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Abstract
Objectives: Rather than working nonstop in the service area, servers take
vacations when they have no clients. To determine the probability and
features of the queuing system, this study introduces controllable arrival
rates and interdependency in the system’s service and arrival processes. It
also performs a numerical verification of the results. Methods: A recursive
method is employed to solve the steady-state probability equations, yielding
explicit iterative formulas under the assumption that a single server provides
services to all clients. Here, customer arrivals are controlled as either faster or
slower, with Poisson assumedby default. Findings: For thismodel, steady-state
solutions and characteristics are derived and explored, and some numerical
analysis is carried out using MATLAB. All the probabilities are expressed in
terms of P0,0(0), which indicates the system when empty. The movement of
the average number of customers in the system and the expected waiting
time, Ls and Ws respectively, of the customers in the system is investigated
through a graph. Ls andWs decrease when dependence service rate, and faster
arrival rate increase. Additionally, Ls increases and Ws decreases when the
slower arrival rate increases. Novelty: Although there have been studies on
vacation in queuing theory, this new approach aims to bridge the gap between
vacation and interdependency in the arrival and service process, as well as
controllable arrival rates. When vacations with predictable arrival rates are
utilised advantageously for the benefit of both the server and the client, waiting
times may be minimised and the most practical, economical service can be
provided.
Keywords:Markovian Queuing System; Vacation; Loss and Delay; Finite
Capacity; Interdependent Arrival and Service Rates; Varying Arrival Rates;
Bivariate Poisson Process

1 Introduction
The model of queuing process that the present research, assumes a vacationing server
with a regulated arrival rate of indefinite customers. Between vacation and controlled
arrival rates, this article fills the gap. Previously, the M/M/1/∞ interdependent queuing
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model with controllable arrival rates was covered by Srinivasa Rao et al. (1)but that study does not include vacation rate. The
research gap in vacation rate is now included in this article and compared to the previous model. Additional information on
controlled arrival rates includes the work of the other authors (2,3)who have also studied the controllable arrival rates and not
vacation.

In the 1970s, the Vacation model made its debut. Doshi (4) produced a fantastic overview study on vacation. Additional
information about the vacationmodel is studied from the other articles (5–11). All these authors have studied the vacationmodel
but have not included the controllable arrival rates. Now the present research article studies vacation with two different arrival
types—one slower and the other faster. Here, the vacation period is assumed to be when there are no services to be rendered
i.e.) when there are no customers in the queue.

In citation (12,13) the same researchers have studied the system with a definite number of customers in the arrival system
and about the loss of customers due to delay in providing service making the customer lose his patience and quit the queue,
consequences of loss to the business. Now the present research studies about indefinite customer arrival (M/M/1) which is very
practical in the modern computer-assisted system and to avoid losing customers due to delayed service. The novelty of the
present article is very much suitable in the computer communication system to provide faster service by avoiding delay. This
model can be used in a computer communication system to avoid buffering due to excess load. By controlling the arrival rates
and giving a vacation rate the system runs smoothly thus providing faster service.

2 Description of the Model
The arrival process and the service process are {X1 (t)} , {X2 (t)} respectively are correlated and follow a bivariate Poisson
process given by

P[X1 (t) = x1 , X2 (t) = x2] =
e−(λi+µ−ε)t ∑min(x1,x2)

j=0 (εt) j[(λi − ε) t]x1− j[(µ − ε) t]x2− j

j!(x1 − j)!(x2 − j)!
(1)

Where x1,x2 ≥ 0;λ01, λ02,λ11, µ > 0, 0 ≤ ε < min(λi j,µ).
i) Here, we consider a single server queuing system with parameter
λ0, λ1- Mean faster rate and slower rate of arrivals respectively,
µ- Mean service rate,
ε- Mean dependence rate,
v - Vacation rate.
ii) When the system size increases to R from below the arrival rate which was λ0 until R− 1, decreases to λ1 and remains

same for subsequent upward movement of the system size.
iii) When the system size decreases to r from above, the arrival rate which was λ1 until r+ 1, increases to λ0 and remains

same for subsequent downward movement to 0 and upward movement up to R−1. This process is repeated.
iv) The states for the model are as follows:
(a) (0, n) is the state where there are n customers in the queue and the server is in vacation, n ≥ 0. Its probability is P0,n
(b) (1, n) is the state where there are n customers in the system during active service, n ≥ 1. Its probability is P1,n.

