
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 30-01-2024
Accepted: 10-04-2024
Published: 24-04-2024

Citation: Yagan AJC, Jasmine D
(2024) Mathematical Modeling and
its Stability Analysis of an SEIR
Model to Control Dengue by
Segregating the Infective: An
Approach for Efficient Resource
Allocation. Indian Journal of Science
and Technology 17(17): 1800-1812.
https://doi.org/
10.17485/IJST/v17i17.247
∗
Corresponding author.

joshuajcy@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2024 Yagan & Jasmine.
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Mathematical Modeling and its Stability
Analysis of an SEIR Model to Control
Dengue by Segregating the Infective: An
Approach for Efficient Resource
Allocation
A Joshua Cyril Yagan1∗, D Jasmine1

1 Department of Mathematics, Bishop Heber College (Autonomous), Affiliated to
Bharathidasan University, Tiruchirappalli, 620 017, Tamil Nadu, India

Abstract
Objectives: Many research deals study on modeling the spread of dengue
virus disease. The study dealing mathematical model to influence the concept
of segregating infective is very important as it makes an organised practice
of treatment which enlightens civilization. This article focuses on the same
and frames a model with a proper analysis.Methods: BhirkoffRhota theorem
helps in proving the boundedness of the model. By using the Next-Generation
matrix the expression for Reproduction number (R0) is determined. The Routh-
Hurwitz stability criterion is used to reveal the Local Stability of the proposed
model. The aid of Lyapunov-LaSalle’s principle proves the Global Stability.
Findings: The proposed model is found to be positive and also bounded.
Moreover, the equilibrium points exists and stable locally and globally. The
numerical simulation shows that R0 < 1 at the disease-free equilibrium and
R0 ≥ 1 at the endemic equilibriumproving the stability of themodel numerically.
The comparative analysis of the model results in revealing the fact that
the proposed model controls the infective better than the usual model.
Novelty: The article differs from the usual model by incorporating the idea of
categorizing the infected population into 3 phase namely febrile, critical and
convalescent concluding that the use of proposed model helps in effective
treatment and in efficient management of hospital resources in a systematic
way.
Keywords: Epidemic; Treatment Class; SEIR model; Jacobian matrix;
Sensitivity index

1 Introduction
The dengue viral fever is an Aedes mosquito-borne disease and is a significant seasonal
public health concern. The dense populated countries, stands at the forefront of
vulnerability to this disease. The dengue virus, belonging to the Flaviviridae family,
manifests in multiple serotypes, causing a spectrum of symptoms from mild fever to
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severe complications, such as haemorrhagic fever and shock syndrome. The European Centre for Disease Prevention and
Control (1) states, ”In 2023, over six million dengue cases and over 6000 dengue-related deaths were reported from 92
countries/territories”. Also, Tamil Nadu Health Minister said that the dengue cases are expected to raise due to the northeast
monsoon. This might extend for the successive months, as there is a report that there is a lag in monsoon climate.

While usual approaches to epidemic dynamics focus on the outbreak transmission, this article approaches the complexity
of the dengue virus’s dynamics along with it focuses towards the hospital resource management. By integrating the concept
of stratifying infected individuals into those exhibiting minimal and severe symptoms, the model endeavours to optimize the
allocation of hospital resources, particularly for patients experiencing critical illness. Therefore, the proposed model not only
seeks to solve the complexities of disease transmission but also promotes a strategic approach to allocate healthcare resources.

Current research analysing an optimal dengue model (2) and a regional study on dengue dynamics with potential control
strategies (3) is notable and focus on controlling the outbreak with cost efficiency is inspiring. Particularly, the comprehensive
10-year study (4) of how various mathematical models signifies in controlling dengue providing a clear view of current models
and techniques. Along with, there are studies constructing novel models to learn the effect of temperature (5) and the impact of
climate change (6) in spreading dengue outbreak. Further, the study on cyclical patterns of dengue dynamics (7) contributed in
understanding the recurrent behaviour of the disease.

