
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 30-01-2023
Accepted: 11-08-2023
Published: 20-11-2023

Citation: Srivastava S, Bansal R,
Thapar A (2023) List Coloring
Problem: A Heuristic Approach.
Indian Journal of Science and
Technology 16(SP3): 22-29. https://d
oi.org/
10.17485/IJST/v16iSP3.icrtam135
∗
Corresponding author.

richabansal@dei.ac.in

Funding: None

Competing Interests: None

Copyright: © 2023 Srivastava et al.
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

List Coloring Problem: A Heuristic
Approach

Stuti Srivastava1, Richa Bansal1∗, Antika Thapar1

1 Department of Mathematics, Faculty of Sciences, Dayalbagh Educational Institute,
Dayalbagh University, Agra, 282 005, Uttar Pradesh, India

Abstract
Background/Objectives: List coloring problem is one of the most important
generalizations of well-known graph coloring problem. List coloring of a graph
is a problem of assigning colors to all vertices of the graph from a pre-defined
list of colors for every vertex in such a way that no two adjacent vertices
share the same color. In this process, the highest color assigned to a vertex
is called span. The objective of the list coloring problem is to minimize this
span. Methods: In this study, two heuristic methods are proposed to solve
this problem namely: a greedy randomize adaptive search heuristic and a
simple greedy heuristic. Findings: Computational experiments on randomly
generated graphs show that both the proposed heuristics are capable of
obtaining optimal results. It is also observed that greedy randomize adaptive
search heuristic performed well as compared to the other one. Comparison
with other state-of-art algorithms reveals that both the proposed heuristics
have obtained better results for larger graphs in a reasonable time. Novelty:
The origin of list coloring problem is very old, still its solving procedures are
limited to mostly exact algorithms. Moreover, there is no heuristic available
for LCP for general graphs having vertex size more than 150. This paper is an
attempt to develop heuristics/metaheuristics for solving this problem for larger
graphs in a reasonable time which is not possible with exact methods.

Keywords: Graph Coloring; List coloring; GRASP

1 Introduction
Graph coloring is one of the most important and emerging areas of graph theory which
has many important applications in scheduling, timetabling, sequencing and frequency
assignment. With time, to advance these applications, some more restrictions are
imposed on coloring problemwhichmotivated researchers to generalize graph coloring
problem and to develop different variants of this problem like Equitable Coloring,
Precoloring Extension, (γ ,µ)-coloring, Bandwidth Coloring, T-coloring, List coloring
and many more. List coloring problem (LCP) is also one of the important versions of
graph coloring problem. In graph coloring, a color (natural numbers) is assigned to each
vertex of a given graph provided adjacent vertices receive different colors. Whereas, in
list coloring, a color is assigned to each vertex of the graphwith the restriction that these

https://www.indjst.org/ 22

https://doi.org/10.17485/IJST/v16iSP3.icrtam135
https://doi.org/10.17485/IJST/v16iSP3.icrtam135
https://doi.org/10.17485/IJST/v16iSP3.icrtam135
https://doi.org/10.17485/IJST/v16iSP3.icrtam135
richabansal@dei.ac.in
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

colors must come from a given color list for each vertex and colors of two adjacent vertices should not be the same. In this
process, highest color assigned to a vertex is called span. List coloring problem intends to list coloring with minimum span for
a given graph. Mathematically, let G = (V, E) be an undirected and simple graph without loops, where V is the set of vertices
with |V| = n and E is the set of edges of the graph. Also, each vertex vi ∈ V has given a color list Lvi which has some colors as
natural numbers. Then list coloring is to assign a color c(vi) (say) to each vertex vi of V from its color list Lvi in such a manner
that c(vi) ̸= c(v j) ∀(vi, v j) ∈ E . Let k be the highest color assigned to a vertex (i.e., span = k) then LCP is to minimize this k.
or,

(Objective) minimize k

c(vi) ̸= c(v j) , ∀(vi, v j) ∈ E (1)

and c(vi) ∈ Lvi

Where 1≤ i≤ n,1≤ j ≤ n, i ̸= j, c : V →{1, 2, 3, . . . ,k} and i, j, k
The minimum value of k for which list coloring is possible is known as list chromatic number.