3 Steady State Equations
We observe P0,n(0) and P1,n (0) exists when n = 0,1,2, . . . .,r − 1,r ; P0,n (0) , P1,n (0) , P0,n (1) , P1,n (1) exists when n =
r+1, r+2, . . . .,R−1 and P0,n (1) and P1,n (1) exists only when n = R,R+1, . . . .

(λ0 − ε)P0,0 (0) = (µ − ε)P1,1 (0) (2)

(λ0 + v− ε)P0,n (0) = (λ0 − ε)P0,n−1 (0) (1 ≤ n ≤ R−1) (3)

(λ1 + v− ε)P0,r+1(1) = 0 (4)

(λ1 + v− ε)P0,n (1) = (λ1 − ε)P0,n−1 (1) (r+1 ≤ n ≤ R−1) (5)
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(λ1 + v− ε)P0,R (1) = (λ1 − ε)P0,R−1 (1)+(λ0 − ε)P0,R−1 (0) (6)

(λ1 + v− ε)P0,n (1) = (λ1 − ε)P0,n−1 (1) (n ≥ R+1) (7)

(λ0 +µ −2ε)P1,1 (0) = (µ − ε)P1,2 (0)+ vP0,1 (0) (8)

(λ0 +µ −2ε)P1,n (0) = (λ0 − ε)P1,n−1 (0)+(µ − ε)P1,n+1 (0)+ vP0,n (0)
(2 ≤ n ≤ r−1) (9)

(λ0 +µ −2ε)P1,r (0) = (λ0 − ε)P1,r−1 (0)+(µ − ε)P1,r+1 (0)+(µ − ε)P1,r+1 (1)
+vP0,r (0)

(10)

(λ0 +µ −2ε)P1,n (0) = (λ0 − ε)P1,n−1 (0)+(µ − ε)P1,n+1 (0)+ vP0,n (0)
(r+1 ≤ n ≤ R−2) (11)

(λ0 +µ −2ε)P1,R−1 (0) = (λ0 − ε)P1,R−2 (0)+ vP0,R−1 (0) (12)

(λ1 +µ −2ε)P1,r+1 (1) = (µ − ε)P1,r+2 (1)+ vP0,r+1 (1) (13)

(λ1 +µ −2ε)P1,n (1) = (µ − ε)P1,n+1 (1)+(λ1 − ε)P1,n−1 (1)+ vP0,n (1)
(r+2 ≤ n ≤ R−1) (14)

(λ1 +µ −2ε)P1,R (1) = (µ − ε)P1,R+1 (1)+(λ1 − ε)P1,R−1 (1)+(λ0 − ε)P1,R−1 (0)
+vP0,R (1)

(15)

(λ1 +µ −2ε)P1,n (1) = (µ − ε)P1,n+1 (1)+(λ1 − ε)P1,n−1 (1)+ vP0,n (1)
(n ≥ R+1) (16)

Let

A =
λ0 − ε
µ − ε

, B =
λ1 − ε
µ − ε

,C =
v

µ − ε
,D =

A
A+C

,E =
B

B+C

From Equation (2) we get

P1,1 (0) = AP0,0 (0) (17)

From Equation (3) we get

P0,n (0) = DnP0,0 (0) (1 ≤ n ≤ R−1) (18)
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From Equations (4) and (5) we get

P0,n (1) = 0 (r+1 ≤ n ≤ R−1) (19)

From Equation (6) we get

P0,R (1) =
A

B+C
DR−1P0,0(0) = J P0,0(0) (20)

From Equation (7) we get

P0,n (1) = En−RJP0,0 (0) (n ≥ R+1) (21)

From Equations (8) and (9) we get

P1,n (0) =
{[

A+A2 + · · ·+An
]
−
[
1+A+ . . .An−2

]
CD−

[
1+A+ . . .An−3

]
CD2 −·· ·−CDn−1

}
P0,0 (0) (2 ≤ n ≤ r) (22)

From Equations (10) and (11) we get,

P1,n (0) =
{(

[A+ · · ·+An]−
[
1+A+ · · ·+An−2

]
CD−

[
1+A+ · · ·+An−3

]
CD2 −·· ·−CDn−1

)
P0,0 (0)−

(
1+A+ · · ·+An−r−1

)
P1,r+1 (1)}(r+1 ≤ n ≤ R−1)

(23)

From Equation (12) we get

P1,r+1 (1) = FP0,0 (0) (24)