The study of risk factors involved in a disease is necessary in order to analyse the outbreak (8). Especially regarding dengue
transmission, it is imperative to comprehend the dynamics of vector-borne diseases (9). To address this need, a study conducted
in Bangladesh (10) introduced a model that accounts for both host and vector population involved in dengue transmission.
Similarly, research employing a two-staged structure model (11) within human population aids in elucidating the nuances of
dengue transmission dynamics. Furthermore, the development of complex models has efficiently managed the risk of co-
infection with COVID19 and dengue (12), which was faced during the period of 2020s. Notably, the utilization of fuzzy logic-
based techniques (13) for dengue transmission has been surprising, demonstrating enhanced reliability in implementing control
measures.

Therefore, it is imperative to develop mathematical models that incorporates control measures to prevent epidemic
outbreaks. This entails analysing the impact of vaccination (14), management measures (15), incidence rates (16) and immunity
basis (17). It is notable that most of the analysis typically focuses on reducing infected individuals which fails in planning for
hospital resource management during the outbreak. Hence, there is a critical need to study on constructing a model addressing
on both the foresaid factors. Failure to do so could result insignificant drawback during outbreaks. Thus, it is time to be
concerned after experiencing it once during the time of COVID-19.

Therefore, the article proposes a mathematical model that incorporates demographic considerations and taking into
consideration and inspiring the ideology used in study (18). Considering the infected individuals into different categories of
infected individuals, the article commences withmodel formulation followed by the presentation of analytical results pertaining
to positivity and boundedness. Subsequently, it demonstrates the existence of equilibrium points and derives the expression for
R0. Further, the article performs both local and global stability analyses, and examines the normalised sensitivity index of R0.
Finally, numerical simulations are provided in the results and discussion section to supplement findings. Overall, the article
highlights the efficacy of the fact, considering categorized infected individuals facilitates in efficient treatment strategy.

2 Methodology

2.1 Mathematical Formulation

The following is the dynamics of the proposed SEIR model with segregated treatment classes with S(0) = S0 ≥ 0, E(0) = E0 ≥
0, I(0) = I0 ≥ 0, Ts(0) = Ts0 ≥ 0, Th(0) = Th0 ≥ 0 and R(0) = R0 ≥ 0 as its initial conditions.

dS
dt

= (1−m)Λ−βS(E + I)−µS+
‵
oR

dE
dt

= βS(E + I)− (γ +ω +µ)E
dI
dt

= γE − (η1 +η2 +δ1 + k1 +µ) I
dTs

dt
= η1I −δ2Ts −µTs

dTh

dt
= η2I − (δ3 +µ)Th

dR
dt

= mΛ+ωE +δ1I +δ2Ts +δ3Th − (µ +
‵
o)R

(1)
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The proposed model is a modified SEIR model with treatment classes developed from general SEIR model. The treatment
classes are Ts(t) and Th(t) which resembles the individuals who take treatment at home and individuals who take medication
at hospital respectively. Here, Ts(t) contains infected individuals falls in the febrile phase, whereas Th(t) includes the infective
who falls in critical phase. The other compartments are the usual classes namely Susceptible S(t), Exposed E(t), Infective I(t)
and Recovered R(t). In the foresaid system of ordinary nonlinear differential equations, Λ represents the recruitment rate and
µ represents the natural mortality rate respectively. The individuals who prevent themselves from Aedes aegypti mosquito are
removed from the susceptible and move to recovered class with the rate m. Now, β is the transmission rate of dengue virus
from susceptible population. The notations δ1,δ2, and δ3 are the recovery rate of the infected class, Self-Treatment class and
Hospitalised treatment class. Also, ω is the recovery rate of the exposed individual due to self-immune system. The rate at
which the exposed individuals move to infective class is given by γ . The notation η1 is the rate at which infected individuals
takes self-treatment whereas η2 is the rate at which infective take hospitalised treatment. Here, η1I are the individuals who are
at the initial stage of infection and η2I are the individuals infected severely. k1 is the diseased caused mortality rate. Finally,
ò is the rate at which recovered individual move to the susceptible category. The proposed model highlights the ideology of
managing the hospital resource for the prior infective and also helps to understand the spreading nature of dengue disease.

