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Abstract
Objectives: With increase in number of access points in Cell-Free Massive
Multiple InputMultiple Output (CFMM) system, spatial complexity of calculating
precoding vector increases with traditional precoding schemes. So, to reduce
computational complexity, network cost, and run time, a new deep learning
-aided precoder is specially designed for CFMM system. The performance
of downlink (DL) Cell-Free Massive Multiple Input Multiple Output (CFMM)
system operating under Rayleigh fading channel model is analyze using
new deep learning-based precoding scheme. Methods: We introduce new
deep learning-aided precoder and an improved version of basic scalable
pilot assignment algorithm which enhances system performance. We derive
closed- form expression for average DL spectral efficiency (SE) for the
proposed scheme, which is then compared with Minimum Mean Square Error
Successive Interference Cancellation (MMSESIC), Regularized Zero Forcing
(RZF), Least Square (LS) and Maximum Ratio (MR) combining techniques.
We analyze the proposed scheme with perfect channel state information
(CSI), instantaneous CSI, coherent transmission, non-coherent transmission,
different pilot configuration. Findings: The spectral efficiency obtained with
CFMM-MMSESIC and the proposed scheme is 3 bits/s/Hz, and 2.5bits/s/Hz
respectively, which clearly indicates the difference of 20 % only. So, the
proposed scheme gives near optimal results, and we can use simple linear
combining techniques instead of complex non-linear combining techniques.
Also, the proposed schemewith coherent data transmission gives performance
curve, which is very close to MMSESIC scheme as desired. The performance
of the proposed system is improved by reducing run time and computational
complexity as compared to conventional linear precoding schemes. Novelty:
The proposed precoder improves performance by reducing run time and
computational complexity. Advanced pilot assignment algorithm enhances
performance by reducing pilot contamination.
Keywords: Cell-Free Massive Multiple Input Multiple Output; Pilot
Contamination; Precoding; Minimum Mean Square Error Successive
Interference Cancellation; Maximum Ratio; Regularized Zero Forcing (RZF);
Least Square (LS)
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1 Introduction
Unlike optical wireless communication (1–3) where light is used to transmit data, wireless communication uses radio waves to
transmit data. The concept of cell-free network in wireless communication, which is the core technology of sixth-generation
(6G), is coined from small-cells (SC), distributed MIMO, and massive MIMO (4,5). The CFMM systems reaps the benefits of
network MIMO, small cells (SC) and massive MIMO (6–8). In CFMM system processing unit is separate i.e. Central Processing
unit (CPU) also known as edge cloud processor. Large number of access points (APs) are deployed in a specific area and
are connected to CPU through fronthaul connection and CPUs are connected through backhaul connection. In conventional
antenna system, antennas are deployed within a cell, but in CFMM system, antennas are deployed in a specific area, hence the
name CFMM. The CFMM system provides improvement in spectral efficiency (SE), cell boundary performance and coverage
capability. Two future research directions (9,10) and areas of concern for CFMM networks are addressed in this paper i.e.
precoding (11) and pilot contamination. Using orthogonal pilot symbols for UL, CE is very common, but for densely populated
cell-free networks it will create pilot contamination (PC) and use of non-orthogonal pilot symbol will affect SE adversely.
So, there must be a trade-off between the two methods to enhance the system performance. There are many papers (12,13)