Where,

F =

{
(A+A2 + · · ·+AR)− (1+A+ · · ·+AR−2)CD− . . .CDR−1

}
1+A+ · · ·+AR−r−1

From Equations (13) and (14) we get

P1,n (1) =
(
1+B+ . . . .Bn−r−1

)
FP0,0 (0) ;(r+2 ≤ n ≤ R) (25)

From Equation (15) we get

P1,R+1 (1) =

F
[ [

1+B+ · · ·+BR−r
]
+A{A+ Â2+ · · ·+AR−1

−(1+A+ · · ·+AR−3)CD−·· ·−CDR−2}− (1+A+ · · ·+AR−r−2)F

]
−CJ

P0,0 (0) (26)

From Equation (16) we get

P1,n (1) = {F
(
1+B+ · · ·+Bn−r−1

)
+
(
1+B+ · · ·+Bn−R+1

)[
A
[(

A+A2 + · · ·+AR−1
)
−
(
1+A+ · · ·+AR−3

)
CD−·· ·−CDR−2 −

(
1+A+ · · ·+AR−r−2

)
F
]
−CJ

]
−
(
1+B+ · · ·+Bn−R−2

)
CEJ−

(
1+B+ · · ·+Bn−R−3

)
CE2J−·· ·−CEn−R−1J}P0,0 (0) (n > R+1)

(27)

4 Characteristics of the Model

P(0) =
∞

∑
n=0

P1,n(0)

P(0) exists only when 1 ≤ n ≤ R−1, we get

P(0) = ∑R−1
n=1 P0,n (0)+∑r

n=1 P1,n (0)+∑R−1
n=r+1 P1,n (0) (28)
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Now,

P(1) =
∞

∑
n=0

P1,n (1)

P(1) exists only when n ≥ r+1

P(1) = ∑∞
n=r+1 P0,n (1)+∑R

n=r+1 P1,n (1)+∑∞
n=R+1 P1,n (1) (29)

The system is empty can be calculated from the normalizing condition

P(0)+P(1) = 1 (30)

The average number of customers in the system

Ls = Ls0+Ls1 (31)

Where

Ls0 =
R−1

∑
n=1

nP0,n (0)+P1,1 (0)+
r

∑
n=2

nP1,n (0)+
R−1

∑
n=r+1

nP1,n(0)

and

Ls1 =
∞

∑
n=r+1

nP0,n (1)+
R

∑
n=r+1

nP1,n (1)+
∞

∑
n=R+1

nP1,n(1)

Now by using Little’s formula, the average waiting time of the customers in the system

Ws =
Ls
−
λ

(32)

Where
−
λ = λ0P(0)+λ1P(1)

5 Results and Discussion
For various values of λ0,λ1,µ,ε,v the values of P0,0 (0) , P(0) , P(1) ,Ls, Ws are computed.

Let us assume r = 4 and R = 7.

Table 1. When there is only one server with vacation, v = 20
λ0 λ1 µ ε P0,0(0) P(0) P(1) Ls Ws
3 2 4 0 0.6288 0.8403 0.1597 6.6011 2.3241
4 2 4 0 0.2470 0.5925 0.4075 8.0615 2.5311
5 2 4 0 0.0980 0.3203 0.6797 8.8332 2.9834
6 1 5 0.5 0.1245 0.4114 0.5886 8.1063 2.6516
6 3 5 0.5 0.1033 0.3413 0.6587 8.9399 2.2216
6 5 5 0.5 0.0819 0.2707 0.7293 9.7808 1.8557
6 4 5 1 0.0860 0.2812 0.7188 9.3418 2.0476
6 4 8 1 0.6341 0.8727 0.1273 7.4648 1.2993
6 4 9 1 0.8233 0.9302 0.0698 7.4644 1.2737
4 3 4 0 0.2280 0.5469 0.4531 8.4414 2.3799
4 3 4 0.3 0.2324 0.5507 0.4493 8.3518 2.3521
4 3 4 1 0.2446 0.5625 0.4375 8.1086 2.2761
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Fig 1. Ls andWs by varying λ0 and keeping other parameters fixed

Fig 2. Ls andWs by varying λ1 and keeping other parameters fixed

Fig 3. Ls andWs by varying µ and keeping other parameters fixed

https://www.indjst.org/ 1502

https://www.indjst.org/


Subhapriya & Thiagarajan / Indian Journal of Science and Technology 2024;17(14):1497–1506

Fig 4. Ls andWs by varying ε and keeping other parameters fixed

Table 1 is created by assuming that there would be just one server and that vacation time would be taken at a rate of 20.
Figures 1, 2, 3 and 4 show how Ls andWs move when one parameter is altered while the remaining is left constant. We are given
a generalised picture of the assumed values of r, R, and v via this table and graphs. Assuming any values will also provide the
same.