Fig 1. Transmission diagram of the proposed model

2.2 Analytical Results

This section provides prerequisite lemmas and other sufficient analysis to determine the equilibrium points and its stability.
Lemma 1.The solution set of the proposed model (1) along with the initial conditions remains non-negative for all t > 0.
Proof.
Consider

dS
dt = (1−m)Λ−βS(E + I)−µS+oR

≥−(β (E + I)+µ)S
dS
S ≥−(β (E + I)+µ)dt

Integrating and simplifying, we get

logS ≥−(β (E + I)+µ)t + logC

log
S
C

≥−(β (E + I)+µ)t

Taking exponentials, we get

S(t)≥ S(0)e−(β (E+I)+µ)t

As t → ∞,S(t)≥ 0
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Similarly, we can solve for E(t)≥ 0, I(t)≥ 0, Ts(t)≥ 0, Th(t)≥ 0 and R(t)≥ 0.
Thus, the solution set of the dengue model remains positive for all t > 0.
As the study deals with dynamics of the dengue disease in human population, the above proof of positivity is necessary to

show the non-negativity of the solutions of the proposed model.
Lemma 2.The region given by Φ =

{
(S(t), E(t), I(t), Ts(t), Th(t), R(t)) ∈ 6

+ : N(t)≤ Λ
µ

}
contains the solution set of the

dengue model (Equation (1)) with the initial conditions.
Proof.
Summing up each equation in the model (Equation (1)) gives

dN(t)
dt = dS(t)

dt + dE(t)
dt + dI(t)

dt + dTs(t)
dt + dTh(t)

dt + dR(t)
dt

= Λ−µ (S+E + I +Ts +Th +R)− k1I
≤ Λ−µN

Thus, the solution of the above equation is given byN(t)≤ Λ
µ −

(
Λ
µ −N0

)
e−µt

where N0 is the initial population. By the Bhirkoff-Rhota theorem (19), it is obtained as N0 ≤ Λ
µ

As t → ∞,N(t)→ Λ
µ .

Thus, the feasible solution of the dengue model (Equation (1)) is well-posed epidemiologically in Φ and hence it is enough
we analyse within Φ.

2.3 Existence of Equilibrium points

Initially, the disease-free equilibrium (DFE) is considered as below,
E0 =

(
S0, E0, I0, T 0

s , T 0
h , R0

)
=
(
(1−m)Λ

µ , 0, 0, 0, 0, 0
)
.

Now to determine the endemic equilibrium (EE), all the equation of model (Equation (1)) is considered and equating each
of it to zero, we get

(1−m)Λ−βS(E + I)−µS+
‵
oR = 0 (2)

βS(E + I)− (γ +ω +µ)E = 0 (3)

γE − (η1 +η2 +δ1 + k1 +µ) I = 0 (4)

η1I −δ2Ts −µTs = 0 (5)

η2I − (δ3 +µ)Th = 0 (6)

mΛ+ωE +δ1I +δ2Ts +δ3Th − (µ +
‵
o)R = 0 (7)

Now, solving (Equation (4)), we get

T ∗
s =

η1

δ2 +µ
I∗

Similarly, solving for other values, we get

E∗ =
(η1 +η2 +δ1 + k1 +µ)

γ
I∗
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T ∗
h =

η2

δ3 +µ
I∗

R∗ =
mΛ+B1I∗

(
‘
o+µ)

S∗ =
(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)

β (η1 +η2 +δ1 + k1 +µ + γ)
(8)

I∗ =
γβB4(B5 +mΛ ‵

o)−µγβ2β3(
‵
o+µ)

βB2B3B4(
‵
o+µ)− γ ‵

oβB1B4

where B1 =
(

ω(η1+η2+δ1+k1+µ)
γ + δ1(δ2+µ)(δ3+µ)+δ2η1(δ3+µ)+δ3η2(δ2+µ)

(δ2+µ)(δ3+µ)

)
, B2 = (γ +ω +µ), B3 = η1+η2+δ1+k1+µ, B4 =

B3 + γ and B5 = Λ(1−m)(
‵
o+µ).

2.4 Determination of Reproduction number
Reproduction number (denoted asR0) is a ratio which signifies the contagiousness of an infection. In other words, theR0 shows
the nature of spread of the disease and helps to confirm whether it is a pandemic or not (20). Clearly, if R0 < 1, then the dengue
virus spread can be controlled and if R0 > 1, then it becomes an epidemic.

