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Abstract
Objective: Accurate epilepsy diagnosis demands precise EEG analysis, hin-
dered by non-neuronal artifacts. This study evaluates artifact removal meth-
ods, specifically Independent Component Analysis (ICA) and Empirical Mode
Decomposition (EMD), aiming to enhance signal quality. We introduce a hybrid
approach, combining ICA and EMD. Methods: ICA and EMD are applied to
preprocess epilepsy EEG recordings. Quantitative evaluation metrics, including
Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Standard Deviation (SD), are
calculated and compared for both methods. Findings: ICA outperforms EMD,
showing higher SNR and PSNR, notably in BONN and CHB-MIT datasets. ICA
achieves significant reductions in MSE, RMSE, and SD. The hybrid approach
surpasses existing methods, supported by quantitative data. Novelty: Rigor-
ous application of ICA and EMD to diverse datasets quantitatively establishes
ICA’s superiority. The hybrid approach, backed by quantitative evidence, proves
effective beyond epilepsy EEG. Conclusion: This abstract provides clear, quanti-
tative support for ICA’s superiority and the hybrid approach’s efficacy, offering
valuable insights into artifact removal in EEG analysis.
Keywords: Epilepsy; Artifact removal; EEG; ICA; DWT; EMD; Performance
metrics

1 Introduction
The neurological disorder known as epilepsy, which is characterized by abnormal brain
activity, causes recurrent involuntary movements and associated difficulties that have
a substantial effect on sufferers and their families. With around 50 million people
worldwide afflicted, prompt identification becomes critical to successful seizure therapy.
Numerous diagnostic instruments, including CT scans, MRIs, fMRIs, PET scans, high-
density EEGs, and SPECTs, are vital to this procedure. Despite the widespread use of
EEG, its laborious nature has prompted the development of automated seizure detection
techniques that make use of deep learning, machine learning, and signal
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processing. In order to accurately detect epilepsy in its early stages, these techniques usually entail several stages, such as
preprocessing, segmentation, feature extraction, and classification (1).

Epileptic EEG recordings are susceptible to diverse artifacts, categorized into physiological, electrode-related, and
environmental types. These include muscle, eye, and respiratory activities, each exhibiting distinct characteristics. Identifying
and mitigating these artifacts are crucial for accurate interpretation in epilepsy studies, necessitating meticulous monitoring
and advanced signal processing techniques (2). While EEG offers advantages like portability, affordability, and high temporal
resolution, challenges such as spatial resolution limitations and signal-to-noise ratio constraints exist. Despite its versatility in
neuroscience, psychology, cognitive science, and clinical research, EEG recordings often encounter artifacts, compromising
accuracy. Various methods, both manual and automated, have been developed to address these challenges, emphasizing the
importance of mitigating artifacts before EEG signal analysis (3).

In the domain of epilepsy detection, the pre-processing stage holds significant importance. To comprehend the various
techniques employed in this critical stage, an in-depth literature review spanning the years 2017 to 2023 has been conducted
by researchers.

In (4) a method to remove eye-related artifacts (EOAs) from multichannel EEG signals Using ICA and multivariate EMD
is proposed identifies and eliminates EOAs effectively. The technique successfully cleans EEG signals, preserving essential
information with minimal loss, as shown in simulated and real data. Comparative analysis indicates significant improvements
in signal-to-noise ratio and mean square error reduction compared to other techniques.

In (5) canonical correlation analysis and ensemble empirical mode decomposition ie CCA-EEMD a novel method used for
automatically removing EOG artifacts and preserving essential information in the EEG signals. Experimental results across
seven subjects show its superiority over commonly usedmethods. In (6) an innovativemethod for reducing noise and eliminating
artifacts from EEG signals, taking into account the contamination caused by non-cerebral sources such as eye movement and
muscular aberrations. The hybrid approach uses the General Linear Chirplet Transform to identify and rectify Artifactual
Independent Components and Fast-Power ICA for blind source separation. Results from simulated EEG signals indicate the
technique’s effectiveness in identifying and removing non-cerebral artifacts, ensuring contamination-free signals.

