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Abstract
Objective: This study investigates the Numerical solution of laminar bound-
ary layer flow of Magnetohydrodynamics (MHD) model for power-law fluid
over a continuous moving surface in the presence of a transverse mag-
netic. Methods: The governing partial differential equation for the flow was
transformed into non-linear ordinary differential equation using theGroup the-
oretic method. Firstly, we convert this non-linear ordinary differential equa-
tion (ODE) into linear by using quasilinearization process. This linear ODE was
solved numerically by applying the Spline collocation method suggested by
Bickley. Findings: The solution for displacement profile and velocity profile
were obtained as functions of the magnetic parameters. The effect of the
magnetic parameters was discussed graphically. We used MATLAB software
for finding the outcomes. Novelty: The main goal of this article is to analyze
boundary layer flow of Magneto hydrodynamics (MHD) model for power-law
fluid over a continuous moving surface in the presence of a transverse mag-
netic. The conservation equations of mass, momentum and energy are con-
verted into ordinary differential equations along with boundary conditions by
appropriate similarity transformations and solved by applying Spline Colloca-
tionMethod. The convergence of solutions is important for providing the devel-
oping linear functions of solutions, which is a benefit of the Spline Collocation
Method. These research findings are applicable, for example, in predicting skin
friction and heat transfer rate over a stretching sheet, which has implications in
technological and manufacturing industries such as polymer extrusion. Com-
parisonswith previously publishedworks aremade, and the results showahigh
level of agreement. This type of research is applicable to work in fire dynamics
in insulation, solar collection systems, recovery of petroleum products, etc.
Keywords: Power-Law Fluids; Magnetic Field; Nonlinear Differential Equation;
Quasilinearization; Bickley’s Method; Linear Equations
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1 Introduction
Magneto hydrodynamic (MHD) fluid flow has great utilization in industrial areas and manufacturing processes. MHD is a
consolidation of three fundamental terms—magneto, hydro, and dynamics. Here, the term magneto refers to magnetic field,
hydro refers to liquid/fluid, and dynamic refers to the evolution of particles.

The subject of boundary-layer flow on a continuously moving surface traveling through a quiet ambient fluid is important
because of its relevance to several engineering processes. Flows due to a continuouslymoving surface are encountered in several
engineering problems and havemany applications, including rubber sheetmanufacturing, production of glass fibers, petroleum
industries, polymer processing and filament extruded continuously from die. The field of magneto hydrodynamics consists of
the study of fluid behavior in an electrically conducting environment.Theboundary layer flowof viscous incompressible fluid on
moving surface with constant velocity was first studied by (1).The boundary layer behavior on a continuous solid surfacemoving
on both flat and the cylindrical surface was reviewed by (1–3). The effects of suction or injection in a steady two-dimensional
MHD boundary layer flow of on a flat plate were studied by (4). A method for integrating the boundary layer equations through
a region of reverse flow and applied it to the problem of uniform flow past a parallel flat plate of finite length whose surface has
a constant velocity directed opposite to that of mainstream was studied by (5).

All of the above investigators restrict their analysis to the flow of Newtonian fluids. Most fluids such as molten plastics,
artificial fibers, drilling of petroleum, blood and polymer solutions are considered non-Newtonian fluids. The concept of the
boundary layer in the theory of non-Newtonian power-law fluids had been introduced by (6).The boundary layer free convective
unsteady flow of an incompressible micropolar fluid under a uniform magnetic field is considered with thermal radiation in
symmetric and asymmetric boundary conditions was studied by (7). A two-dimensional mixed convective MHD stagnation
point flow of Carreau fluid past an infinite plate in a porous medium was studied by (8). A continuously moving surface with a
parallel free stream was discussed by (9). The analytical solutions of hydro magnetic boundary-layer flow of a non-Newtonian
power-law fluid past a continuously moving surface had been given by (10). Irregularity in heat generation, chemical reaction
and thermal radiation effect an unsteady micro polar fluid flow was examined by (11) using HAM.