Table 2. When there is only one server without vacation
λ0 λ1 µ ε P0,0(0) P(0) P(1) Ls Ws

6 2 4 0 0.0433 0.9367 0.0633 3.6941 0.6428
10 2 4 0 0.0025 0.3216 0.6784 5.4611 1.1942
11 2 4 0 0.0025 0.2826 0.7174 5.5601 1.2239
10 3 5 0.5 0.0058 0.4113 0.5887 5.2255 0.8889
10 5 5 0.5 0.0054 0.3876 0.6124 5.3277 0.7679
10 8 5 0.5 0.0050 0.3538 0.6462 5.4735 0.6286
8 5 2 1 8.2601e-06 0.0486 0.9514 6.4644 1.2563
8 5 3 1 3.5421e-04 0.1557 0.8443 6.0550 1.1076
8 5 4 1 0.0031 0.3115 0.6885 5.5730 0.9391
13 6 3 0 1.2243e-04 0.1183 0.8817 6.1469 0.9002
13 6 3 0.3 7.9908e-05 0.1048 0.8952 6.1900 0.9193
13 6 3 1 2.2316e-05 0.0731 0.9269 6.3001 0.9675

Fig 5. Ls andWs by varying λ0 and keeping other parameters fixed
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Fig 6. Ls andWs by varying λ1 and keeping other parameters fixed

Fig 7. Ls andWs by varying µand keeping other parameters fixed

Fig 8. Ls andWs by varying εand keeping other parameters fixed
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Assuming that there would be a single server with no vacation rate (v = 0), Table 2 is generated.Wemight consult citation (1)

research article. Figures 5, 6, 7 and 8 show how Ls and Ws move when one parameter is altered while the remaining is left
constant. These graphs correspond with Figures 1, 2, 3 and 4.

Table 3. When there is only one server without vacation and controllable arrival rates
Ls Ws

Varying λ0 = λ1 = λ and keeping µ = 20, ε = 0 fixed

6 0.4286 0.0714
9 0.8182 0.0909
11 1.2222 0.1111
15 3.1000 0.2000

Varying µ and keeping λ0 = λ1 = λ = 10, ε = 0 fixed

12 5.1000 0.5000
14 2.5000 0.2500
15 2.1000 0.2000
19 1.1111 0.1111

Fig 9. Ls andWs by varying λ0 = λ1 = λ and keeping other parameters fixed

Fig 10. Ls andWs by varying µ and keeping other parameters fixed

Table 3 is constructed assuming that there is a single server with no vacation (v = 0) and no adjustable arrival rates
(λ0 = λ1 = λ ). We might refer to the conventional model. Figures 9 and 10show how Ls and Ws move when one parameter is
altered while the remaining is constant. These graphs correspond with Figures 1, 2, 3 and 4.
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6 Conclusion
Themovement of Ls andWs is observed in Table 1.

• When the mean dependence rate increases and the other parameters are kept fixed, both Ls andWs decrease.
• When the service rate increases and the other parameters are kept fixed, both Ls andWs decrease.
• When the faster arrival rate increases and the other parameters are kept fixed, both Ls and Ws increase.
• When the slower arrival rate increases and the other parameters are kept fixed, Ls increasesWs and decreases.

When there is no vacation (v = 0), Table 2 specifies the model. The results of Srinivasa Rao et al. (1) are consistent with this
numerical result. The model with no vacation and adjustable arrival rates (v = 0 and λ0 = λ1 = λ ) is defined in Table 3. The
conventional model and this numerical finding are in agreement. This model simplifies to the M/M/1/∞ queuing model with
vacation (5) when λ0 approaches to λ1 and ε = 0.

Therefore, a single server vacation queuing model with quicker and slower arrival rates has been examined in this article.
Graphs are used to support this model’s validity even further. Numerous stochastic service systems in the actual world may be
used using this model. The future scope of the idea of this model can be extended to analyse other related models such as the
delayed vacation model, multiple vacation model, time-dependent failures, second optional vacation policy etc.,
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