which consider different methods taking PC into consideration such as pilot reuse, maximization of SINR, partitioning of
cell into rings etc. Recently various pilot decontamination (14,15), pilot contamination (16,17) mitigation techniques are also
investigated. Different pilot assignment methods are studied in paper (18). In the proposed paper, we have used a modified
version of scalable pilot assignment algorithm in which pilot symbols are assigned to UEs in a sequential manner, thereby
improving system performance. Again, to improve the performance of the CFMM system, we can opt for maximizing sum-rate
performance by choosing optimized precoding vector. This optimization of precoding vector is mathematically complex and
time consuming. Also developing a model-based precoding optimizer algorithm is difficult task. Therefore, in this paper, we
have designed a deep learning approach (19,20) for generating optimal matrix. In CFMM system spatial complexity increases
with increase in number of APs, so with traditional precoding schemes, implementation cost of the network increases. To avoid
aforementioned drawback and to enhance system performance deep neural network based precoder is designed for CFMM
system, considering the effect of pilot contamination. As discussed in literature (21) ZF precoding outperforms CB technique,
so we have also considered ZF precoding for comparison purpose. But it is proved that MMSE processing gives optimal results
for CFMM system. So, we have considered MMSE with successive interference cancellation (SIC) processing as a benchmark
for comparison purpose. Rician channel model is perfect for cell free networks for many use cases, but for rich scattering
environment, Rayleigh fading channel model is perfect. Here in paper, the CFMM network is analysed under Rayleigh fading
channel model. So, the main contribution of this paper is as follows:

• In this paper, we propose a deep learning aided precoder design for DL CFMM system under the assumption of
independent Rayleigh fading. The proposed DNN network will reduce the run-time and computational complexity of the
system compared to traditional precoding methods. For the proposed precoding scheme, we derive closed-form expression
for an achievable data rate.

• We considered a modified version of scalable pilot assignment algorithm to mitigate PC in addition to assigning pilot
symbols in sequential order.

•The comparison of the proposed systemwith different precoding (22) methods such asMMSE-SIC, RZF andMR precoding
method is analysed.The performance of the proposed scheme is evaluated for coherent and non-coherentDL data transmission,
perfect and instantaneous channel state information (CSI), and for varying pilot lengths.

The rest of the paper is organized as follows. System model for downlink cell-free massive MIMO network is defined in
section 2, which covers uplink training, pilot assignment, coherent downlink data transmission, and learning aided precoder.
Performance analysis with numerical results is discussed in section 3 followed by conclusion in section 4.

2 Methodology
In this paper, we consider downlink (DL) analysis of CFMM system shown in Figure 1, with ’M’ number of APs equipped
with ’N’ number of antennas and ’K’ number of single antenna users (UEs). The system is supposed to operate in time division
duplexing (TDD) mode. All APs and UEs are randomly distributed across a specified area considering MN ≫ K . All APs are
connected to central processing unit (CPU) via fronthaul links. The Rayleigh fading channel between UE ’K’ and AP ’M’, which
captures the effect of large-scale and small-scale fading is given by:

hmk ∼ NC(0,Rmk) (1)

Where Rmk is spatial correlationmatrix having dimension Rmk ∈CN×N .The large-scale fading coefficient βmk ≜
tr(Rmk)

N indicates
shadowing and pathloss. We assume that hmk is an independent random variable for every m = 1 . . . ..M, APs and K =

https://www.indjst.org/ 1293

https://www.indjst.org/


Deshpande et al. / Indian Journal of Science and Technology 2024;17(13):1292–1303

1 . . . . . .K, UEs and channel realization hmk in different coherence blocks are i.i.d.We analyseDLCFMMnetworkwith following
assumptions:

• Channel Reciprocity: In TDD DL channel is reciprocal of UL channel. So, we assume DL channel to be exactly reciprocal
of UL channel considering channel estimation error and pilot contamination.

• Assuming the channel to be constant during coherence interval and varies independently between coherence intervals i.e.
block-fading channel model.

Let us consider a TDD frame with coherence block τc = τp+τDL where τc indicates length of coherence interval in samples,
τp indicates length of pilot symbols in samples during pilot transmission in UL phase and τDL indicates length of DL data in
samples during DL data transmission in DL phase.