In (7) an unsupervised ICA-based algorithm for EEGartifact removal proposed, utilizing newunsupervised artifact detection,
ICA, and a statistical criterion for automatic selection of artifact-related independent components (ICs).The technique is tested
using both real and synthetic EEG data (SEEG and AEEG), with an emphasis on online applications. In (8) authors reviewed
different EEG artifact removal techniques, and they explored artifact types, methods, and data properties. Specific artifacts were
targeted, somemethods required reference channels, and techniques like BSS andWavelet offered high accuracy but complexity.
A comparative analysis helped choose methods based on application.

In (9) a unique technique that combines spatial constraint independent component analysis (SCICA) with EEMD to remove
ocular artifacts from EEG recordings is proposed. EEMD extracts Implicit Mode Functions (IMFs), distinguishing between
artifact-free and artifactual IMFs using a Correlation Coefficient-based algorithm. ICA, guided by Kurtosis and mMSE
thresholds, processes artifactual IMFs, with spatial constraints modifying the mixing matrix. Restored IMFs contribute to
reconstructing the artifact-free EEG signal. Comparative analysis demonstrates the method’s superior performance over state-
of-the-art techniques in ocular artifact removal from EEG. In (10) (11) a novel EEMD based ICA approach (EICA) proposed for
reducing EOG artifacts from multichannel EEG signals.

1.1 Research gap:

The existing literature provides a comprehensive overview of artifact removal methodologies in epilepsy EEG signals, ranging
from traditional techniques to hybrid approaches and advanced machine learning methods. Commonly applied techniques
include EMD, DWT, ICA, and PCA.

However, despite the breadth of methods, notable limitations persist. Some approaches are overly focused on general artifact
removal, lacking specificity. ICA requires visual expertise, time, and specific data and channel considerations. PCAmay struggle
when artifacts mimic genuine brain activity, and wavelet transforms face challenges with overlapping spectra. EMD encounters
mode mixing issues, and studies often rely on visual inspection or simulated EEG data, hindering direct comparisons. Even the
database selection for this research is also a great challenge for the researcher’s. The absence of a universally effective method
for eliminating all artifact types poses a challenge in identifying an optimal choice.

This research aims to bridge a gap in existing studies by undertaking a thorough comparative analysis of Independent
Component Analysis (ICA) and Empirical Mode Decomposition (EMD) methods. The study introduces a novel hybrid
approach, combining ICA and EMD, to enhance the de-noising of EEG signals effectively, specifically focusing on epilepsy EEG
signals. The evaluation involves the application of standard performance metrics, providing a more nuanced insight into the
efficacy of these methods in artifact removal for epilepsy EEG signals. The standard databases, CHB-MIT Scalp EEG Database
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and the Bonn EEG Time Series Database, serve as valuable sources for assessing the proposed hybrid approach.
The rest of this work is summarized as follows: The suggested technique is explained in Section 2, and the findings and

discussions are covered in Section 3. The study work’s conclusion is covered in Section 4.

2 Methodology
The following methodology been proposed in order to remove the artifacts from the epilepsy EEG signal.

Fig 1. Proposed methodology for artifact removal

2.1 Database description

TheCHB-MIT Scalp EEGDatabase and the Bonn EEGTime Series Database are twowell-known online databases that are used
in this work to analyze epileptic signals. 22 pediatric patients with uncontrollable seizures had their EEG recordings tracked
for several days following the cessation of anti-seizure medication. These recordings are included in the CHB-MIT Scalp EEG
Database (11) (12). Annotations on the beginnings and endpoints of 182 seizures are available in the database.

One hundred single EEG channels, each lasting 23.6 seconds and captured at 173.61 Hz, spanning the frequency range of
0.5 Hz to 85 Hz, are available in the Bonn EEG Time Series Database (13) (14). There are five sets in the database: A, B, C, D,
and E. Surface EEG recordings of healthy subjects with their eyes open and closed are found in sets A and B. Intra cerebral
EEG recordings from seizure-producing regions both inside and outside of epileptic patients are included in sets C and D.
Intracranial EEG recordings made during epileptic seizures are included in Set E. Each set consists of 100 text files with 4097
ASCII-coded samples of a single EEG time series.

2.2 Stage of Pre-processing

2.2.1 Independent Component Analysis (ICA)
Blind Signal Separation (BSS) in Blind Signal Processing (BSP) is a powerful technique for effectively isolating source signals
from mixtures without relying on prior information or training data. Its applications span diverse fields, including medical
imaging, engineering, image processing, speech recognition, communication systems, and even astrophysics (15) (16). In audio
engineering, BSS goes beyond speech recognition, proving valuable for tasks like automatic transcription and identifying
both speech and musical instruments (15) (16). This versatility highlights BSS’s significant contribution to advancements across
scientific and technological disciplines.