Motion of power-law fluids in the presence of magnetic field has been studied earlier by several authors. The concept of
triple diffusive flow with magnetic field effect toward a power law stretching sheet was studied by (12) using Galerkin finite-
element simulation. MHD free convection of power-law fluids in a sinusoidally heated enclosure was investigated by (13) using
the MRT-LBM. MHD flow of a power-law fluid over a rotating disk was studied by (14). Analytical Solution for the MHD Flow
of Non-Newtonian Fluids between Two Coaxial Cylinders was obtained by (15). Lie Group Analysis of Double Diffusive MHD
Tangent Hyperbolic Fluid Flow over a Stretching Sheet was studied by (16). Velocity Slip Effect on MHD Power-Law Fluid
over a Moving Surface with Heat Generation, Viscous Dissipation and Thermal Radiation was analyzed by (17). A numerical
approach to MHD flow of power-law fluid on a stretching sheet with non-uniform heat source was presented by (18). Steady,
two dimensional laminar incompressible boundary layer flows past a moving continuous flat surface was investigated by (19).
The MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet had been investigated by (20). Partial
differential equation into nonlinear ordinary differential equations using Group theoretic method was converted by (21).

The objective of the present study is to analyze the flow behavior ofMagneto hydrodynamic boundary layer model for power
law fluid in the presence of transverse magnetic field (i) when plate is stationary (ii) fluid and plate moves in same direction
and same velocity (iii) fluid and plate moves in opposite direction. We also analyzed different parameters, including power law
index, magnetic parameter and velocity profiles. All the important findings are illustrated graphically. A similar study was also
carried out by (22) using an implicit finite difference scheme.

2 Governing Equation and Similarity Transformation
Consider a steady, two-dimensional laminar flow of a power-law fluid passing through amoving flat plate with constant velocity
Uw, in the same or opposite direction to the free stream U∞. The x−axis extends parallel to the plate, while the y-axis extends
upwards, normal to it. Also, a magnetic field of strength B0is applied in the positive y−direction, which produces magnetic
effect in the x−direction. The boundary layer equations governing the flow in a power-law fluid are

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂v
∂y

=
1
ρ

∂τxy

∂y
−

σB2
0

ρ
u (2)
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Where u and v are the velocity components along the x and y axes, τxyis shear stress, σ is electrical conductivity and ρ is field
density

The boundary conditions are:

y = 0 : u =Uw, v = 0
y = ∞ : u =U∞

(3)

Where γ
∣∣∣ ∂u

∂y

∣∣∣n−1
denotes the kinematic viscosity, K is the consistency coefficient γ = K

ρ and n is the power-law index, for
n < 1 pseudo plastic, for n = 1the fluid is Newtonian, n > 1 for dilatant fluid. The equation becomes

u
∂u
∂x

+ v
∂v
∂y

=
∂
∂y

(
γ
∣∣∣∣∂u
∂y

∣∣∣∣n−1 ∂u
∂y

)
−

σB2
0

ρ
u (4)

Partial differential equation converted into nonlinear ordinary differential equations using Group theoretic method by (21).
Similarity analysis by the deductive group-theoretic method is derived from theory of continuous group transformations.
Recently, this theory is found to give more adequate treatment of boundary layer equations.

Consider the following transformation:

ψ(x,y) = axα f (η), η = b
y
xb (5)

Where a,b,α and β are real numbers, η is similarity variable, f (n) is the transformed dimensionless stream function.
Applying this similarity variable η they derive

ψx = axα−1 [α f −ηβ f ′
]

ψy = ab f ′xα−β

ψyy = ab2xα−2β f ′′

ψyx = abxα−β−1 [α f ′−β f ′−βη f ′
] (6)

Using the equation (5) along with (6) they get transformed nonlinear ordinary differential of the form(
| f ′′|n−1 f ′′

)′
−M f ′+

1
n+1

f f ′′ = 0 (7)

With the transformed boundary conditions:

f (0) = 0, f ′(0) =∈, f ′(∞) = 1 (8)

Putting n = 1in the equation (7), it becomes

f ′′′−M f ′+
1
2

f f ′′ = 0 (9)

With boundary conditions

f (0) = 0, f ′(0) = ε, f ′(∞) = 1. (10)

Where ε = Uw
U∞

and M =
σB2

0
ρU∞

xare called velocity parameter and magnetic parameter.
Here note that when ε = 0 plate is stationary and, ε = 1plate and fluid moves same direction and same velocity and for

∈< 1plate and fluid moves opposite direction.