Fig 1. A graph with (a) given color list at each vertex and (b) list coloring of the graph

In Figure 1 (a) a graph is shown where list of colors is given at each vertex. In Figure 1 (b) a color is assigned (in bold)
to each vertex from its given color list such that the colors of two adjacent vertices are not the same. So, this coloring is list
coloring with span 3. The applicability of this problem can be seen in scheduling and channel assignment problems (1). One of
the real-life applications of LCP can be seen in wireless networks where due to hardware restrictions, each radio has a limited
set of frequencies through which it can communicate and radios within a certain distance from each other cannot operate on
the same frequency without interfering.This situation could be converted as LCP by representing the wireless radios as vertices
and assigning a list of available frequencies to each vertex (2). Similarly, multiple depot vehicle scheduling problem can also be
modeled as list coloring problem (3).

List coloring problem is NP-complete (4). Although LCP was first studied in 1970, mostly exact algorithms are available in
the literature. In 2019, a branch and price algorithm for LCP was developed by Lucci et al. (5). This algorithm is capable of
finding optimal list coloring for graphs with only up to 70 vertices. A grover search based quantum algorithm was proposed
by Sayan Mukherjee in 2021 (6). This algorithm works better in finding list chromatic number of graphs with limited vertices
as for large-sized graphs, the time complexity of the algorithm will be increased. Some problem specific results are also found
by researchers. Molloy in 2019 presented a result for list chromatic number of triangle free graphs (7). In 2021 a polynomial
algorithm is developed to find list coloring of block graphs and complete bipartite graphs (8). Cranston in 2023 presented a
study on some graph coloring problems including list coloring (9). In which he summarized some theoretical results on the
upper bounds of chromatic numbers.

Despite availability of several exact algorithms in the literature for list coloring problem, there is only one heuristic (10) that
solves LCP for random graphs with at most 150 vertices only. Moreover, exact algorithms are fast in obtaining optimal results,
they can be failed or become very complex while dealing with larger graphs. So, to solve list coloring problem for larger graphs,
the construction of heuristics/metaheuristics is highly desirable.

This study is centered on two heuristic algorithms to solve list coloring problem for general graphs: (i) a greedy randomize
adaptive search heuristic and (ii) a simple greedy heuristic, are designed. To examine the efficacy of these algorithms,
experiments are performed on randomly generated graphs. Results obtained from our proposed heuristics are compared with
one of the latest proposed exact algorithms (Branch and Price Algorithm (5)). These results are also compared with the only
available heuristic given in (10).

The organization of this paper is as follows: In Section 2, general structure of greedy randomize adaptive search procedure
is described briefly followed by detailed explanation of proposed heuristics. Experimentations are given in Section 3 with
conclusion in Section 4.

https://www.indjst.org/ 23

https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

2 Methodology
• Solving List Coloring Problem

In this section, greedy randomize adaptive search procedure and a simple greedy heuristic are described in detail to solve LCP.

2.1 Greedy Randomize Adaptive Search Procedure (GRASP)

GRASP is a multi-start or iterative metaheuristic, in which each iteration consists of two phases: construction and local search.
The construction phase builds a solution using a greedy randomized adaptive algorithm. If this solution is not feasible, then it is
necessary to apply a repair procedure to achieve feasibility or to make a new attempt to build a feasible solution. Once a feasible
solution is obtained, its neighborhood is investigated until a local minimum is found during the local search phase.The overall
best solution is updated and saved.

procedure grasp ()

1. InputInstance ()
2. For GRASP stopping criterion not satisfied
3. ConstructGreedyRandomizedSolution(Solution)
4. LocalSearch(Solution)
5. UpdateSolution(Solution, Best_Solution_Found)
6. Repeat the function
7. return(Best_Solution_Found)

end grasp;

