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Abstract

Objectives: To propose a suitable decision-making model based on Intuition-
istic Fuzzy sets (IFSs) and Gram-Schmidt orthogonalization process for Artificial
Neural Network (ANN). Methods: The IFS data sets appearing in the form of
matrices are aggregated using the available aggregation operators in the lit-
erature and then the collective aggregated information is processed through
Gram-Schmidt orthogonalization for the revised input vectors which is then fed
into the ANN algorithm following Delta Learning Rule for the next phase. The
weight updation is performed through the ANN and the output is improvised.
Findings: The proposed Gram-Scmidt Orthogonalization process is utilized in
Intuitionistic Fuzzy Artificial Neural Network model. The Delta learning rule is
utilized in the process of the Neural Network, where the Intuitionistic Fuzzy
nature of the input data is transformed into a fuzzy data and then the ranking
of the alternatives is done based on the weights updation through the learn-
ing phase of the ANN. Once the vector is trained out of the learning phase, it is
then processed through the activation function for the final selection of the best
alternative required of the Multiple Attribute Group Decision Making (MAGDM)
problem posed in this work. To demonstrate the usefulness and applicability
of this new method with the Gram-Schmidt process, the numerical example
also adds more insight to the proposed methodology of ANN with the applica-
tion of some Linear Space techniques. Novelty: Most of the research done on
Intuitionistic Fuzzy Artificial Neural Network model are based on learning rules
or using some other calculations. The proposed Gram-Schmidt Orthogonaliza-
tion process is used to find the orthogonal basis that are used as input training
vectors in the Delta learning rule for ANN.
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1 Introduction

Multiple Attribute Group Decision Making (MAGDM) problems are often used in the area of commerce, business, medicine,
logistics, supply chain etc. MAGDM problems under uncertain situations is a grey area which has to be dealt with lot of
carefulness and precision due to its ambiguity. Many researches these days are concentrating on the field of MAGDM under
Intuitionistic Fuzzy Set (IFS) environment. Again, the problem in dealing with [IFS-MAGDM problems depends mostly on
the type of aggregation operator employed which are hugely available in the literature. Furthermore, the bottle-neck problem
underlying in solving real life MAGDM problems requires more precision in pinpointing the best alternatives to be chosen
at the end of the study. In the traditional methods of MAGDM, the role of Artificial Intelligence is minimal, which we have
overcome in this work by solving the MAGDM completely using the novel Gram-Schmidt orthogonalization process proposed
to produce a better input vector for the Artificial Neural Network (ANN). Artificial Intelligence (AI) and Machine Learning
(ML) are closely related fields within computer science that have gained significant attention and applications in recent years.
Artificial Neural Networks (ANNs) represent a fundamental paradigm in machine learning and artificial intelligence. Inspired
by the structure of the human brain, ANNs are a computational model composed of interconnected nodes, or “neurons,’
organized in layers. Providing the ANN with a proper input vector is a challenging task especially when dealing vague data
sets like the IFS which is the type of data set in this work. In order to create a proper consensus with the MAGDM problem,
the ANN technique is coupled with MAGDM to provide better decision-making strategies. The IFS information in this work
is processed through the ANN layers, with each neuron performing simple computations. Through a process of learning from
data, ANNs can discover complex patterns and relationships, making them adept at tasks like pattern recognition, classification,
and regression. Intuitionistic Fuzzy (IF) ANN were extensively worked by authors in™®,?,(®) and™®. Aggregation operators
for Linguistic Intuitionistic Fuzzy Sets are proposed and utilized in®. Basic concepts of Linear space techniques are detailed
to a large extent in®. Triangular Intuitionistic Fuzzy MAGDM problem is discussed in”. In® the method that evaluates a
trained ANN is proposed. In® and 19, some aggregation operators for Trapezoidal Intuitionistic Fuzzy numbers are presented.
Aggregation operators for MAGDM problems and calculation of attribute weights were much developed and utilized by author
inY. Authors in !? and ¥ utilized machine learning applications with fuzzy centered real-life problems and solved them using
novel techniques. In this work, we have improvised the ANN model of ¥ and have proposed a new ANN where the inputs
can be derived using some linear space techniques like Gram-Schmidt orthogonalization process which seems to be more
effective and reasonable especially when the decision maker provides incomplete information about the problem statement.
When comparing with the earlier methods which directly employed the given data as input vectors for ANN, the current
method proposed in this paper processes the IFS data using Gram-Schmidt Orthogonalization for ANN which is pioneering,
novel and will relieve the ambiguity arising in the decision process.