Fig 1. Cell-Free Massive MIMO Architecture

2.1 Uplink Training

Consider all UEs transmit their pilot signals, then the pilot signal received by mthAP is given as:

Y p
mk = Y p

mk ϕ H
K = ∑k

i=1

√
ρiτPhimϕKϕ H

K +ϕ H
K nP

m (2)

Where ρi is the UL pilot power of the ith UE. nP
mεCN×τp is the received noise matrix i.e. nP

m ∼ NC
(
0,σ2

)
and σ2 . Now to

calculate estimated value of him take inner product of Y p
m and ϕK , so that we have,

Y p
mk = Y p

mkϕ H
K = ∑k

i=1

√
ρiτPhimϕKϕ H

K +ϕ H
K nP

m (3)

Here we assume that K > τp due to which each pilot sequence is shared by more than one UE, leading to so called pilot
contamination. Also, we define subset SK of UEs with same pilot sequence as UE K, so we can write (3) as:

Y p
mk = ∑i∈SK

√
ρiτPhimϕKϕ H

K +ϕ H
K nP

m (4)

Now if we observe (4), then it is clear that mutual interference is created due to sharing of same pilot sequence by UEs leading to
so called pilot contamination. Due to pilot contamination, system performance is degraded similar to cellular massive MIMO.
Also, channel estimation quality is affected and channel estimates becomes correlated. This correlation is directly proportional
to number of AP antennas i.e. ’N’. Both factors will have negative impact on UE performance. In this paper, local CE is done at
the serving AP. Now according to standard theory of MMSE estimation, we can calculate channel estimate ĥmk for Kth UE at
mthAP which belongs to the subset SK is given as:

ĥmk =
√

ρkτpRmkψ−1
mk Y p

mk (5)

where ψmk = E {Ymkp (Ymk
p)}= ∑i∈SK ρiτpRim + IN is the correlation matrix of received signal (4). We can also write (5) as:

ĥmk = ZmkY
p

mk (6)

https://www.indjst.org/ 1294

https://www.indjst.org/


Deshpande et al. / Indian Journal of Science and Technology 2024;17(13):1292–1303

where Zmk =
√

ρkτpRmkψ−1
mk and depends on channel statistics. So, we can have channel estimate by multiplying Y p

mk with N×
N matrix Zmk of each UE served by AP m. The value of Zmk is known prior to AP m and is calculated at AP m. This will reduce
the computational complexity at AP m, to a significant extent.

2.2 Pilot Assignment
In this paper, we have considered K > τp, and length of the pilot sequence is τp, therefore there are only τp orthogonal sequences.
For number of UEs greater than τp, orthogonal pilot sequences are reused leading to so called pilot contamination (PC). Due
to PC system performance is affected. Also, in TDD, CSI is obtained during UL training phase which is then further used in DL
data transmission. So, to have optimal performance, accurate CSI is important. And PC is introduced in the system during UL
channel estimation phase leading to increase in channel estimation error.Therefore, the two aspects first one PC and second one
channel estimation error needs to be taken care of.Thus, the channel estimation error caused by PC,will affect spectral efficiency
of UE leading to decrease in net throughput of the proposed CFMM system. In order to maximize the system throughput, PC
and channel estimation errormust be contained. To address PC issue, we have designed an advanced pilot assignment algorithm
which is improved version of basic algorithm (15) is discussed below. A unique pilot assignment technique, which is themodified
version of the technique mentioned in paper (15) is used for mitigating pilot contamination. Due to pilot contamination, quality
of CE gets affected. Consider τp mutually orthogonal pilot sequences and pilot sequence of UE K is denoted by φk wherein (||φk
||)2 =τp and φk ∈ C (τp × 1). Whenever a UE gains access into the network, a pilot is assigned to the UE depending on the
distance between mobile UE and AP. The AP which is nearest to the UE, will serve that UE. If there are more than one APs near
to the UE, then β large scale fading factor will decide the serving AP. In this way pilot assignment and AP selection is done
through a small algorithm as follows:

1. Accessing UE selection: Here the UE gaining access to the network is selected using a specific process through which
first of all, poor channel quality UE are assigned with pilot sequence and then other UEs are considered for pilot assignment.
The channel quality of UEs is determined by large scale fading coefficient i.e., beta. This fading coefficient is calculated for all
accessing UEs and the values are stored in set S as per descending order. Accordingly, the accessing UE, is selected for further
process.