2.2 Randomize Adaptive Search heuristic for LCP (GRASH_LCP)

Initially a candidate list (CL) of all the vertices is created. For all the vertices in CL, an evaluation function eval is calculated
using equation (2). Vertices with degree greater than or equal to eval are sent to restricted candidate list (RCL). To obtain diverse
solution, more than one restricted candidate list is created by taking different values ofα.A vertex is selected randomly (say v1)
from the union of all RCL and least available color (say c1) from the list of colors (Lv1) of that vertex v1 is assigned to it. After
assigning color to vertex v1, set of adjacent verticesN (v1) of v1 is obtained and color lists of all the vertices ofN (v1) are updated
by removing color c1 from their lists. Also, candidate list is updated by removing the vertex v1. The process is repeated again
to color the next vertex. As soon as vertices get colored, color lists of their neighboring vertices become shorter. During the
procedure, if for any vertex, its color list becomes empty, the dead-end occurs. To resolve this dead-end, the vertex enters into an
improvement phase (Subsection 2.4) which returns a feasible coloring. The whole process is repeated until colors are assigned
to all the vertices of the. At last, the largest color assigned to a vertex is saved in k and treated as a solution of the LCP,

eval = P1− α (P1−P2) (2)

where, P1 = maxv∈CLd(v), P2 = minv∈CLd(v) and α ∈ (0,1)
Apseudo code forGRASH_LCP is presented inAlgorithm1 followed by an Example 1.Themain component of this heuristic

which is an improvement phase is described in Section 2.4. To understand these algorithms, some notations used in algorithms
are defined as follows:

c(v): color assigned to vertex v
N(v): neighborhood vertices of vertex v
CL: candidate list
RCL: restricted candidate list
d(v): degree of vertex v
α : a real number between 0 and 1
RCLi: restricted candidate list with respect to ith value of α
eval : an evaluation function to select best vertices from CL to send in RCL
P1 : vertex from CL with maximum degree
P2 : vertex from CL with minimum degree
Algorithm 1: Improved greedy randomize adaptive search

https://www.indjst.org/ 24

https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

Input: A graph G(V, E) with color list Lv for each vertex v ∈ V
1. c(v)← 0, N(v)← 0
2. CL← {v1, v2, v3, …, vn}
3. while CL ̸=∅
4. P1 = maxv∈CLd(v)
5. P2 = minv∈CLd(v)
6. for i = n/10
7. select a real number α randomly between (0, 1)
8. eval = P1− α (P1−P2)
9. RCLi← all vertices with degree greater than or equal to eval
10. end for
11. RCL←∪ RCLi
12. Select a vertex u randomly from RCL
13. If Lu ̸=∅
14. c(u) = min Lu
15. else
16. ImprovementPhase(u)
17. end if
18. N(u)← (v | (u,v) ∈ E )
19. LN (u)← LN (u) – (u)
20. CL← CL – u
21. end while
22. span = max(c(u) ∀ u ∈ V )
23. return span
Example 1: Consider an example graph in Fig.1 in which a list of colors is given for each vertex. Initially all vertices are

stored in the candidate list CL. Now, as P1 = maxv∈CLd (v) = 3 and P2 = minv∈CLd (v) = 2, and α = 0.5 (say). Then eval = 3 –
0.5(3 -2) = 3 – 0.5 = 2.5. Now, all the vertices with degree greater than 2.5 are sent to RCL, So, RCL = {a, c, d, e}.Now a vertex
c is selected randomly and least color 1 from its color list is assigned to it. Now color 1 is removed from the color list Ld of its
neighboring vertex d (as 1 is not present in the color list of other neighbors), and c is now removed from CL. Repeating the
same process as above eval is obtained as 2.5. So, RCL = {a, d, e}.Now vertex e (say) is selected randomly and least color 2 is
assigned to it. 2 is removed from L f .Updated RCL = {a, d}. Let vertex a be selected and least color 2 is assigned to it. Similarly,
color 3 is assigned to vertex d. Now CL = {b, f},P1 = 2 and P2 = 2.Then eval = 2. So, RCL = {b, f}. Color 1 is assigned to
vertices b. At last, RCL = { f} so the least available color 1 is assigned to vertex f. This coloring is shown in Figure 2.