The reproduction number of the proposed model is obtained by determining the Jacobian matrix of (Equation (1)).

J (E, I,Ts,Th) =


βS− (γ +ω +µ) βS 0 0

γ −(η1 +η2 +δ1 + k1 +µ) 0 0
0 η1 −(δ2 +µ) 0
0 η2 0 −(δ3 +µ)


Clearly, the transmission matrix F and the transition matrixV are segregated as below.

F =


βS βS 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , V =


−(γ +ω +µ) 0 0 0

γ −(η1 +η2 +δ1 + k1 +µ) 0 0
0 η1 −(δ2 +µ) 0
0 η2 0 −(δ3 +µ)


In order to determine the expression for basic reproduction number it is necessary to find ρ

(
FV−1

)
.

Thus, the inverse of the matrixV is obtained as follows,

V−1 =


−1

(γ+ω+µ) 0 0 0
γ

(γ+ω+µ)(η1+η2+δ1+k1+µ)
−1

(η1+η2+δ1+k1+µ) 0 0
−γη1

(δ3+µ)(γ+ω+µ)(η1+η2+δ1+k1+µ) 0 −1
(δ2+µ) 0

−γη1
(δ2+µ)(γ+ω+µ)(η1+η2+δ1+k1+µ) 0 0 −1

(δ3+µ)


Now,

FV−1 =


βSγ

(γ+ω+µ)(η1+η2+δ1+k1+µ) −
βS

(γ+ω+µ)
−βS

(η1+η2+δ1+k1+µ) 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Themaximum absolute eigenvalue of the above matrix gives the basic reproduction number of the model.

Hence,

R0 =
Λβ (1−m)

µ(γ +ω +µ)

[
γ

(η1 +η2 +δ1 + k1 +µ)
+1

]
(9)
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2.5 Local Stability Analysis

This section reveals the stability of the proposed model at both the equilibrium point namely disease-free equilibrium and
endemic equilibrium.

Theorem 3. The system (Equation (1)) is locally asymptotically stable at disease-free equilibrium provided only if R0 < 1
and unstable otherwise.

Proof.The proof begins with determining the Jacobian matrix of the system (Equation (1)) as below,

J(M) =



−[β (E + I)+µ] −βS −βS 0 0
‵
o

β (E + I) βS− (γ +ω +µ) βS 0 0 0
0 γ −(η1 +η2 +δ1 + k1 +µ) 0 0 0
0 0 η1 −(δ2 +µ) 0 0
0 0 η2 0 −(δ3 +µ) 0
0 ω δ1 δ2 δ3 −(

‵
o+µ)


At E0 =

(
S0, E0, I0, T 0

s , T 0
h , R0

)
=
(
(1−m)Λ

µ , 0, 0, 0, 0, 0
)
the above matrix becomes

J (M1) =



−µ −βΛ(1−m)
µ −βΛ(1−m)

µ 0 0
‵
o

0 βΛ(1−m)
µ − (γ +ω +µ) βΛ(1−m)

µ 0 0 0
0 γ −(η1 +η2 +δ1 + k1 +µ) 0 0 0
0 0 η1 −(δ2 +µ) 0 0
0 0 η2 0 −(δ3 +µ) 0
0 ω δ1 δ2 δ3 −(

‵
o+µ)


Clearly, λ1 =−µ ,λ2 =−(δ2 +µ) ,λ3 =−(δ3 +µ) and λ4 =−(

‘
o+µ) are negative eigenvalues.

For the system to be stable it is enough the other two eigenvalues are negative. The other two eigenvalues are obtained by
solving the below quadratic equations.

aλ 2 +bλ + c = 0where a = 1,b =
(

γ +ω +µ +η1 +η2 +δ1 + k1 +µ − Λβ (1−m)
µ

)
and

c =
(
(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)−

(
Λβ (1−m)γ

µ
+

Λβ (1−m)(η1 +η2 +δ1 + k1 +µ)
µ

))
Solving for ∆ = b2 −4ac, we get

∆ = b2 −4a×
(
(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)−

(
Λβ (1−m)γ

µ + Λβ (1−m)(η1+η2+δ1+k1+µ)
µ

))
= b2 +4a×

(
(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)