2. In 5G, accessing UE communicates with its neighbouring APs using either primary or secondary synchronization signals.
Depending on the nearest distance measurement dn a serving APAPn is chosen by the accessing UE.

Serving (APn) = arg(mindn) (7)

3. If there are more than one equidistant APs in neighbourhood of the accessing UE, then the serving AP is chosen based on the
large-scale fading coefficient, β . The serving APn will serve the accessing UE with all its N number of antennas. It will assign
pilot p to the accessing UE using specific algorithm.

4.The serving APn will give information to all neighbouring APs that pilot p is being used by accessingUE. As a consequence
of this, other pilot sequences will be considered for transmission apart from pilot p which will reduce PC to a significant extent.
Finally, accessing UE will appoint serving AP, the one which is nearest to it and Serving AP will assign unused pilot p to the
accessing UE. This will not only ensure reduced PC but also increases system performance to a greater extent as shown in the
simulation results.

2.3 Coherent Downlink Data Transmission

In CFMM system, during DL coherent data transmission, all APs serve all the UEs in the same time frequency resources. That
is with APs phase synchronised, different APs send the same signal to the same UE. During DL transmission, DL signal sent by
mthAP to the KthU E is

Smk =
√ρmkxk (8)

where ρmk is the DL transmission power, and xk is the data signal sent to the KthUE .
Thus, the signal sent by mthAP is given as;

Y p
mk = ∑k

i=1 WmkSmk (9)

WhereWmkεCN×MistheprecodingvectordesignedbyAPm f orUEk.T hesignalreceivedbyKthU Eisgivenby;

Y DL
mk = ∑M

l=1 hH
mkWmlSml +∑k

i=1,i ̸=k ∑M
l=1 hH

mlWilSmk +nk (10)

https://www.indjst.org/ 1295

https://www.indjst.org/


Deshpande et al. / Indian Journal of Science and Technology 2024;17(13):1292–1303

Y DL
mk =

M

∑
l=1

hH
mkWmlSml︸ ︷︷ ︸

desired signal

+
k

∑
i=1,i ̸=k

M

∑
l=1

hH
mlWilSmk︸ ︷︷ ︸

MUI

+ nk︸︷︷︸
noise

(11)

From (11) it is obvious that, the signal is divided into three parts, first term is the desired signal, second term indicates multi-
user-interference (MUI) and last term is the noise signal received at the receiver. The performance of the CFMM system is
evaluated considering DL SE [bits/s/Hz]. An achievable SE is obtained using hardening bound illustrated in (23). To apply
bounding technique, we rewrite above equation as:

Y DL
mk = PGkxk︸ ︷︷ ︸

Precoding Gain

+ PGUkxk︸ ︷︷ ︸
Precoding Gain
Uncertainty

+
k

∑
i ̸=k

MU Ikixi︸ ︷︷ ︸
Multi-user interference

+nknoise (12)

Where PGk is defined as precoding gain and is given by;

PGk = ∑M
l=1

√ρklE( hH
klWkl) (13)

2.4 Proposed Deep Feed Forward Neural Network Based Precoder

Fig 2.DNN Precoder module for the proposed CFMM system

Here in this section, we propose a new deep learning architecture for precoding of cell-free networks. Let Y = F (X; ψ)
indicate a fully connected (FC) deep neural network (DNN).TheDNN is supposed to process an inputmatrix Xwith a teachable
parameter set ψ giving an output matrix Y. The input matrix X represents real and imaginary part of vector, and corresponding
real and imaginary part of output vector Y is obtained by using DNN. For L no of DNN layers we have:

y j = f
(

∑L
j=1 w jx j +b

)
(14)