2.1 Numerical Procedures

Since nonlinear differential equations cannot be solved by Bickley’s (23) method, we convert nonlinear ODE using
Quasilinearization into linear ODE. Applying the Quartic Spline collocation method for linear ODE, we get the system of a
linear equation which we solve using software.
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2.2 Quartic Spline Collocation Method

Consider equally spaced knots of partition : π : a = x0 < x1 < x2 < .. . . . . .. < xn = b on [a,b]. The quartic spline is defined by

s(x) = a0 +b0 (x− x0)+
1
2

c0 (x− x0)
2 +

1
6

d0 (x− x0)
3 +

1
24

n−1

∑
k=0

ek (x− xk)
4
+ (11)

Where the powers function(x− xk)+

(x− xk)+ =

{
x− xk, x > xk

0, x ≤ xk
(12)

and the boundary value problem is given by

y′′′(x)+ p(x)y′′(x)+q(x)y′(x)+ r(x)y(x) = m(x) (13)

Subject to boundary conditions

α0y0 +β0y′n + γ0y′′n = δ0

α1y′0 +β1yn + γ1y′′n = δ1

α2y′′0 +β2yn + γ2y′n = δ2

(14)

To solve this boundary value problem substitute s(x),s′(x),s′′(x),s′′′(x) from quartic spline, then the boundary value problem
becomes

n−1

∑
k=0

ek

{
(xi − xk)++

1
2

pi (xi − xk)
2
++

1
6

qi (xi − xk)
3
++

1
24

ri (xi − xk)
4
+

}
+d0

{
1+ pi (xi − x0)+

1
2

qi (xi − x0)
2 +

1
6

ri (xi − x0)
3
}

+ c0

{
pi +qi (xi − x0)+

1
2

ri (xi − x0)
2
}

+b0 {pi + ri (xi − x0)}+a0 {ri}= m{xi} . Where i = 0,1,2, . . . . . .n.

(15)

Thus for quartic spline and third order boundary value problem we get nine linear algebraic equations in nine
unknownsa0,b0,c0,d0,e0,e1, . . . .e4. The matrix form of this system is given by

AX = B
Where X = [e4,e3,e2,e1,e0,d0,c0,b0,a0]

T ,B = [δ2,δ1,δ0,m5,m4,m3,m2,m1,m0]
T

and the co-efficient matrix A is an upper Hessenberg matrix.This system of linear equation can easily solve by MATLAB.

2.3 Numerical Solution by Using Bickley Method

Our aim is to find numerical solution of the nonlinear ordinary differential equation

f ′′′−M f ′+
1
2

f f ′′ = 0 (16)

With boundary conditions

f (0) = 0, f ′(0) =∈, f ′(1) = 1 (17)

Solve this equation for three cases when ε = 0 plate is stationary, ε = 1 plate and fluid moves same direction and same velocity
and for ∈< 1 plate and fluid moves opposite direction.

We use quasilinearization technique to convert (16) into linear form with help of boundary conditions (17).
We get linear form as

f ′′′i+1 +
1
2

fi f ′′i+1 −M f ′i+1 +
1
2

f ′′i fi+1 =
1
2

f ′′i fi (18)
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With boundary conditions (17)
The Quartic spline is given by

s(η) = a0 +b0 (η −η0)+
1
2

c0 (η −η0)
2 +

1
6

d0 (η −η0)
3 +

1
24

n−1

∑
k=0

ek (η −ηk)
4
+ (19)

Substitute (19) in (18), we get collocation as follows

n−1

∑
k=0

ek

[
(ηi −ηk)+

fi

4
(ηi −ηk)

2 − M
6
(ηi −ηk)

3 +
f ′i
48

(ηi −ηk)
4
]