2 Methodology

The method of computation proposed in this work is novel when compared to the earlier methods in the literature ((V,®,®),®
and ') since none of the methods utilized an orthogonalized vector for the input of ANN which contributes a benchmark
in the field of ANN guided solving MAGDM problems. When it comes to solving MAGDM problems using ANN, which is
only less concentrated so far, this work will lead to a new method of applying Gram-Schmidt process to ANN which will solve
the MAGDM problems more effectively. The improvement in the methodology can be clearly viewed from the comparison of
the current method with the one proposed in ). The existing method in ') is modified with the input received from utilizing
Gram-Schmidt orthogonalization process is much effective than the previous traditional techniques. The developed concepts
are presented in the following sections.

2.1 Learning and Activation phase in ANN

An ANN’s ability to learn is its most important feature. Learning, often known as training, is the process by which a neural
network adjusts its parameters appropriately in response to a stimulus, producing the desired response. In Artificial Neural
Networks (ANNs), supervised learning is a machine learning technique where the model is trained on labelled data with
known input-output pairings. The architecture of the network, including its layers and activation procedures, is specified. Input
data is sent through the network during training, and the output is compared to actual labels using a loss function. Gradients
are calculated using backpropagation, which enables weight changes using optimization techniques like stochastic gradient
descent. Unsupervised learning takes place without outside assistance, much like how a tadpole or early fish learns on their
own. It entails independent learning without the influence of an instructor. In this method, similar Artificial Neural Networks
(ANNs) arrange input vectors without taking into account individual appearances or group affiliations. The network groups
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input patterns into clusters during training. The neural network generates an output response when it receives a new input and
categorizes it accordingly. In the context of Reinforced Learning, the network receives feedback indicating its performance,
such as being ”50% correct”. Reinforcement gaming involves learning through negative reinforcement, while reinforcement
learning, and reinforcement signal are based on positive rewards. An activation function in Artificial Neural Networks (ANNs)
is a mathematical operation applied to the output of each neuron. Its primary role is to introduce non-linearity into the model,
enabling the network to learn complex relationships. There are many activation functions available out of which a suitable can
be chosen.

Input Weights

v |

OCutput

|
-

Processing
element

Fig 1. A simple architecture of Artificial Neural Network

2.2 Orthogonality and Orthonormality in Linear Space

Calculating the closest vector on a subspace to a given vector is typically required to solve the matrix equation Ax=b and
find approximate solutions to other equations. The question then becomes one of orthogonality: identifying the vectors that are
perpendicular to the subspace. The property of the nearest point is that the difference between the two points is perpendicular to,
or orthogonal to, the subspace. We must thus create concepts of length, distance, and orthogonality. This section’s fundamental
construction is the dot product, which calculates a vector’s length and measures the angles between vectors.

Definition 2.2.1® The dot product of two vectors u, vin R™ is

Uy U1
Uz Vg

u.v = . . . = U V1 FUQVy F o F U, U,
un Un

Think of u, v as column vectors, this is the same as u 7 v.

For example,

1\ /2 2
2. [3]=0 2 1)|3]|=12+23+11=09.
1) \1 1

Notice that the dot product of two vectors is a scalar. As long as you keep in mind that you can only dot two vectors together
and that the outcome is a scalar, you may perform arithmetic with dot products essentially as normal. Let u, v, w be vectors in
R™ and let ¢ be a scalar.