A standout method within the diverse landscape of BSS is ICA (15) (17). Renowned for its conceptual simplicity and high-
quality results, ICA has gained widespread popularity across various applications. In audio engineering, where BSS applications
extend beyond speech recognition, methods like ICA become invaluable, finding utility in tasks ranging from automatic
transcription to identifying both speech andmusical instruments.Themultifaceted applicability of BSS, exemplified bymethods
like ICA, underscores its pivotal role in propelling advancements across a spectrum of scientific and technological disciplines.

When the number of source signals, denoted by the letter ”p,” is equal to or more than the number of channels, denoted by
the letter ”n,” which stands for the microphones or sensors, standard ICA is intended to operate on amultichannel signal. Using
n values of observed signals (signals generated by microphones or sensors) x1,..., x𝑛, ICA determines a p × n mixing matrix A
for n ≥ p only and statistically independent components (source signals) S1,..., Sp. A common linear ICA model is shown in
Equation (1).Equation (2)

𝑥 = 𝐴𝑠 (1)
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where, A is a n × p mixing matrix, s = (s1,….., s𝑝) T is a vector of source signals, and x = (x1,….., x𝑛)T is a vector of observed
signals (Figure 1). Equation (2) represents ICA’s solution to the separation problem:

𝑆 = 𝑊𝑥 = 𝑊𝐴𝑠 (2)

Where (F1,... 𝜇𝑛) = �T is an estimate of s, while matrix W, often known as the filtering matrix, is an estimate of A’s inverse. The
filtration matrix W is a member of the non-singular matrices det (W) ≠ 0 general linear group GI (n) when n = p.

Pre-processing steps that involve whitening the observed signal (z = Bx = Bas), where B is the whitening matrix with unitary
variance and de-correlation Cz = E(zzT)=I, typically result in a reduction of the computational cost of ICA (15). Equation (3) is
derived under the assumption that source signals Cs=I.

𝐼 = 𝐶𝑧 = 𝐸(𝑧𝑧𝑇 ) = 𝐵𝐴𝐸(𝑠𝑠𝑇 )(𝐵𝐴)𝑇 = 𝐵𝐴(𝐵𝐴)𝑇 (3)

This proves that thematrix (BA)T=(BA)-1, or BA, is orthogonal (s to z is translated using the orthogonal matrix BA).Therefore,
if 𝜎 = QTZ = QTBAS = US, then the matrix U = QT BA is a permutation matrix, and a new filtering matrix Q (after whitening)
must likewise satisfy the orthogonality criteria (18).

ICA has the following limitations:

1. It assumes statistical independence among the generated components.
2. It requires a non-Gaussian distribution in the generated independent components.
3. The number of independent components must match the observed mixtures.

Fig 2. Standard independent component analysis block diagram (15)

Among the techniques most frequently employed for EEG artifact removal is the ICA method covered above. This study
looked at how ICA was implemented for the BONN and CHB-MIT databases, as seen in Figures 5 and 6, respectively which is
discussed in detail in the results and discussion section.

2.2.2 Empirical Mode Decomposition (EMD):
EMD is a time-domain filter that is dynamic and data-responsive. Its objective is to break down a signal at a local time scale
into a number of Intrinsic Mode Functions (IMFs). Every IMF captures the distinct qualities of the original signal within
its particular time frame. EMD distinguishes itself as a data-responsive multi-resolution method by dissecting a signal into
physically meaningful components. It is useful for breaking down non-stationary and non-linear signals into discrete parts
at different resolutions (18) (19). By using the notion of scale separation, EMD, like a dynamic filter bank in the time domain,
efficiently finds inherent modes of oscillations in any given dataset. The intrinsic mode function, which is the phrase used to
describe each discrete oscillatory mode, is precisely described as follows (19).

• Themean valuemust be zero and the count of extremes and zero-crossings must either match exactly or show a difference
of no more than one over the whole dataset.

• Themean value of the envelopes determined by the local minima andmaximamust both equal zero at any given position.

The input signal is broken down into multiple intrinsic mode functions (IMF) and a residue using the EMDmethod.