+d0

[
1+

1
2

fi (ηi −η0)−
M
2
(ηi −η0)

2 +
f ′′i
12

(ηi −η0)
3
]
+ c0

[
1
2

fi −M (ηi −η0)+
f ′′i
4
(ηi −η0)

2
]

+b0

[
−M+

1
2

f ′i (ηi −η0)

]
+a0

[
1
2

f ′′i

]
=

1
2

f ′′i fi

(20)

Case (i): ε = 0 plate is stationary
To obtain the spline solution, begin with a assume function f (η) = 1

2 η2 which satisfy given boundary conditions (17). For
numerical solution of equation (16) along with boundary conditions (17), first we use f (η) = 1

2 η2in (20).
We get graphical solution as follows:

Fig 1. f (η) versus ηfor different values of M.

Fig 2. f ′(η) versus ηfor different values of M.

Case (ii): ε = 1 plate and fluid moves same direction and same velocity
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To obtain the spline solution, begin with a assume function f (η) = η which satisfy given boundary conditions (17). For
numerical solution of equation (16) along with boundary conditions (17), first we use f (η) = η in (20).

We get graphical solution as follows:

Fig 3. f (η) versus ηfor different values of M.

Fig 4. f ′(η) versus ηfor different values of M.

Case (iii):∈< 1 plate and fluid moves opposite direction
Similarly, we use f (η) = η2 −η which satisfy given boundary conditions (17). For Numerical solution, we use f (η) =

η2 −η in (20).
We get graphical solution as follows:

Fig 5. f (η) versus ηfor different values of M.

Here we presented the comparison of velocity and displacement when fluid and plate moves along the same direction and
plate and fluid moves opposite direction.
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Fig 6. f ′(η) versus ηfor different values of M.

Fig 7. Comparison of f (η) versus η , when M=1.

Fig 8. Comparison of f ′(η) versus η , when M=1.
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3 Result and Discussion
Numerical calculations are performed to study the behavior of the adopted scheme. Differential Equation (16) subjected to
the boundary conditions (17) are solved by adopting Bickley’s Spline collocation method. The main reason behind solving the
present problem is to determine the impact of magnetic parameter, velocity profile and displacement profile when fluid flow on
a moving surface in different situations.

In the numerical method mentioned in the previous section, numerical computations are carried out at different values
of magnetic parameters. The following three cases depict the graphical representations of the numerical results for different
governing parameters influencing the proposed model’s flow behavior.

1.Case - 1 Plate is stationa ry
In Figures 1 and 2, it is observed that the value of themagnetic parameter increases, then displacement and velocity decrease.
2. Case -2 Plate and Fluid move in same direction
Similarly, in Figures 3 and 4, it is found that the value of the magnetic parameter increases, then displacement and velocity

also decrease.
3.Case-3 Plate and Fluid move in opposite direction
In the case of Figure 5, the increase in magnetic parameter displacement also increases, while in Figure 6, the increase in

magnetic parameter resulted in steady behavior in velocity.
However, in Figures 7 and 8, Both displacement and velocity for Plate and Fluid moving in the opposite direction have lower

values than Plate and Fluid moving in the same direction by keeping the value M=1 fixed.

4 Conclusion
The present study reflects the flow behavior of the Magneto hydrodynamic boundary layer model for power law fluid in the
presence of transverse magnetic field (i) when the plate is stationary (ii) fluid and plate move in the same direction and at same
velocity (iii) fluid and plate moves in the opposite direction. The outcomes of the current study incorporate the significance of
MHD fluid flow on velocity profile, displacement profile and magnetic parameter. The key findings of the current analysis are
summarized as

• The magnetic parameter is transversely proportional to velocity and displacement when the plate is stationary ( ε = 0 )
• The magnetic parameter is transversely proportional to velocity and displacement when the plate and fluid move same

direction (ε = 1).
• When plate and fluid move in the opposite direction, there is no remarkable change in velocity even though the magnetic

parameter changes (ε < 1).
This magnetism helps to control the rate of fluid velocity in manufacturing processes and industrial applications to obtain

the desired quality of product.
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