1. Commutativity: u.v = v.u.

https://www.indjst.org/ 2531


https://www.indjst.org/

Robinson & Saranraj / Indian Journal of Science and Technology 2024;17(24):2529-2537

2. Distributivity with addition:(u + v) .w = uw.w + v.w.
3. Distributivity with scalar multiplication: (cu) .v = ¢(u.v).

The vector’s dot product with itself is a significant particular case:

Uy Uy
u u
2 2 2 2 2
. . . =ujtus+--+uy.
u u

Therefore, for any vector u, we have: i)u.u > 0 ii) v.u = 0 & u = 0. A vector u’s length in R™ is equal to the number
Jull = /() = v/ (@Z +ug +-+ u2)..

If u.v=0, then two vectors, x,y in R™, are orthogonal or perpendicular. Let W be a subspace of R™. Its orthogonal complement
is the subspace W+ = {u in R™|u.w = 0 for all w in W}. The perpendicular line W is the orthogonal counterpart of a line
W across the origin in R%. Let W be a R™ subspace. Then the following are regarding orthogonal complements: i)W~ is also a

subspace of R™, if) (W)™ = W, iii) dim (W) +dim (W) = n.

2.2.1 Orthogonal Decomposition
Let W be subspace of R™ and let u be a vector in R™. Then compute the closest vector uy;, to w in W, where the vector uyy, is
called the orthogonal projection of u onto . The closest vector to « on W means that the difference © — uy;, is orthogonal to
the vectors in W. In other words, if uyy,. = % — 1wy, then we have u = wyy, +uyy-., where uyy, is in W and uyy. is in W, The
first order of business is to prove that the closest vector always exists.

Theorem 2.2.1:© (Orthogonal decomposition).

Let W be a subspace in R™ and let u be a vector in R™. Then u can be uniquely represented as: w = uyy, + w1, where uyy, is

the closest vector to u on W and w1 isin W, If L = Span {z} isaline, then u; = %z and u; . = u—uy, for any vector
u.

As a simple example we shall compute the orthogonal projection of u = (_46> onto the line L spanned by x = (g) ,and
find the distance from u to L. First, we find
v 3\ _ 3 _ _ —48
up, =2 X = =1848 <2> =—3 <2> andup )=u—up =1 ( . )

The distance from u to L is [Jug | = £ v/482 + 722 ~ 6.656..

2.3 Computation of Gram-Schmidt Process

This subsection provides the Gram-Schmidt Process, a method for determining a subspace’s orthogonal basis. Let the basis for
subspace W of R™ be {aq,as,...,a,, }. Then the Orthogonal Basis by the process of Gram-Schmidt is given by:

)ay =byii)ay = (b2>span{a1}i =by— bzl'.gll ay

iii) a5 = (bs)

and proceeding further a,,, = (b,,,)

= b, — bg.ala _ b3.a2a
Span{a,,as}* 3 a;.a; 1 Qg .y 2

_ m—-1pb .a,
L= bmizi:l ar?.az a;.

Span{a,,as,...,a
Then {a,as,...,a,, } is an orthogonal basis for the same subspace .

m—1

2.4 MAGDM Problem Solving Using Intuitionistic Fuzzy (IF) Gram-Schmidt ANN

Pseudo-code for IF-Gram_Schmidt-ANN:
C,,: n Matrix itemset of size k x m
Input {Intuitionistic Fuzzy Decision Matrices}
A, = {Collection of n Matrices of size k};
/I* Aggregation Phase*//
Compute {P-IFWG aggregator & the Initial Weight Vector}
For(n=1; A, # 0; n++) do begin
Generate {Individual Preference Intuitionistic Fuzzy Decision Matrices, X,, }
/I* X 5 is the collection of Individual Preference IF-Decision Matrices *//
Generate {Intuitionistic Fuzzy Attribute Weight Vector}
While i < mdo {Defuzzify the IF column matrix into Fuzzy Column matrix}
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Generate {Collective Overall Preference Linguistic Intuitionistic Fuzzy Decision Matrices using Fully Linguistic Intuitionistic
Fuzzy Weight Vector, WT}
/I*Improvise the input vector by GRAM-SCHMIDT Orthogonalization*//

_ m—1 v .u.
L _Um_zizl uTu:uz}

Input Vector{um = (vm)Span{ul,uz,.,.,u, )