𝐼(𝑛) = ∑𝑀
𝑚=1

𝐼𝑀𝐹 𝑚 (𝑛)+𝑅𝑒𝑠𝑀(𝑛)
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where themulticomponent signal is denoted by I(n).The residue corresponding toM intrinsicmodes is represented byResM(n),
while the intrinsic mode function is denoted by IMFm(n).

Log2N,whereN is the total number of data points, roughly limits the overall amount of IMF components.This satisfies every
requirement for using theHilbert transform to establish ameaningful instantaneous frequency. EmpiricalModeDecomposition
(EMD) converts the original signal x(t) into a set of IMF iteratively using the Shifting algorithm, as described below.

The following is a description of the stepwise EMD algorithm:
Step 1: Set the initial values to –r0(t) = x(t), i = 1, r𝑖(t) = r0(t).
Step 2: The process for extracting the ith IMF
a) Set up: J = 1, h0(t) = r𝑖(t).
b) Eliminate all local minimum and maximum values of h𝐽−1 (t)
c) Use a cubic spline of h 𝐽−1(t) to interpolate the local peaks and minima to produce the upper and lower envelopes.
d) Determine the upper and lower envelopes’ means, m 𝐽−1(t)..
e) h 𝐽 (t) = h 𝐽−1(t) – m 𝐽−1 (t)
f) Set if the stopping requirement is met if imf i(t) = h𝐽(t) else go to (b) with J = J +1
Step 3: r 𝑖+1 (t) = r 𝑖−1 (t) – imf i(t)
Step 4: If r 𝑖+1 (t) still has at least 2 extremes then go to 2 with i = i + 1 else the decomposition procedure ends. And ri(t) is

the residue.
Finally, when EMD procedure is completed after n iterations, the original signal can be reconstructed as:

𝑋(𝑡) = ∑𝑛
𝑗=1 𝑖𝑚𝑓𝑖 +𝑟(𝑡) (5)

In this case, r(t) represents the ultimate residue, which functions as a monotonic object free of frequency components and
is often referred to as the trend. In the meantime, the non-negative number n depends on x(t), and the collection of mono
components describes the detail. The Empirical Mode Decomposition (EMD) process flowchart, which shows the sequential
steps of the process, is depicted in Figure 5.

Fig 3. Empirical Mode Decomposition Flowchart [courtesy- (19–21)
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The waveform representations, specifically Figures 6 and 7, illustrate the outcomes of the pre-processing methodology
utilizing Empirical Mode Decomposition (EMD) for the CHB-MIT and BONN databases. A discerning examination of these
figures reveals noteworthy insights which are discussed in results and discussion section in detail.

2.2.3 Hybrid method
In this artifact removal hybrid approach for EEG data, ICA is first applied to the raw EEG signals to isolate brain activity
from unwanted artifacts. The resulting cleaned signals post-ICA is then processed using EMD, which dissects each channel
into Intrinsic Mode Functions (IMFs) and a residue. Working on individual channels, the method identifies and eliminates
artifacts, providing a targeted and comprehensive artifact removal process. The entire procedure is visually represented in
a figure, illustrating the progression from raw EEG signals through ICA cleaning and EMD decomposition, showcasing the
effective removal of artifacts at each stage. This fusion of ICA and EMD offers a powerful technique for enhancing the quality
and reliability of EEG data for subsequent analyses (20) (22).

Fig 4. Block Diagram of Hybrid (ICA + EMD) Technique

3 Results and discussion
Thewaveform figures, specifically Figure 5 represent the outcomes of the pre-processing phase using Independent Component
Analysis (ICA) for the CHB-MIT and BONN databases, respectively. Upon careful examination of the figures, distinct patterns
emerge.

In Figure 5(a), corresponding to the CHB-MIT database, the original signal is visibly intertwined with artifacts, manifesting
as spikes or irregularities in the waveform. However, the transformative power of ICA becomes evident in the reconstructed
signal. Here, the prevalence of artifacts is notably diminished,marked by a reduction in the number of spikes and it also reflected
in the evaluation parameter such as increase in the SNR value. This suggests a successful removal or mitigation of unwanted
interference through the ICA pre-processing.

