceptual combination adheres to marginal selectivity and Bell inequalities, effectively identifying instances of entanglement. This innovation holds the potential to advance our understanding of human behavior through the application of quantum mechanical principles.

By pinpointing word combinations that exhibit entanglement—those that comply with marginal selectivity while defying Bell inequalities—the author has bridged the gap between semantic compositionality and Quantum Theory. The presence of entanglement in non-compositional systems mirrors the intricate behaviors observed in quantum-entangled systems, further blurring the boundaries between language and quantum phenomena.

As elucidated by Fine's theorem, the author has established the necessary and sufficient conditions for the existence of joint probability distributions, encapsulated by Bell inequalities such as Bell/CH and CHSH. Marginal selectivity serves as a critical constraint in this framework, functioning as a litmus test for the nature of conceptual combinations.

The findings can be succinctly summarized:

- (a) Failure of marginal selectivity signifies non-compositionality.
- (b) The simultaneous presence of marginal selectivity and failure to meet Bell inequalities indicates entanglement.
- (c) When both marginal selectivity and Bell inequalities are satisfied, the conceptual combination is deemed compositional. Thus, hypotheses 1 and 2 have been duly verified. With this groundbreaking research, the author has not only expanded the horizons of linguistic analysis but also opened the door to deeper insights into the interplay between language and quantum phenomena. The implications of this work extend far beyond the scope of this paper, offering a promising avenue for future research and a new perspective on the intricate nature of meaning in language and beyond.

References

- 1) Singh S, Srivastava DP, Patvardhan C. Quantum Tant-Fant. *Indian Journal of Science and Technology*. 2023;16(9):660–667. Available from: https://doi.org/10.17485/IJST/v16i9.2065.
- 2) Singh S, Srivastava DP, Patvardhan C. Quantum game theoretic analysis of Kabaddi. YMER. 2022;21(9):1175–1183. Available from: https://ymerdigital.com/uploads/YMER2109D1.pdf.
- 3) Singh S, Srivastava DP, Patvardhan C. Meta-Game Theoretic Analysis of Some Standard Game Theoretic Problems. *Jnanabha*. 2023;53(1):68–76. Available from: https://doi.org/10.58250/jnanabha.2023.53108.
- 4) Singh S, Srivastava DP, Patvardhan C. Game theoretic analysis of Kabaddi. *Journal of Statistics Applications & Probability*. 2023;12(1):313–319. Available from: https://www.naturalspublishing.com/files/published/51d225q0vbvy43.pdf.
- 5) Pleyer M, Lepic R, Hartmann S. Compositionality in Different Modalities: A View from Usage-Based Linguistics. *International Journal of Primatology*. 2022;p. 1–33. Available from: https://doi.org/10.1007/s10764-022-00330-x.
- 6) Maruyama Y. Engineering Psychology and Cognitive Ergonomics. Cognition and Design. In: 17th International Conference, EPCE 2020, Held as Part of the 22nd HCI International Conference, HCII 2020;vol. 12187 of Lecture Notes in Computer Science. Springer, Cham. 2020. Available from: https://doi.org/10.1007/978-3-030-49183-3.
- 7) Parker JE, Hollister DL, Gonzalez AJ, Brézillon P, Parker ST. Looking for a Synergy between Human and Artificial Cognition. In: International and Interdisciplinary Conference on Modeling and Using Context;vol. 8175 of Lecture Notes in Computer Science. Berlin, Heidelberg. Springer. 2013;p. 45–58. Available from: https://doi.org/10.1007/978-3-642-40972-1_4.
- 8) Aerts D, Gabora L, Sozzo S. Concepts and their dynamics: A quantum-theoretic modeling of human thought. *Topics in Cognitive science*. 2013;5(4):737–772. Available from: https://doi.org/10.1111/tops.12042.
- 9) Bruza PD, Kitto K, Ramm BJ, Sitbon L. A probabilistic framework for analyzing the compositionality of conceptual combinations. *Journal of Mathematical Psychology*. 2015;67:26–38. Available from: https://doi.org/10.1016/j.jmp.2015.06.002.
- 10) Aerts D, Arguëlles JA, Beltran L, Beltran L, De Bianchi MS, Sozzo S, et al. Testing quantum models of conjunction fallacy on the world wide web. *International Journal of Theoretical Physics*. 2017;56(12):3744–3756. Available from: https://doi.org/10.1007/s10773-017-3288-8.
- 11) Aerts D, Czachor M, D'Hooghe B, Sozzo S. The pet-fish problem on the world-wide web. In: Quantum Informatics for Cognitive, Social, and Semantic Processes: Papers from the AAAI Fall Symposium (FS-10-08). 2010;p. 17–21. Available from: https://cdn.aaai.org/ocs/2281/2281-9564-1-PB.pdf.
- 12) Pitowsky I. From George Boole To John Bell The Origins of Bell's Inequality. In: Bell's Theorem, Quantum Theory and Conceptions of the Universe;vol. 37 of Fundamental Theories of Physics. Dordrecht. Springer. 1989;p. 37–49. Available from: https://doi.org/10.1007/978-94-017-0849-4_6.
- 13) Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. *Nature*. 2010;464(7289):704–712. Available from: https://doi.org/10.1038/nature08516.
- 14) Coecke B, Lewis M. A compositional explanation of the 'pet fish'phenomenon. In: International Symposium on Quantum Interaction;vol. 9535 of Lecture Notes in Computer Science. Springer, Cham. 2016;p. 179–192. Available from: https://doi.org/10.1007/978-3-319-28675-4_14.