/I* Learning Phase*//
Generate { Weight Matrix by IF-Delta Rule}
net™ = (W) X, 0" = 2 — 1, f (net)= & [1—(0)?],

Update weights for next step {W"*! = c (d,,-O") f ' (net")X,, +W"}

Continue the weight updation until the error is minimized to a desired level

//*Activation function*//

Fix {The Threshold Value-Binary Step Function}

While Activated values > T hreshold do

Generate {Binary Matrix for final Decision with values exceeding the Threshold}

Output {Best Alternative(s) to be chosen}

{the final decision variable can be converted into crisp variable and computations can be performed}.
End

3 Results and Discussion

The numerical illustration which will be presented in the following is the same one followed in ') and the advantage here is that
the data will be orthogonalized using Gram-Schmidt process and which in turn will be treated as the input for ANN process.
Comparison of the numerical illustration with the earlier methods are presented at the end of the section.

3.1 Numerical lllustration of ANN With Gram-Schmidt Process & Delta rule

Let us suppose there is an investment company and a panel with five possible alternatives to invest the money: A, is a
car company; A, is a food company; A; is a computer company; A, is an arms company; Ay is a TV company. There
are four attributes: G is the risk analysis; G, is the growth analysis; G5 is the social-political Impact analysis; G, is the
environmental impact analysis. There are three decision makers and the decision matrices as listed in the following matrices

R, = (Fg’?)mxn,k =(1,2,3) as follows ¥:
(0.4,0.3)(0.5,0.2)(0.2,0.5)(0.1,0.6)
(0.6,0.2)(0.6,0.1)(0.6,0.1)(0.3,0.4)

R = | (0.5,0.3)(0.4,0.3)(0.4,0.2)(0.5,0.2) | ;
(0.7,0.1)(0.5,0.2)(0.2,0.3)(0.1,0.5)
(0.5,0.1)(0.3,0.2)(0.6,0.2)(0.4,0.2)

(0.5,0.4)(0.6,0.3)(0.3,0.6)(0.2,0.7)
(0.7,0.3)(0.7,0.2)(0.7,0.2)(0.4,0.5)
R, =| (0.6,0.4)(0.5,0.4)(0.5,0.3)(0.6,0.3)
(0.8,0.1)(0.6,0.3)(0.3,0.4)(0.2,0.6)
( ) ) ) )

0.6,0.2)(0.4,0.3)(0.7,0.1)(0.5,0.3

(0.4,0.5)(0.5,0.4)(0.2,0.7)(0.1,0.8)
(0.6,0.4)(0.6,0.3)(0.6,0.3)(0.3,0.6)
Ry =| (0.5,0.5)(0.4,0.5)(0.4,0.4)(0.5,0.4)
(0.7,0.2)(0.5,0.4)(0.2,0.5)(0.1,0.7)
( ) ) ) )

0.5,0.3)(0.3,0.4)(0.6,0.2)(0.4, 0.4
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Following the computations of P-TFWG !4, the collective overall preference values are:

(0.20907,0.46232) (0.32464,0.56734) (0.20907,0.67535)
(0.45470,0.24905) (0.55958,0.35113) (0.45470,0.45404)
R, = | (0.45322,0.24061) | : Ry = | (0.55373,0.34085) | ; Ry = | (0.45322,0.44119)
(0.22865,0.34319) (0.34999,0.43600) (0.22865,0.54176)
(0.42247,0.18478) (0.52483,0.24614) (0.42247,0.34673)

By defuzzification method (r; ; = 1-u-y) we get the defuzzified values of the collective overall preference values as follows:

0.32861 0.10802 0.11557
N 0.29625 | 0.08927 | 0.09126
R, =10.30616 | ; Ry =] 0.10541 | ; R3 = | 0.10558
0.42816 0.214 0.22959
0.39274 0.22902 0.2308

The defuzzified collective overall preference values are treated as the Input Training Vectors and denoted as follows:

0.32861 0.10802 0.11557
0.29625 0.08927 0.09126
X, =10.30616 | ; X, =|0.10541 | ; X5 = | 0.10558
0.42816 0.214 0.22959
0.39274 0.22902 0.2308