(
Λβ (1−m)γ

µ(γ+ω+µ)(η1+η2+δ1+k1+µ) +
Λβ (1−m)

µ(γ+ω+µ) −1
))

= b2 +4a× ((γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)(R0 −1))

Thus, it is obvious that the two eigenvalues are negative only if R0 < 1.
Hence, if R0 < 1 the system (Equation (1)) is stable at the DFE.
Theorem 4. The system (Equation (1)) is locally asymptotically stable at the endemic equilibrium only if R0 > 1.
Proof. The Jacobian matrix of system (Equation (1)) is given as

J(M) =


−[β (E + I)+µ] −βS −βS 0 0

‵
o

β (E + I) βS− (γ +ω +µ) βS 0 0 0
0 γ −(η1 +η2 +δ1 + k1 +µ) 0 0 0
0 0 η1 −(δ2 +µ) 0 0
0 0 η2 0 −(δ3 +µ) 0
0 ω δ1 δ2 δ3 −(o+µ)
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At the endemic equilibrium the matrix becomes

J (M2) =



−(β (E∗+ I∗)+µ ] −βS∗ −βS∗ 0 0
‵
o

β (E∗+ I∗) βS∗− (γ +ω +µ) βS∗ 0 0 0
0 γ −(η1 +η2 +δ1 + k1 +µ) 0 0 0
0 0 η1 −(δ2 +µ) 0 0
0 0 η2 0 −(δ3 +µ) 0
0 ω δ1 δ2 δ3 −(

‵
o+µ)


From the above matrix it is clear that λ1 =−(

‘
o+µ),λ2 =−(δ3 +µ) and λ3 =−(δ2 +µ) are negative eigenvalues.

To show the system is stable it is enough we prove the below cubic equation is stable.

λ 3 +(D1 +D3 −D2)λ 2 +
(
β 2S∗ (E∗+ I∗)+D1D3 −D1D2 −D2D3 − γβS∗

)
λ

+
(
D3β 2S∗ (E∗+ I∗)+ γβ 2S∗ (E∗+ I∗)−D1D2D3 −D1γβS∗

)
= 0

Where,D1 = β (E∗+ I∗)+µ,D2 = βS∗− (γ +ω +µ) and D3 = (η1 +η2 +δ1 + k1 +µ)
Also, we have a0 =

(
D3β 2S∗ (E∗+ I∗)+ γβ 2S∗ (E∗+ I∗)−D1D2D3 −D1γβS∗

)
,

a1 =
(
β 2S∗ (E∗+ I∗)+D1D3 −D1D2 −D2D3 − γβS∗

)
and a2 = (D1 +D3 −D2).

By Routh-Hurwitz stability criterion we need to show that a2a1 > a0 and a0,a1 and a2 are all positive.
Clearly a0,a1 and a2 are all positive.
Solving for a2a1 > a0, it is observed that a0 is contained in a2 ×a1 showing that a2 ×a1 is greater than a0 for R0 > 1.
Thus, system (Equation (1)) is stable for R0 > 1 at the EE.

2.6 Global Stability Analysis

In this section the global stability of system (Equation (1)) at disease-free equilibrium and endemic equilibrium is determined.
Theorem 5. When R0 < 1, the disease-free equilibrium E0 is globally stable whereas it is unstable when R0 > 1.
Proof. To prove the global stability of E0 a Lyapunov function is defined as below

L(t) =C1E +C2I

Now taking the derivative of L, we get

dL(t)
dt =C1

dE
dt +C2

dI
dt

=C1 [βS(E + I)− (γ +ω +µ)E]+C2 [γE +(η1 +η2 +δ1k1 +µ) I]
= [C1βS−C1(γ +ω +µ)+C2γ]E +[C1βS+C2 (η1 +η2 +δ1 + k1 +µ)] I

ConsideringC1 = γ andC2 = βS and solving the above equation becomes

dL(t)
dt =−γ(γ +ω +µ)E +(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)

[
γβS

(γ+ω+µ)(η1+η2+δ1+k1+µ) +
βS

(γ+ω+µ) −1+1
]

I

=−γ(γ +ω +µ)E +(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ) [R0 −1] I +(γ +ω +µ)(η1 +η2 +δ1 + k1 +µ) I

Hence, dL(t)
dt ≤ (γ +ω +µ)(η1 +η2 +δ1 + k1 +µ) [R0 −1] I if and only if R0 < 1.