Fig 2. Cell An example of a graph with list colors in bold

2.3 Simple Greedy Heuristic for LCP

In this subsection, a greedy heuristic for LCP is designed and explained. Let C be the set of colored vertices and UC be the set
of uncolored vertices. Initially all vertices are in UC and C is empty. The algorithm starts with calculating feedback value fb for

https://www.indjst.org/ 25

https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

each vertex in UC by using the following formula:
f b(v) = d (v)+ number of colored neighboring vertices of v.
After finding feedback value of every vertex, the vertex with maximum feedback value is selected to color first. If there are

more than one vertex whose feedback value is maximum then the algorithm selects the vertex which has the smallest color in
its color list. If smallest color is also same for more than one vertex, then any vertex can be selected randomly. When a vertex
is selected, the least color from its color list is assigned to it. After that this color is removed from color lists of all the adjacent
vertices of the selected vertex. As soon as a vertex is given a color, it is removed from the list of uncolored vertices UC. Again,
the process is repeated until all the vertices are get colored. If at any stage, color list of any vertex is empty, then an improvement
phase is applied on it to resolve this problem. At last, when all vertices are colored, the largest color assigned to a vertex is saved
in k and treated as solution of the LCP. An example of this process is given in Example 2. Pseudo code of this procedure is given
in Algorithm 2.

Example 2: Consider a graph in Figure 1. Initially a feedback value fb, which is taken as degree of the vertex (as there is no
colored neighbor of a vertex), is calculated for all vertices. So, f b(a)= 3, f b(b)= 2, f b(c)= 3, f b(d)= 3, f b(e)= 3, f b( f )= 2.
Now vertex with maximum feedback value is selected but since f b(a) = f b(c)= f b(d) = f b(e) = 3, so the vertex with the
least color in its color list is selected. Since vertices c and d have least color 1 in their list so any one of these (say c) is selected
randomly and least available color from Lc, i.e., 1 is assigned to vertex c. Now color 1 is removed from the list of all adjacent
vertices of the vertex c. Since vertex c is colored, it is removed from the set UC of uncolored vertices. In the next step, (using
formula given in Section 2.3) f b(a) = 4, f b(b) = 2, f b(d) = 4, f b(e) = 4, f b( f ) = 2. Let a vertex a with the least color in its
color list be selected randomly and c(a) = 2 and now updated UC = {b, d, e, f}, f b(b) = 3, f b(d) = 5, f b(e) = 4, f b( f ) = 2.
Clearly, vertex d will be colored next. So c(d) = 3.After assigning color to vertex d, f b(b) = 3, f b(e) = 4, f b( f ) = 3.Therefore,
c(e) = 2. Following the same process again, updated feedback value of vertices in UC are f b(b) = f b( f )= 4. So c( f ) = 1. At
last, c(b) = 1.

Algorithm 2: Greedy Heuristic
Input: A graph G(V, E) with color list Lv for each vertex v ∈ V
1. c← 0, fb← 0, count← 0
2. while (|c| < n) // |c| is the cardinality of array c and n is number of vertices in graph G
3. for v = 1:n and c(v) = 0
4. N(v)← (u | (u, v) ∈ E )
5. for u ∈ N(v)
6. if c(u) ̸= 0
7. count ++
8. end if
9. end for
10. fb(v) = d(v) + count
11. end for
12. vm = vertex with maximum value of fb
13. if Lvm ̸=∅
14. c(vm) = min Lvm
15. LN (vm)← LN (vm) - c(vm)
16. else
17. ImprovementPhase(vm)
18. end if
19. end while
20. span = max(c(v) ∀ v ∈ V )
21. return span

2.4 Improvement Phase

Improvement phase is designed to resolve dead-end at any stage of Algorithm 1 orAlgorithm 2. Dead end situation occurs when
there is no color available in the given list of a vertex, in that case, it is sent to an improvement phase. The process is described
in Algorithm 3. Let v be the dead-end vertex i.e., color list of vertex v has become empty. Let Lv be the list of colors which were
initially given to v. Firstly, set of neighboring vertices of v, i.e., N (v) is obtained (line 2, Algorithm 3) then a set CN(v) of colored
vertices of N(v) which has color belongs to Lv is calculated (lines 3-7, Algorithm 3) and a colored vertex (say u) with minimum
degree is selected fromCN (v). If there exist more than one such vertices then color of each such vertex is assigned to v one by