Applying Gramm-Schmidt Process, let,
wy; = X{ =[0.32861 0.29625 0.30616  0.42816 0.39274 |,
wy = XZ =10.10802 0.08927 0.10541  0.214 0.22902 |,
wy = X7 =] 0.11557 0.09126 0.10558  0.22959 0.2308 ].
Now, v; = w;.ie,v; =[0.32861, 0.29625 , 0.30616 , 0.42816 , 0.39274 |

_ Wqy, V
Ug = wWg — (o 0)) HlezI>Ul (wgy, v1)

= 0.035496 + 0.026446 4 0.032272 4+ 0.091626 + 0.089945 = 0.275785

2
o |” = (w1, 01)

vy |2 = 0.107984 +0.087764 4 0.093734 + 0.183321 + 0.154248 = 0.626961

(W2, 91) _ ¢ 430876
lva |

W.vl = [0.144548 0.130313 0.134672 0.188337 0.172757]
U1

Vg = Wq — (W'%) =[—0.036528 —0.041043 —0.029262 0.025663 0.056263 ]
U1

(wg, vy) (wg, vg)
Now, vg =ws — (W.vl — W.U2
1 2
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kvgk? = 0.001334 + 0.001684 + 0.000856 + 0.000658 + 0.003165 = 0.007697
(wg, v1) = [0.037977 +0.027036 + 0.032324 + 0.098301 + 0.090644] = 0.286282
(wg, vg) = [—0.004222 —0.003746 — 0.003089 +0.005892 +0.012986] = 0.007821
3> Y1/ — <w U > —
Gpatp) = 0.456618, s = 1016110

%.vl =[0.150049, 0.135273, 0.139798, 0.195506, 0.179332]

(a-bg) v, = [~0.037116,—0.041704,—0.029733, 0.026076, 0.057169)

vg =ws — eyl vy — (el
=[0.002637 ,—0.002309 ,—0.004485 ,0.008008 , —0.005701]
The Orthogonal Basis is given by:

0.32861 —0.036528 0.002637
0.29625 —0.041043 —0.002309
vy = | 0.30616 |; vy = | —0.029262 | ; vg = | —0.004485
0.42816 0.025663 0.008008
0.39274 0.056263 —0.005701

The Orthogonal Basis values are treated as the Input Training Vector and denoted as follows:

0.32861 —0.036528 0.002637
0.29625 —0.041043 —0.002309
X, =10.30616 | ; X5 =] —0.029262 | ; X5 = | —0.004485
0.42816 0.025663 0.008008
0.39274 0.056263 —0.005701

To find the d values: d, =1—1/ w
d; = 0.645868, dy = 0.960759, d3 = 0.994920.
Apply the Learning rule (Delta learning Rule) for the defuzzified individual Column matrices to obtain the weight vector.
Assume the initial weight vector derived using Gaussian distribution method.
wl = (0.2 0.2 0.2 0.2 0.2)7. By applying delta learning rule to these weights we get: when d; = 0.645868, dy =
0.960759, ds = 0.994920

0.32861
0.29625

net! = (wh)T X, =(0.20.20.2 0.2 0.2) | 0.30616 | = 0.350384
0.42816
0.39274

2
ol = —1 = 0.173421
1+ exp(—0.350384)

’

[ (net!) = %[1—(01)2] = %[1—(0.173421)2] = 0.484963

W2 =c(dy —OY)f (neth) X, + W1

0.32861 0.2
0.29625 0.2
= (0.1)(0.645868 — 0.173421)(0.484963) | 0.30616 | + | 0.2
0.42816 0.2
0.39274 0.2
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0.207529
0.206788
0.207015
0.209810
0.208998

W2 =

Following the procedure of Delta Rule we can compute up to:

0.205901
0.204696
0.205383
0.211444
0.211423

W4 =c(ds — 03)f/(net3)X3 +W3 =

Computing the mean for the weight vector to fix the threshold, we get the threshold value of the given function as 0.2077694.
Applying activation function:
Mathematically it can be represented as: Binary step function,

) ={

The decision variable of the function matrixis (0 0 0 1 1)T.

Hence, the best alternatives are A4, A5.