Fig 5. Waveforms of Epilepsy EEG signal before and after de-noising for ICA technique for CHB-MIT Database (a) and BONN dataset
(b)

Similarly, in Figure 5(b), representing the BONN database, a comparable observation unfolds. The original signal, laden
with artifacts, undergoes a discernible transformation in the reconstructed signal. This altered waveform exhibits a significant
reduction in the presence of spikes and artifacts, indicating an effective cleansing of the signal through the application of ICA.
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Essentially, the figures provide as visual aids for the effectiveness of the ICA pre-processing for both databases. The sharp
difference between the original and reconstructed signals highlights how effective ICA is in mitigating artifacts and improving
signal quality. Fewer abnormalities in the adjusted waveforms indicate that significant information was successfully extracted
from the EEG data, paving the way for more precise and trustworthy analysis down the road.

Fig 6. Waveform of EEG signal before and after de-noising for the EMD technique for CHB-MIT Database (a) and BONN database (b)

In Figure 6(a), pertaining to the CHB-MIT database, the original signal exhibits discernible artifacts, manifesting as spikes
within the waveform. The transformative impact of EMD becomes apparent in the reconstructed signal. Here, the prevalence
of artifacts is notably reduced, characterized by a diminished occurrence of spikes. This observation strongly suggests the
successful removal or mitigation of unwanted interference achieved through the EMD pre-processing.

Similarly, Figure 6(b), corresponding to the BONN database, echoes a parallel narrative. The original signal, marked by
artifacts, undergoes a discernible transformation in the reconstructed signal. This altered waveform exhibits a significant
reduction in the presence of spikes and artifacts, indicative of an effective cleansing of the signal through the application of
EMD.

Importantly, the figures not only serve as visual testimonials of the efficacy of EMD in pre-processing but also reveal
a quantifiable improvement in performance. This is reflected in the Signal-to-Noise Ratio (SNR) value, a key performance
parameter. The increase in the SNR value underscores the enhanced quality of the reconstructed signal, affirming a substantial
reduction in artifacts and noise.

In essence, the figures provide a compelling visual and quantitative narrative of the successful pre-processing outcomes using
EMD for both the CHB-MIT and BONN databases. Fewer abnormalities in the modified waveforms indicate that significant
information was extracted from the EEG data, and they also highlight the improved performance that resulted from a decrease
in artifacts and an increase in the SNR value.

3.1 Pre-processing using HYBRID of EMD and ICA for CHB-MIT and BONN database results

The EEG waveform pictures (Figure 7 (a) and (b)) present the results of a new pre-processing method that combined
Independent Component Analysis (ICA) and Empirical Mode Decomposition (EMD) in a hybrid way for the CHB-MIT
and BONN databases. These illustrations provide an engrossing visual story of the revolutionary effects of this creative hybrid
method.

In Figure 7(a), representing the CHB-MIT database, the original EEG signal is initially entangled with artifacts, evident in
the presence of spikes within the waveform. The implementation of the hybrid EMD-ICA technique, however, introduces a
noteworthy transformation. The reconstructed signal reveals a substantial reduction in artifacts, marked by fewer spikes. This
visual observation emphasizes the successful removal or mitigation of unwanted interference achieved through the synergistic
application of both EMD and ICA.

Similarly, in Figure 7(b) corresponding to the BONN database, a parallel narrative unfolds.The original EEG signal, initially
burdened with artifacts, undergoes a distinctive transformation in the reconstructed signal. This altered waveform exhibits a
significant reduction in the presence of spikes and artifacts, underscoring the efficacy of the hybrid EMD-ICA technique in
enhancing signal quality (20).
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Fig 7. Waveform of EEG signal before and after de-noising for the HYBRID of EMD and ICA technique for a) CHB-MIT Database and
b) BONN database

Crucially, these figures not only provide a visual testament to the success of the hybrid approach in artifact removal but also
introduce a quantitative measure of performance improvement. The Signal-to-Noise Ratio (SNR) value, a vital performance
parameter, experiences a noticeable increase. This enhancement in SNR reinforces the superior quality of the reconstructed
signal, affirming a substantial reduction in artifacts and noise.

In summary, the figures vividly illustrate the benefits of the hybrid EMD-ICA technique in pre-processing EEG signals
for both the CHB-MIT and BONN databases. The refined waveforms, characterized by diminished irregularities, signify the
extraction of meaningful information from the EEG data, showcasing the potential of this innovative approach for enhanced
signal quality and improved performance.