Where y j is the output, x j is the input, w j is the weight, b is the bias of jth layer.
The weight and bias form a set of teachable parameters ψ ≜ (w,b,∀L). The final output Y is thus obtained from (14). The

block diagram of proposedDNN structure for generating precodingmatrix is shown in Figure 2.The input given to the network
is the channel state information i.e. channel matrix H = H1 . . . . . .Hk, yielding output precoding matrix W. The proposed DNN
network initially utilizes regularised zero forcing (RZF) precoder, which helps in extracting important features of optimal
precoding matrices. Due to RZF precoder’s simplicity, it used as a side information for proposed DNN network. Thus, from
channel matrices as input and side information of WRZ F , DNN precoding matrix WDNN is obtained. The output layer will give
DNN-based precoder solution

WDNN which is given by WDNN = [WDNN1 . . . . . .WDNNk] . If we use WDNN
as a precoding vector i.e. ‘W’ in (11), we will have SINR of
Thus, by using optimal precoder i.e. WDNN , we can maximize or improve achievable sum-rate of KthUE as;

SINRDNN
k =

∣∣E {
∑M

l=1
√ρklhH

klWDNNk
}∣∣2

∑k
i=1 E

{∣∣∑M
l=1

√ρkihH
kiWDNNk

∣∣2}−
∣∣E {

∑M
l=1

√ρklhH
klWDNNk

}∣∣2 +σ2
DL

(15)
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Thus, by using optimal precoder i.e. WDNN , we can maximize or improve achievable sum-rate of

Rsumrate =
τDL

τC
(1+SINRDNNK) (16)

The same procedure is summarised in the algorithm (Figure 3 ) given below.

Fig 3. Algorithm 1 DNN based Precoding Algorithm for Cell-Free Networks

From comparison point of view DNN-based precoder is compared with other precoding techniques such as MMSE, RZF,
MR precoder. The loss function used for training is mean square error (MSE) given by:

L
(

∑L
j=1 W b

)
=

1
RT

R

∑
R=1

T

∑
t=1

∥ W−WDNN∥2 (17)

where T is the training size, and R is the number of realizations used for training. Here we use trainedDNN at the previous stage
for initialization of the current DNN stage. Due to this training strategy, performance of the training is improved. In this case,
we use weights obtained in previous stage to the loss function of the current stage.The process is repeated overmultiple training
stages until convergence. The DNN structure used for precoding is shown in Figure 4 and DNN hyper parameters are depicted
in Table 1.We can generate data set by experimentally calculating channelmatrices, but here data set generated by (24) is used for
training. The training process involves updating of weights and biases for each layer, according to Xavier initialization method.
The DNN is trained by Adam optimiser, exploiting stochastic gradient descent method. The input layer employs parametric
rectified linear unit (PRelu), which is also used in initial expansion layers.

When layer size decreases gradually towards the desired output tanh activation function is used formore stableDNNmodels.
It is given by

f (x) =
e+x − e−x

e+x + e−x
(18)
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Fig 4.DNN Structure

Table 1. Simulation Specifications for DFF neural network
Parameter Ranging values
Input Layer neurons 1248
Output Layer neurons 1248
Hidden Layer1neurons 1.6K
Hidden Layer2 neurons 1.2K
Hidden Layer neurons 800
Learning Rate 0.001
Optimizer Adam
Batch Size 20
Gradient Descent Accuracy 10−8
Activation Function tanh
Loss Function MSE

Out of 250880 (24) realizations we have used 200000 only. For training data 140,000 realizations are used, and 30,000 for
validation and data testing each respectively. The DFF neural network is trained for 900 iterations, with a learning rate of 0.001.
The learning rate depicts how fast the DNN is able to change the weights and biases. For each iteration, mini batch size of 50 is
considered, which indicates that after every 50 samples weights are updated. The number of epochs and batch size is selected
after trial-and-error method. After training, performance is evaluated for test data set which gives us desired output. There are
3 hidden layers each with 1.6K,1.2K and 800 neurons respectively. After training the data, the DNN-based precoder is ready
for testing.