Clearly, dL(t)
dt = 0 only if I = 0.

The Lyapunov-LaSalle’s principle states that the system (Equation (1)) is globally asymptotically stable at DFE if R0 < 1.
Theorem 6. The endemic equilibrium E∗ is globally stable if R0 > 1.
Proof. Let us consider the following Lyapunov function

L =
1
2

l1(S−S∗)2 +
1
2

l2 (E −E∗)E
′
+

1
2

l3 (I − I∗) I
′
+

1
2

l4 (Ts −T ∗
s )Ts

′
+

1
2

l5 (Th −Th
∗)Th

′
+

1
2

l6 (R−R∗)R
′
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Differentiating with respect to ’ t ’, we get

L
′
= l1 (S−S∗)S

′
+ l2 (E −E∗)E

′
+ l3 (I − I∗) I

′
+ l4 (Ts −T ∗

s )Ts
′
+ l5

(
Th −T ∗

h

)
Th

′
+ l6 (R−R∗)R

′

= −l1[β (E + I)+µ](S−S∗)2 + l2[βS− (γ +ω +µ)](E −E∗)2 − l3 (η1 +η2 +δ1 + k1 +µ)(I − I∗)2

−l4 (δ2 +µ)(Ts −T ∗
s )

2 − l5 (δ3 +µ)
(
Th −T ∗

h

)2 − l6(o+µ)(R−R∗)2 − l1βS (S−S∗)(E −E∗)

−l1βS (S−S∗)(I − I∗)− l1
‘
o(S−S∗)(R−R∗)+ l2β (E + I)(S−S∗)(E −E∗)

+l2βS (E −E∗)(I − I∗)+ l3γ (E −E∗)(I − I∗)+ l4η1 (I − I∗)(Ts −T ∗
s )+ l5η2 (I − I∗)

(
Th −T ∗

h

)
+l6ω (E −E∗)(R−R∗)+ l6δ1 (I − I∗)(R−R∗)+ l6δ2 (Ts −T ∗

s )(R−R∗)+ l6δ3
(
Th −T ∗

h

)
(R−R∗)

Thus, L’ must be negative to conclude the hypothesis.
Hence, the condition for the global stability of the endemic equilibrium is determined as

a2
12 <

a11a22
5 , a2

13 <
a11a33

6 , a2
16 <

a11a66
5 , a2

21 <
a22a11

5 , a2
23 <

2a22a33
15 , a2

32 <
2a33a22

15
a2

43 <
a44a33

3 , a2
53 <

a55a33
5 , a2

62 <
4a66a22

25 , a2
63 <

2a66a33
15 , a2

64 <
2a66a44

5 , a2
65 <

2a66a55
5

This can be written as follows
(i) l1(βS)2 < l2

5 µ(γ +ω +µ)
(ii) l1(βS)2 < l3

6 µ (η1 +η2 +δ1 + k1 +µ)

(iii) l1
‵
o

2
< l6

5 µ( ‵o+µ)
(iv) l2[β (E + I)]2 < l1

5 µ(γ +ω +µ)
(v) l2(βS)2 < 2l3

15 (γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)
(vi) l3γ2 < −2l2

15 (γ +ω +µ)(η1 +η2 +δ1 + k1 +µ)
(vii) l4η2

1 < l3
3 (η1 +η2 +δ1 + k1 +µ)(δ2 +µ)

(viii) l5η2
2 < l3

3 (η1 +η2 +δ1 + k1 +µ)(δ3 +µ)(ix) l6ω2 < 4l2
25 (γ +ω +µ)( ‵o+µ)

(x) l6δ 2
1 < 2l3

15 (
‵
o+µ)(η1 +η2 +δ1 + k1 +µ)

(xi) l6δ 2
2 < 2l4

5 (o+µ)(δ2 +µ)
(xii) l6δ 2

3 < 2l5
5 (o+µ)(δ3 +µ)

Considering l2 = l3 = 1, L′ will be negative. Clearly, the inequality (v) and (vi) holds only when R0 ≥ 1. Hence, the endemic
equilibrium is globally asymptotically stable if R0 ≥ 1.