3.2 Performance evaluation

The suggested algorithm’s effectiveness in removing artifacts has been assessed in terms of the degree of artifact reduction and
the degree of distortion it introduces into the relevant signal, particularly in relation to seizure occurrences. A pre-defined
reference channel, such as FCz or Cz, is present in many EEG caps. In order to quantify this assessment, the Cz channel is
selected as the reference channel, and a number of efficiency measures have been computed in the time and spectral domains.
Here is a description of the metrics (23):

1. Signal-to-noise ratio (SNR): This might be thought of as the ratio of ”everything you want to measure in your analysis”
to ”everything else picked up by the EEG signal.” It is commonly given in decibels. SNR prior to de-noising the EEG signal is
provided by,

𝑆𝑁𝑅_𝐵𝑒𝑓𝑜𝑟𝑒 = 10𝑙𝑜𝑔10 [𝜎2
𝑋𝑟𝑒𝑓

𝜎2𝑒𝑏𝑟
] (6)

Where, 𝜎2
𝑋𝑟𝑒𝑓 and 𝜎2

𝑒𝑏𝑟 is the variance of reference signal and noisy signal before artifact removal. SNR after denoising EEG
signal is given by,

𝑆𝑁𝑅_𝐴𝑓𝑡𝑒𝑟 = 10𝑙𝑜𝑔10 [𝜎2
𝑋𝑟𝑒𝑓

𝜎2𝑒𝑎𝑟
] (7)

Where 𝜎2
𝑒𝑎𝑟 is the variance of signal before artifact removal. ΔSNR is the difference in SNR before and after artifact removal

is given by the following formula,

Δ𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 [𝜎2
𝑋𝑟𝑒𝑓

𝜎2𝑒𝑏𝑟
]−10𝑙𝑜𝑔10 [𝜎2

𝑋𝑟𝑒𝑓
𝜎2𝑒𝑎𝑟

] (8)

2. Peak SNR (PSNR): The fidelity of a signal’s representation depends on the ratio between the maximum strength of the signal
and the power of corrupting noise. The decibel scale is typically used to express PSNR as a logarithmic amount since many
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signals have a very wide dynamic range. It is stated as

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 [𝑚𝑎𝑥2

𝑀𝑆𝐸 ] (9)

Where, max is the maximum amplitude of the reference signal and MSE is the mean square error which is discussed below.
3.Mean Square Error (MSE): It calculates the average squared errors between the noisy signal and the reference signal prior

to denoising the EEG signal, as well as the average squared errors between the denoised signal and the reference signal following
denoising. Prior to denoising, MSE is provided by

𝑀𝑆𝐸_𝐵𝑒𝑓𝑜𝑟𝑒 = 1
𝑁 ∑𝑁−1

𝑛=0
[𝑋𝑟𝑒𝑓 −𝑋𝐵]2 (10)

Where, N is total length of the signal, X_ref andX_B is the reference signal and the noisy signal respectively.MSE after denoising
is given by,

𝑀𝑆𝐸_𝐴𝑓𝑡𝑒𝑟 = 1
𝑁 ∑𝑁−1

𝑛=0
[𝑋𝑟𝑒𝑓 −𝑋𝐴]2 (11)

Where, X_A is the estimated (denoised) signal.
4. RootMean Square Error (RMSE):TheEEG signal’s square root represents the average square error between the noisy and

reference signals prior to denoising, as well as the average square error between the denoised and reference signals following
denoising. Prior to denoising, RMSE is provided by,

𝑅𝑀𝑆𝐸_𝐵𝑒𝑓𝑜𝑟𝑒 = √ 1
𝑁 ∑𝑁−1

𝑛=0
[𝑋𝑟𝑒𝑓 −𝑋𝐵]2 (12)

RMSE after denoising is given by,

𝑅𝑀𝑆𝐸_𝐴𝑓𝑡𝑒𝑟 = √ 1
𝑁 ∑𝑁−1

𝑛=0
[𝑋𝑟𝑒𝑓 −𝑋𝐴]2 (13)

5. SpectralDistortion (SD): It’s the ratio of the power spectral density of the noisy signal to the reference signal before denoising
and after denoising the EEG signal to the reference signal after denoising. SD is supplied prior to denoising,

𝑆𝐷_𝐵𝑒𝑓𝑜𝑟𝑒 =
∑𝐹𝑠/2

𝑓=1 (𝑃 𝐵(𝑓))2

∑𝐹𝑠/2
𝑓=1 (𝑃 𝑟𝑒𝑓(𝑓))2 (14)

Where, Fs is the sampling frequency, 𝑃𝐵(𝑓) and (𝑃 𝑟𝑒𝑓(𝑓) is the power spectral density of noisy signal and reference signal
respectively.