3 Result and Discussion
In this section, we analyse performance of the proposed CFMM system under Rayleigh fading channel model. We consider a
scenario in which the total coverage area for cell-free setting is 1 × 1Km2 area, with K single antenna UEs and M APs with N
number of antennas. The large-scale fading coefficient is given by:

βmk = 10
PLmk +Zmkσ sh

10 (19)

Where Zmk is a random variable with gaussian distribution, with σsh equal to 8db. PLmk is the path loss for mth AP and kthUE,
which is represented by three slope path loss model

given by:

PLmk =

 −P−35log10dmk . . . . . . .(i f dmk < 50m )
−P−15log1050−20log10dmk . . . . . . .(i f 10m < dmk ≤ 50m )

−P−15log1050−20log1010 . . . . . . .(i f dmk ≤ 10m )
(20)
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where P is 140.7db, which is a constant and depends on carrier frequency fc, UE height is hUE and AP height is hAP, and dmk
is the distance between mth AP and kth UE. The APs are 10m above the UEs. We consider τDL= 190, τp = 10, τc = 200, channel
bandwidth B = 20MHz, UL transmit power pk = 100mW,DL transmit power p = 1W.We assume eachUE transmit at full power
and each AP operate at maximum transmit power. Each APwill serve UEwith good channel condition as well as UE with worst
channel condition by allocating power to UEs appropriately. This will guarantee non zero SE curve as shown in the simulation
results. The performance analysis of the proposed CFMM system is evaluated considering two parameters time consumption
and numerical results. These two aspects are discussed below. Time consumption parameter is used to compare time required
to achieve desired solution. The conventional precoders are compared with proposed DNN-based precoder. The conventional
methods require approximately 20ms to 30ms of time to achieve desire solution, while on the other hand DNN-based precoder
is much faster consuming only 1ms to 2ms of time, saving approximately 90percent of run-time. So, this proposed method can
be used for IoT applications. We know that training a particular DNN network is time consuming. But training is done only
once and in offline mode. Once the network is trained, DNN framework will give desired output in few seconds.

3.1 Numerical Results

In this section, the performance of the proposed CFMM system is compared with linear and non-linear precoding techniques.
The performance of the proposed system is also evaluated against different parameters i.e. perfect and instantaneous CSI,
varying pilot lengths, coherent and non-coherent data transmission. In Figure 5 comparison of the proposed schemewith linear
i.e. RZF, MRT and non-linear i.e. MMSESIC combining techniques is shown. It depicts CDF of DL SE for various schemes,
considering M=400, N=1 and K=50 set-up. From the CDF curve, 90percent likely values for CFMM-MMSESIC, proposed
scheme, CFMM-RZF, and CFMM-MRT are 3 bits/s/Hz, 2.5bits/s/Hz, 1.5 bits/s/Hz, 1.25 bits/s/Hz respectively. It is expected
for the proposed scheme to give performance very close to MMSESIC combining technique. From CDF curves, it is clear that
the proposed scheme outperforms RZF and MRT schemes and gives performance curve which is very close to MMSESIC i.e.
non-linear combining technique. So, the proposed scheme gives near optimal results as expected. From graph it is also clear
that we can use simple linear combining techniques instead of complex non-linear combining techniques to get near optimal
results. This will further reduce the computational complexity of the proposed CFMM system.

Fig 5.DLSE Comparison of the proposed scheme with MMSESIC, RZF and MRT combining techniques

Figure 6 analyses the CDF against the sum SE of proposed scheme verses RZF and MR precoding techniques for M=100,
N=4 and K=50. The graph is plotted for different random UE locations. From the graph it is obvious that the proposed scheme
gives better performance as compared to RZF and MR precoding techniques. The huge performance gap between the proposed
scheme and RZF, MR scheme emphasizes the importance of using deep learning for precoding techniques.