https://www.indjst.org/ 26

https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

one and set of conflicting vertices (CV ) (adjacent vertices having same color) for each vertex of CN(v) is obtained (lines 8-18,
Algorithm 3). At last, the color for which conflicts are minimum, is assigned to vertex v and color list of all its neighboring
vertex is updated (lines 19-21, Algorithm 3). Note that there will never be a case when color of any vertex from N (v) does not
belong to Lv as v is dead-end and all colors from Lv are assigned to its neighboring vertices. Now the algorithm tries to remove
conflicts of vertices from CV. All the vertices in CV are treated one by one, by changing their color with next minimum color of
their respective color list. In this process, if color list is empty for any vertex, then dead-end cannot be resolved and the process
breaks. So, in this case list coloring cannot be obtained with existing list colors. Else the whole process is repeated until CV does
not become empty i.e., dead-end is resolved.

Algorithm 3: Improvement Phase(v)
1. CV← v // CV in an array of conflicting vertices
2. N(v)← (u | (u, v) ∈ E)
3. for i = 1: | N(v)|
4. if c(u) ∈ Lv
5. CN(v)← u // CN(v) is the set of colored vertices of N(v) whose color was in the list color of v
6. end if
7. end for
8. for i = 1: |CN(v)|
9. m = minu∈CN(v)d(u)
10. if d(u) == m
11. c(v)← c(u)
12. end if
13. for all w ∈ N(v)
14. if c(v) == c(w)
15. CV[i]← w // CV[i] has all the vertices having same color as vertex v
16. end if
17. end for
18. end for
19. select a CV[i] (say CV) with least cardinality for i = 1 : |CN(v)|
20. c(v)← c(u) // color of vertex u for which CV[i] has least cardinality
21. update list color set of all vertices of N(v) by removing color c(v)
22. while (CV ̸=∅ )
23. for j =1: |CV|
24. If LCV [ j ] ̸=∅
25. c(CV[j]) = least color from LCV [ j ]
26. update list color set of all vertices of N(CV[j]) by removing color c(CV[i])
27. else
28. return c(v) = 0 Break / /Dead-end cannot be resolved
29. end if
30. end for
31. end while
32. return c(v)

3 Results and Discussion
Experiments

This section is devoted to analyze the performance of the proposed GRASH_LCP and simple greedy heuristic. All
programming in this paper is done in C++ and compilation is done with 11th Gen Intel Core i7 processor, 16 GB RAM and
2.80 GHz CPU. Since there are no benchmark graphs available for list coloring problem, experimentation is done on randomly
generated graphs with upto 1000 vertices. Number of edges in these graphs are also taken randomly. List of colors assigned
to each vertex of the graph are taken as random natural numbers between 1 to number of nodes. Firstly, an optimal value of
span for each random graph is calculated by using branch and price algorithm described in (5) by using CPLEX solver. Then
performance of both the proposed heuristics is compared.

https://www.indjst.org/ 27

https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

Table 1. Results of branch and price, GRASH_LCP and simple greedy heuristic on random graphs

Vertices Edges Edge
density B&P GRASH_LCP Simple Greedy

k best k avg Avg Time k best k avg Avg Time
20 20 0.105263 9 9 12 0 9 14 0
20 37 0.194736 21 21 26 0 21 28 0
20 32 0.168421 16 16 20 0 16 23 0
50 127 0.103673 38 38 44 0 38 46 0.03
50 238 0.194286 43 43 51 0.02 43 55 0.08
50 249 0.203265 56 56 64 0.04 56 67 0.12
100 547 0.110505 67 67 75 0.12 67 78 0.23
100 992 0.200404 82 82 90 0.18 82 94 0.28
100 1050 0.212121 91 91 98 0.16 91 99 0.3
150 986 0.088233 88 88 96 0.2 88 96 0.46
150 1491 0.133423 98 98 113 0.26 98 116 0.54
150 1548 0.138523 - - - - - - -
200 1356 0.068141 112 112 130 0.5 112 136 1.05
200 1505 0.075628 127 127 134 0.62 127 139 1.16
200 1743 0.087588 140 140 159 0.67 140 164 1.53
500 3147 0.025226 - - - - - - -
500 5031 0.040329 247 247 264 6.17 247 267 9.16
500 6264 0.050212 296 296 325 8.24 296 332 10.73
1000 6715 0.013443 382 382 398 11.26 382 403 16.34
1000 7836 0.015688 - - - - - - -
1000 8227 0.016471 478 478 503 18.46 478 516 21.06