Many operators namely Ordered Weighted Averaging (OWA) operator, Ordered Weighted Geometric (OWG) operator,
Generalised Ordered Weighted Averaging (G-OWA) operator, Generalised Ordered Weighted Geometric (G-OWG),
Intuitionistic Fuzzy Weighted Geometric (IFWG) operator and Intuitionistic Fuzzy Weighted Averaging (IFWA) operator
which are already existing in the literature can also be utilized in the decision algorithm instead of the Probabilistic Intuitionistic
Fuzzy Weighted Geometric (P-IFWG) operator used in the algorithm of this paper. A comparison between all the above said
operators is presented in the following table.

1 foraz > 0.2077694
0 forxz < 0.2077694

Table 1. Comparison of the Proposed Methods with different Operators and some Traditional Ranking methods

Type of Operator IFWG IFWA OWA OWG G-OWA G-OWG
Inputs as Orthogonal Ay, Ag A, Ay Ai,Aq Ag Ao, Ag Aq,Aq, Ag Ay, Az, Ag
Vectors

Inputs as Orthonor- Ay, Ag A1, Aq, A3, A4 AL Ag Ag Ag, Ag A1, AqAg As

mal Vectors

Traditional METHOD - 1: Score & Accu- METHOD -2: Hamming Distance = METHOD - 3: Hamming Dis-
MAGDM Meth- racyFunctions A5 > Ay > A3 >  Function Excluding Intuitionistic tance Function Including Intuition-
ods Aq > A4 Most desirable alterna-  Degree A; > Ay > Az > Ay > istic Degree A; > Ay > Ay >

tive is A5 .

Apg Most desirable alternative is
Al.

Az > Ag Most desirable alterna-
tiveis Ay.

3.2 Discussion

In this paper, a novel Intuitionistic Fuzzy Artificial Neural Network model based on Gram-Scmidt Orthogonalization process
is proposed. In the process of the Neural Network, the Delta learning rule is utilized where the Intuitionistic Fuzzy nature of the
input data is transformed into a fuzzy data and then the ranking the alternatives is done based on the weights updation through
the learning phase of the ANN. Numerical illustration is presented for the proposed method which reveals the effective way of
producing the input vector using the Gram-Scmidt process. Comparisons of the proposed method is done with computations
followed with different aggregation operators and also with traditional methods of ranking the alternatives in the MAGDM
problems. The model proposed in ') is improvised in this paper by the application of Gram-Scmidt process. Table 1 reveals the
different choice of the available alternatives when different aggregation operators are employed, which depends on the choice
of the decision maker of the problem.

https://www.indjst.org/ 2536


https://www.indjst.org/

Robinson & Saranraj / Indian Journal of Science and Technology 2024;17(24):2529-2537

4 Conclusion

This study presents a novel ANN method using some linear space techniques for the generation of effective and efficient input
vectors. The proposed method is unusual to the field of ANN as well as MAGDM, since the input vector is not directly taken
from the data set unlike the earlier methods, rather processed using Gram-Schmidt orthogonalization process. When it comes
to geometry, the real advantage of orthogonalizing the data set is that it neglects the lengths of the segments, whereby making
it possible to apply various operations on the drawing without worrying about the exact geometry involved in the system. The
aggregation operators which are employed in this work take the decision matrices to the next level of processing through ANN
and finally based on the updated weights of the ANN after successful activation, the ranking of the decision alternatives are
performed for solving the MAGDM problem. A novel algorithm was ultimately solved using some learning rules (Delta Rule)
for ANN that was proposed in this paper using Gram-Scmidt orthogonalization process. The method suggested in this research
was compared to the conventional MAGDM method for handling the same choice problem. The new method of ANN compared
to the previous method ¥ is very effective in a sense that the inputs are produced in such a way to release the complexities
faced by the decision maker in the MAGDM situation. More linear space techniques namely the projection method can also
be incorporated into ANN in the future research works for producing an effective input vector for the ANN. Since most of the
real life and business situations are very vague and ambiguous in nature, the DSS coupling ANN will require much application
of different types of IFSs in the future which will be an interesting area of study for business analysists and researchers.
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