2.7 Sensitivity Analysis

The normalized sensitivity index, in the context of epidemiology is a measure that quantifies the sensitivity of the basic
reproduction number (R0) to make changes in specific parameters of an infectious disease model.

The sensitivity index is often used to assess the impact of changes in model parameters on the basic reproduction number
which helps researchers and public health practitioners to understand which parameters have the most significant influence on
the potential for disease spread. The normalized forward sensitivity index of R0 with respect to the parameter say θ is given by

ΓR0
θ = ∂R0

∂θ × θ
R0
.

The expression for the reproduction number is R0 =
Λβ (1−m)[γ+(η1+η2+δ1+k1+µ)]

µ(γ+ω+µ)(η1+η2+δ1+k1+µ) which is obtained from Equation (9).
By the definition of normalised forward sensitivity index of R0, the sensitivity indices can be simulated as given below

ΓR0
β = ∂R0

∂β × β
R0

=+1
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Similarly, the sensitivity index of other parameters is obtained as below

ΓR0
Λ =+1, ΓR0

η1 =
−γη1

(η1+η2+δ1+k1+µ)(γ+η1+η2+δ1+k1+µ)
ΓR0

η2 =
−γη2

(η1+η2+δ1+k1+µ)(γ+η1+η2+δ1+k1+µ)
ΓR0

δ1
= −γδ1

(η1+η2+δ1+k1+µ)(γ+η1+η2+δ1+k1+µ)
ΓR0

k1
= −γk1

(η1+η2+δ1+k1+µ)(γ+η1+η2+δ1+k1+µ) ,

ΓR0
γ = γ[ω−(η1+η2+δ1+k1)]

(γ+ω+µ)(γ+η1+η2+δ1+k1+µ) , ΓR0
ω = −ω

(γ+ω+µ)

ΓR0
µ =

−{γ[(γ+ω)(η1+η2+δ1+k1+2µ)+2µ(η1+η2δ1+k1)+3µ2]+(γ+ω+2µ)(η1+η2+δ1+k1+µ)}
(γ+ω+µ)(η1+η2+δ1+k1+µ)(γ+η1+η2+δ1+k1+µ)

The numerical value of each expression is discussed in the following section.

3 Results and Discussion
In this section, the justification of theoretical analysis of the proposed model is performed by numerical simulations.

Considering the parametric values given in Table 1, the simulation is carried out.

Table 1. Parametric values for the proposed model
Parameter Value Source Parameter Value Source
Λ 2 Estimated δ1 1/7 (21)

m 0.8 (21) δ2 1/7 (21)

β 0.0046 Estimated δ3 1/7 (21)

γ 1/3 (21) k1 0.012 Estimated
ω 1/7 Assumed µ 1/70.42 (22)

η1 0.8 Assumed o 1/14 (21)

η2 0.4 Assumed

Using, the values in Table 1, along with the initial conditions S0 = 1000, E0 = 6, I0 = 4, TS0 = 0, Th0 = 0 and R0 = 0, the
dynamics of the proposed model is plotted and given below.

Fig 2.The Dynamic of the Proposed SEIR model

Also, the dynamics of the infected curve for different values of η1 = 0.1, 0.2, 0.4, 0.8 is obtained as shown in Figure 3.
Figures 4, 5, 6 and 7 gives the dynamics of I, Ts and Th compartment by varying the values of η1, η2 and m correspondingly.
In addition, the infective class of the proposed model and the regular SEIR model with treatment (23) is compared and given

in Figure 8.
From Figure 8, it is observed that the maximum possible infective individual of the proposed model is much controlled than

the regular treatment model showing the proposed model is optimal.
For suppose considering the proposedmodel by neglecting the idea of segregated treatment approach and comparing it with

the proposed model, the dynamics would be as given in Figure 9.
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Fig 3. Dynamics of Infected population