The results are presented in Table 1 where first, second and third column of the table describe number of vertices, number
of edges and edge density of the random graph respectively. Column B&P shows the result obtained by branch and price
algorithm (5). Column GRASH_LCP and column Simple Greedy describe the results of these heuristics where column k best
shows the least obtained value of span in five runs, k avg shows the average value of span of five runs and column Avg Time
shows the average elapsed time of five runs. Results of the graphs for which list coloring is not possible using given color lists,
are represented with “-”.

From Table 1 it can be seen that our proposed algorithms are capable of obtaining best results obtained by branch and
price algorithm. Also, GRASH_LCP is more time efficient than Simple Greedy. Note that time comparison of branch and price
algorithm (5) with our proposed heuristics is meaningless as former is an exact algorithm.

Performance of both the proposed heuristics is also compared with the list coloring heuristic (LC) presented in (10) in Table 2.
In the table, first three columns show the specifications of random graphs. Third, fourth and fifth columns shows the results
of GRASH_LCP, simple greedy and list coloring heuristic (described in (10)) respectively. From Table 2, it can be seen that our
proposed heuristics are performing better than list coloring heuristic in terms of elapsed time and results for larger graphs.

Table 2. Comparison among performance of GRASH_LCP, simple greedy and list coloring heuristic (LC (10)) on randomly generated
graphs

Vertices Edges Edge
density

GRASH_LCP Simple Greedy LC (10)

k best k avg Avg
Time

k best k avg Avg
Time

k best k avg Avg Time

20 20 0.105263 9 12 0 9 14 0 9 10 0
20 37 0.194736 21 26 0 21 28 0 21 24 0
20 32 0.168421 16 20 0 16 23 0 16 20 0
50 127 0.103673 38 44 0 38 46 0.03 38 45 0.05
50 238 0.194286 43 51 0.02 43 55 0.08 43 54 0.08
50 249 0.203265 56 64 0.04 56 67 0.12 56 66 0.16
100 547 0.110505 67 75 0.12 67 78 0.23 67 78 0.26
100 992 0.200404 82 90 0.18 82 94 0.28 82 95 0.34
100 1050 0.212121 91 98 0.16 91 99 0.3 91 101 0.42
150 986 0.088233 88 96 0.2 88 96 0.46 88 98 0.7
150 1491 0.133423 98 113 0.26 98 116 0.54 98 118 1.17

Continued on next page

https://www.indjst.org/ 28

https://www.indjst.org/


Srivastava et al. / Indian Journal of Science and Technology 2023;16(SP3):22–29

Table 2 continued
150 1548 0.138523 - - - - - - - - -
200 1356 0.068141 112 130 0.5 112 136 1.05 112 140 3.13
200 1505 0.075628 127 134 0.62 127 139 1.16 127 144 6.36
200 1743 0.087588 140 159 0.67 140 164 1.53 140 169 8.97
500 3147 0.025226 - - - - - - - - -
500 5031 0.040329 247 264 6.17 247 267 9.16 252 273 14.01
500 6264 0.050212 296 325 8.24 296 332 10.73 299 341 21.26
1000 6715 0.013443 382 398 11.26 382 403 16.34 384 410 33.02
1000 7836 0.015688 - - - - - - - - -
1000 8227 0.016471 478 503 18.46 478 516 21.06 480 527 64.17

4 Conclusion
For LCP, mostly exact algorithms are designed till date. Exact algorithms ensure optimal solutions, but the total time of solving
a problem using exact approaches increases exponentially as the size of the problem increases. Whereas, heuristic methods
provide optimal or near optimal solutions for very large-sized graphs in a reasonable amount of time. In this paper we have
proposed two heuristics to solve LCP. From experimentation on randomly generated graphs, it is observed that both proposed
heuristics are capable of obtaining optimal solution as obtained from branch and price algorithm in reasonable time. It is also
observed that our proposed heuristics have performed well in case of random graphs having vertex size greater than or equal
to 500. In the future, more heuristics can be designed and compared for this problem.