The comparison of the proposed scheme with MMSESIC with coherent and non-coherent data transmission is shown in
Figure 7. It shows CDF of DL SE per UE. From 80 percent likely values on CDF curve, coherent data transmission is better than
non-coherent data transmission. Also, the proposed scheme gives performance curve, which is very close to MMSESIC scheme
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Fig 6. CDF of sum SE of the proposed scheme compared with MR and RZF combining techniques

Fig 7. Comparison of the proposed scheme with MMSESIC with coherent and non-coherent transmission

as desired.
The comparison of the proposed schemewith LS combiningwith different pilot lengths for coherent transmission is depicted

in Figure 8. It shows the CDF of SE per UE with pilot length 5 and 15 for M=100, N=4 and K=50. From 70 percent likely
values of CDF curve, it is seen that the proposed scheme gives better performance than the other one, in both cases when pilot
length is 5 and 15. It shows the impact of varying pilot lengths on the performance of the system. For varying pilot length, the
performance gap between LS and the proposed system also changes accordingly. This fact proves that the performance of the
system depends on pilot length. Increasing pilot length will improve estimation quality for LS combining technique by reducing
pilot contamination. Thus, the performance loss of the system depends on the degree of pilot contamination. Performance loss
is less when τp = 15 and it is more when τp= 5.

In Figure 9 the CDF of DL SE with perfect and instantaneous CSI is shown. The proposed scheme is compared with perfect
CSI and instantaneous CSI. From CDF curve, 90 percent likely values for perfect CSI and instantaneous CSI are 1.15 bits/s/Hz,
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Fig 8. Comparison of the proposed scheme with LS combining technique with different pilot lengths

Fig 9. Comparison of the proposed scheme with perfect CSI and instantaneous CSI

and 0.85 bits/s/Hz respectively. From graph, performance of the proposed scheme is better with perfect CSI as compared to
instantaneous CSI. But the performance gap between the two is very small due to the fact that, for DNN based precoder perfect
CSI is not required. Even without knowing the perfect CSI it gives better performance as shown in the Figure 9.

The comparison of average DL SE of the proposed scheme with MMSE, MR and RZF techniques is seen in Figure 10. Here
average DL SE is considered for different number of APs. Performance increases with increase in number of APs as seen from
Figure 10. From the result it is obvious that the proposed scheme outperforms other techniques with a huge performance gap
re-emphasizing the importance of using DNN-based precoder. Thus, from results it is clear that DNN based precoder increases
the system performance to a greater extent.
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Fig 10. Average DL SE of the proposed scheme compared with MMSE, MR and RZF combining

4 Conclusion
This paper developed a new framework for DL CFMM system under Rayleigh fading channel model incorporating learning
aided precodingwith enhanced basic pilot assignment algorithm. First, we developed deep learning- based precoder, enhancing
the system performance by reducing fronthaul requirement, since perfect CSI is not required. DNN-based precoder is trained
using previous readings so it gives optimal results even in the absence of perfect CSI. Secondly an improved version of scalable
basic pilot assignment algorithm is developed to mitigate pilot contamination, thereby enhancing the system performance. The
simulation result shows that:

• From the CDF curve, 90percent likely values for CFMM-MMSESIC, proposed scheme, CFMM-RZF, and CFMM-MRT
are 3 bits/s/Hz, 2.5bits/s/Hz, 1.5 bits/s/Hz, 1.25 bits/s/Hz respectively. It clearly indicates, that we can use the proposed
system instead of complex CFMM-MMSESIC for near optimal results.

• Sum spectral efficiency curve depicts that the proposed scheme gives better performance as compared to RZF and MR
precoding techniques.

• With coherent data transmission, the proposed scheme gives performance curve, which is very close toMMSESIC scheme
as desired.

• The performance of the proposed system depends on pilot length.
• From CDF curve, 90 percent likely values for perfect CSI and instantaneous CSI are 1.15 bits/s/Hz, and 0.85 bits/s/Hz

respectively, which depicts better performance of the proposed scheme with perfect CSI as compared to instantaneous
CSI.

• The average DL SE of the proposed scheme increases with increase in number of APs.

With near optimal results obtained for the proposed scheme, one important aspect which is power allocation, can be considered
as future work.
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