Fig 4. Treatment class for different values η1

Fig 5. Treatment class for different values of η2

Fig 6. Dynamics of Recovered class for various m
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Fig 7. Selected portion of Figure 6

Fig 8. Comparative curve of the Infective classes

Fig 9. Comparison on Dynamics of Treatment classes
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It is observed that the population density of a single treatment class would be greater than the proposed model.
Also, the numerical analysis of the Reproduction number is obtained as follows:
(i) At DFE: R0 = 0.3571 < 1
(ii) At EE: R0 ≥ 1
It is observed that the R0 value is good enough to control impact in spreading the outbreak. Thus, the proposed model is

much enriched than the usual model.
The simulation of the proposedmodel concludeswith the numerical analysis of the sensitivity index.Thenormalised forward

sensitivity index of the basic reproduction number (24) of the model can be represented geometrically as shown in Figure 10.

Fig 10. Normalised Forward Sensitivity Index of R 0

The analysis on sensitivity indices, provides information about the system dynamics. The value of Λ and β emphasises its
substantial influence and shows that themodel structure takes this into account carefully. Similarly, the negative values ofη1, η2
and δ1 highlights the need for mitigation of negative impacts on reproduction number. Also, the values of γ, ω and µ show
their significant influence. Thus, by ranking interventions based on the sensitivity indices the system resilience and efficiency
can be improved.

In summary, the numerical analysis begins with the representation of dynamics of the model which shows an inclined
recovery curve. Further, the maximum infected population is also very less and declines within a short time, showing the
disease can be controlled soon. Figure 3 shows that for increase of η1 value the maximum number of infective is reduced. Also,
Figures 4 and 5 gives how the effect of varying η1 and η2 values create impact in Ts and Th compartment respectively. In order to
highlight the novelty of the proposedmodel, Figures 6 and 7 reveals that the impact of immunology is not effectively increasing
the recovered population. A very minute change in the recovery curve is observed. Also, Figure 8 proves the optimality of the
proposed model revealing the fact that the maximum number of infected individuals is nearly beyond 450 individuals for the
general treatmentmodel, whereas the proposedmodel ensures tomaintain less number of possible infected cases which is about
140 individuals. Further, the proposed model ensures an effective management of hospital resource for the infected individuals
which is depicted in Figure 9. Overall, the numerical analysis enlightens the concept of segregating infected individuals can
reduce the infected individuals and ensures an efficient treatment for the infective.

4 Conclusion
The mathematical analysis performed in this article provides a substantial proof that the proposed model is optimistic and
efficient supported by numerical simulation. Thus, by categorizing the infective and segregating the treatment class into two,
the frontline workers can give prior to the critical cases. From Figure 2, it is observed that the dynamical curve of the proposed
model reveals that the recovery rate elevates and sustain with an adequate value. Also, it is observed that the infective curve is
scant and hence the infected individuals is meagre in population. Further, Figures 3, 4 and 5 ensures the impact of η1 and η2
plays amajor role in reducing the number of infective. Figures 6 and 7 reveals the impact ofη1 andη2 is great, besides the role of
immunity in the model. Further, Figures 8 and 9 justifies that segregation treatment methodology helps in controlled infective
and efficient treatment allocation.The analysis onR0 proves its stability, asR0 = 0.3571 < 1 at DFE and at EE R0 ≥ 1 embracing
the actual situation of the dengue infection. Finally, the sensitivity analysis identified the key parameters in preventing the spread
of outbreak. Evidencing these observations, the proposed model strongly indicates it is optimal in reducing the infective and
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helps in efficient hospital resource management.
Therefore, the proposed model aims in reducing the number of infective and the number of individuals taking treatment

at hospital signifying the readers, how it helps in resource management and in organized treatment for infective during the
outbreak. Beyond this, the model also helps to predict the expected number of infected cases in future which would be helpful
to be prepared for it. Hence, the proposed model helps in case study of the outbreak in a region and be aware of the outbreak.
However, there is a possibility of defect in proposedmodel in defining the parametric value for segregating the infective. So, the
proposed model can be developed to rectify this issue as future research which would be more reliable. Also, incorporating
various incidence rates, transforming the model into partial differential equations and even use of other methods in the
numerical simulation can be performed in future works for testing the efficiency of model.
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