5 Declaration

Presented in “International Conference on Recent Trends in AppliedMathematics” (ICRTAM2023) during 24th -25th February
2023, organized by Department of Mathematics, Loyola College, Chennai, Tamil Nadu, India. The Organizers claim the peer
review responsibility.

References
1) Wang W, Liu X. List-coloring based channel allocation for open-spectrum wireless networks. In: VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology

Conference, 2005, 28-28 September 2005, Dallas, TX, USA. IEEE. 2006;p. 690–694. Available from: https://doi.org/10.1109/VETECF.2005.1558001.
2) Sankar JR, Felix A, Mokeshrayalu G, Nathan MMS. A survey: List coloring problem. International Journal of Control Theory and Applications.

2016;9(36):245–249. Available from: https://research.vit.ac.in/publication/a-survey-list-coloring-problem-1.
3) Laurent B, Hao JK. List-graph colouring for multiple depot vehicle scheduling. International Journal of Mathematics in Operational Research. 2009;1(1-

2):228–245. Available from: https://doi.org/10.1504/IJMOR.2009.022883.
4) Bonomo F, Durán G,Marenco J. Exploring the complexity boundary between coloring and list-coloring. Annals of Operations Research. 2009;169(1):3–16.

Available from: https://doi.org/10.1007/s10479-008-0391-5.
5) Lucci M, Nasini G, Severín D. A Branch and Price Algorithm for List Coloring Problem. Electronic Notes in Theoretical Computer Science. 2019;346:613–

624. Available from: https://doi.org/10.1016/j.entcs.2019.08.054.
6) Mukherjee S, Grover. AGrover Search-Based Algorithm for the List Coloring Problem. IEEE Transactions on Quantum Engineering. 2022;3:1–8. Available

from: https://doi.org/10.1109/TQE.2022.3151137.
7) Molloy M. The list chromatic number of graphs with small clique number. Journal of Combinatorial Theory, Series B. 2019;134:264–284. Available from:

https://doi.org/10.1016/j.jctb.2018.06.007.
8) Sahakyan AK. List Coloring of Block Graphs and Complete Bipartite Graphs. World Science. 2021;8(69):1–8. Available from: https://doi.org/10.31435/

rsglobal_ws/30082021/7661.
9) Cranston DW, Coloring. Coloring, List Coloring, and Painting Squares of Graphs (and Other Related Problems). The electronic journal of combinatorics.

2023;30(2):1–42. Available from: https://doi.org/10.37236/10898.
10) Satratzemi M, Tsouros C. A heuristic algorithm for the list coloring of a random graphs. In: The 7th Balkan Conference on Operational Research,

Constanta, May 2005, Romania, May 2005, Constanta, Romania. 2005. Available from: https://www.academia.edu/23671773/A_Heuristic_Algorithm_
for_the_List_Coloring_of_a_Random_Graph.

https://www.indjst.org/ 29

https://doi.org/10.1109/VETECF.2005.1558001
https://research.vit.ac.in/publication/a-survey-list-coloring-problem-1
https://doi.org/10.1504/IJMOR.2009.022883
https://doi.org/10.1007/s10479-008-0391-5
https://doi.org/10.1016/j.entcs.2019.08.054
https://doi.org/10.1109/TQE.2022.3151137
https://doi.org/10.1016/j.jctb.2018.06.007
https://doi.org/10.31435/rsglobal_ws/30082021/7661
https://doi.org/10.31435/rsglobal_ws/30082021/7661
https://doi.org/10.37236/10898
https://www.academia.edu/23671773/A_Heuristic_Algorithm_for_the_List_Coloring_of_a_Random_Graph
https://www.academia.edu/23671773/A_Heuristic_Algorithm_for_the_List_Coloring_of_a_Random_Graph
https://www.indjst.org/

	Introduction
	Methodology
	2.1 Greedy Randomize Adaptive Search Procedure (GRASP)
	2.2 Randomize Adaptive Search heuristic for LCP (GRASH_LCP)
	2.3 Simple Greedy Heuristic for LCP
	2.4 Improvement Phase

	Results and Discussion
	Conclusion
	Declaration