3.3 Performance evaluation results and discussion

Certain techniques aim to reduce artifacts by limiting eye movements and blinking during the data gathering process or by
eliminating trials that contain artifacts from the data analysis. Table 1 offers a thorough comparison of the aforementioned
methods for the performance evaluation parameters of the two datasets comparing to the existed methods (20).

Table 1. Detailed comparisons between the mentioned techniques for CHB-MIT and BONN datasets compared with existing works

Dataset/Metrics Existing
techniques EMD
and DFA
(20)

CHB-MIT DATASET Proposed work
results

BONNDATASET Proposed work results

EMD ICA HYBRID
ICA+EMD

EMD ICA HYBRID
ICA+EMD

SNR_Before -10 (SNR input) -14.039 -14.039 -14.039 -9.792 -9.792 -9.792
SNR_After 4.40101 -4.416 -0.061 -0.032 -4.439 -0.0303 -0.0141
∆SNR 9.60 -9.622 -13.978 -14.006 -5.353 -9.762 -9.777

Continued on next page
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Table 1 continued
PSNR_After 0.798324 (corre-

lation)
17.71 19.892 19.907 13.874 16.079 16.087

MSE_Before 4163.18 4163.18 4163.18 2523.151 2523.151 2523.151
MSE_After 1.79867 1376.409 832.751 830.013 1247.384 750.673 749.272
RMSE_Before 64.523 64.523 64.523 50.231 50.231 50.231
RMSE_After 1.3411 37.099 28.86 28.81 35.318 27.398 27.373
SD_Before 66.008 66.008 66.008 7.798 7.798 7.798
SD_After 0.0081 0 0 0.691 0 0

Both dataset’s performance measures are similar in that they use channel F7 to analyze both noisy and de-noised signals and
use the same reference channel, Cz. Notably, all approaches have improved the Signal-to-Noise Ratio (SNR) and Peak Signal-to-
Noise Ratio (PSNR), with ICA showing a more notable improvement for the BONN and CHB-MIT datasets. Additionally, the
Standard Deviation (SD) is practically lowered to 0 for the ICA technique, and the Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) have decreased. When comparing individual ICA and EMD approaches to the Hybrid model (ICA +
EMD), the former has shown better outcomes.

Analysis of execution time reveals that EMD outperforms other techniques, demonstrating shorter execution times, while
ICA, being a more complex algorithm involving intricate mathematical computations, exhibits longer execution times. In
contrast, EMD employs simpler approaches such as identifying maxima, minima, and calculating averages, making it less
complex overall.

The existing literature highlights various authors who have incorporated artifact removal techniques, integrating this phase
with subsequent epilepsy detection stages. However, it is noted that there is a lack of separate evaluations to determine the
optimal process and technique.This article addresses this gap by quantifying the obtained results using performance parameters
compared with the existed works.

Among the methods, Independent Component Analysis (ICA) stands out, delivering superior Signal-to-Noise Ratio
(SNR). Empirical Mode Decomposition (EMD) exhibits weaker performance, but a hybrid ICA and EMD model proves
formidable, excelling across multiple metrics. This research illuminates EEG signal processing intricacies and underscores
hybrid approaches’ potential for effective artifact removal, paving the way for enhanced neural signal analysis methodologies.

4 Conclusion
In conclusion, the analysis of EEG signals reveals persistent challenges despite diverse artifact elimination techniques. Internal
interferences remain formidable obstacles, necessitating specialized methods. While simpler measures provide partial relief,
the complexity of EEG signals requires advanced approaches. Evaluation of methods exposes a nuanced landscape of pros
and cons, contributing to understanding EEG signal processing. The importance of suitable metrics for algorithm validation is
emphasized, offering a comprehensive framework.

Future scope

Future research in EEG artifact reduction should explore advanced hybrid models, potentially incorporating machine learning
techniques, to optimize artifact reduction further.The success of the hybrid ICA andEMDmodel suggests promising directions.
Additionally, investigating real-time applications and adaptability to dynamic EEG recordings could enhance practical utility
in dynamic environments or continuous monitoring.
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