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Abstract
Objectives: A new class of Two-parameter Akash distribution is proposed and
termed PrasNikh–N Distribution (P2ND). Its various structural properties are
derived and researched. Methods: The concept of weighted distributions
is applied. The distribution parameters have been calculated by maximum
likelihood estimation. Findings: The characterisation sketch of the distribution
is analysed. To examine the significance and supremacy of the distribution, this
is applied to a real lifetime medical data, consists of the weight loss (kilograms
(Kg)) after the first cycle of chemotherapy, of randomly selected 60 patients
from a hospital in Thrissur district, Kerala who were suffering from any type of
gastrointestinal (GI) cancer. The goodness of fit is tested for the same.Novelty:
The results are compared with the known distributions & indicate that the
proposed distribution shows a better fit than the other distributions, and hence
clarifies the significance of the new distribution.
Keywords: Akash distribution; Length biased distribution; Weighted
distribution; Reliability; Data

1 Introduction
In many situations the real data set – from various fields of bio medical, engineering,
economical, business etc., cannot identify a best distribution fitting with the conven-
tional distributions, hence a modification or generalisation of the known distribution
is significant for the same. There are many methods to modify a distribution. By adding
an extra parameter or using the weighted distribution we can formulate one new distri-
bution which satisfies all the properties of probability distribution but its characteristics
are completely different from the parent one.

The idea of weighted distributions (WD) plays a significant role in fitting a model to
the unknown function of weight while the samples are from the proposed distribution.
These distributions provide a remarkable approach that deals with the issue of data
interpretation and model specification. Also, it is significant in analysing lifetime data
inmany subjects likemedicine, engineering, finance, and insurance.While the standard
distribution does not fit well, the WD is suitable for modelling the statistical data.
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The idea of WD, to research how the method of ascertainment can affect the distribution of recorded data was introduced
by Fisher (1). Later this concept is detailed- while the common method utilizing the standard distributions was found to be
inappropriate- executed by Rao (2). If the weight functions emphasize only the length of units of interest the WD reduces
to length biased (LB) distribution. In the context of renewal theory, LB distribution was introduced by Cox (3). LB sampling
situation occurs when a proper sampling frame is absent. LB sampling implies the probability of selecting an element and
its magnitude is proportional. LB distribution is the resulting distribution of observations that are selected with probability
proportional to their lengths.

A lot of researchers have studied various weighted probability models having examples and applications in various areas.
The LB power hazard rate distribution was executed by Mustafa and Khan (4). Al-Kadim and Hussein (5) proposed LB-
weighted Rayleigh and exponential distribution. Mathew (6) discussed some LB distributions with an overview. Abd-Elfattah
et al. (7) presented LB Burr-XII distribution. For application to hydrological data, the LB Weibull-Rayleigh distribution was
introduced by Chaito and Khamkong (8). Osowoleet al. (9) detailed the area-biased quasi-transmuted uniform distribution.
Fazal (10) attained the area-biased Poisson Exponential Distribution. Nanuwong & Bodhisuwan (11) proposed LB Beta-Pareto
distribution. Rasul and Bashir (12) described the Poisson area-biased Lindley distribution. Mir et al. (13)examined the structural
parameters of LBbeta distribution of 1st type. Bashir & Rasul (14) represented the area-biased Rayleigh distribution. Bashir
& Mahmood (15) executed the multivariate area biased Lindley distribution. Aijaz et al. (16)proposed the Poisson area-biased
Ailamujia distribution. Abouammoh (17) showed a new renewal, is better than used classes of life distribution

The ‘2-parameter’ Akash distribution (TAD) is a freshly proposed life-time distribution introduced by Shanker & Shukla (18)

of which theAkash distributionwith one parameter is a specific case. Shanker (19)explainedAkash distribution and applications.

2 Methodology

2.1 The proposed P2N Distribution

We know that the pdf (probability density function) of TAD is,

f (x;θ ,α) =
θ 3

αθ 2 +2
(
α + x2)e−θx;x > 0,θ > 0,α > 0 (1)

The cdf (cumulative distribution function) of TAD is,

F(x;θ ,α) = 1−
(

1+
θx(θx+2)

αθ 2 +2

)
e−θx;x > 0,θ > 0,α > 0 (2)

The pdf for the weighted random variable Xw is fw(x) =
w(x) f (x)
E(w(x)) ,x > 0. If X represented as a random variable follows non-

negative condition having a pdf f (x) and w(x) be the non - negative weight - function and E(w(x)) =
∫

w(x) f (x)dx < ∞.
With respect to the many choices of w(x), weighted models of several types while w(x) = xc, the formulated distribution is

called as WD. Here we detailed the TAD area-biased version. So, the weight function at w(x) = x2, the resultant distribution
termed as area biased distribution having a pdf as,

fa(x) =
x2 f (x)
E (x2)

(3)

here E
(
x2
)
=
∫ ∞

0 x2 f (x,θ ,α)dx

E
(
x2
)
=

2αθ 2 +24
θ 2 (α ·θ 2 +2)

(4)

In Equation (3), apply the Equations (1) and (4) we get the pdf of P2ND as,

fa(x) =
x2θ 5

2αθ 2 +24
(
α + x2)e−θx (5)

and the cdf of P2ND as,

Fa(x) =
∫ x

0
fa(x)dx =

∫ x

0

x2θ 5

2αθ 2 +24
(
α + x2)e−θxdx =

1
2α ·θ 2 +24

∫ x

0
x2θ 5 (α + x2)e−θxdx
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ie., Fa(x) =
1

2α ·θ 2 +24

(
αθ 5

∫ x

0
x2e−θxdx+θ 5

∫ x

0
x4e−θxdx

)
(6)

Following equation simplificationEquation (6), we obtain the cdf of P2ND as

Fa(x) =
1

2αθ 2 +24
(
αθ 2γ(3,θx)+ γ(5,θx)

)
(7)

Here γ(3,θx)&γ(5,θx) represents the Incomplete Gamma function

Fig 1. pdf of P2ND

Fig 2. cdf of P2ND

Figures 1 and 2 shows the nature of pdf and cdf of P2ND for the different values of its parameters.
From the graphs of pdf (Figure 1) the symmetric nature of the distribution is noted.

2.2 Survival (reliability) function of P2ND

S(x) = 1−Fa(x) = 1− 1
2αθ 2 +24

(
αθ 2γ(3,θx)+ γ(5,θx)

)
https://www.indjst.org/ 4669
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2.3 Hazard function of P2ND

h(x) =
fa(x)

1−Fa(x)
=

x2θ 5
(
α + x2

)
e−θx

(2αθ 2 +24)− (αθ 2γ(3,θx)+ γ(5,θx))

Fig 3. Reliability Function of P2ND

Fig 4. Hazard Function of P2ND

Figures 3 and 4 shows the nature of reliability function and hazard function of P2ND for the different values of its parameters.

3 Results and Discussions
The structural properties and other characteristics of the P2ND are discussed here.
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3.1 Moments

The zth order raw moment of the random variable X follows P2ND having the parameters θ and α , is,

E (X r) = µr
′
=
∫ ∞

0
xr fa(x)dx =

∫ ∞

0
xr x2θ 5

2αθ 2 +24
(
α + x2)e−θxdx =

∫ ∞

0

xr+2θ 5

2αθ 2 +24
(
α + x2)e−θxdx

=
θ 5

2αθ 2 +24

∫ ∞

0
xr+2 (α + x2)e−θxdx ie., E (X r) =

θ 5

2αθ 2 +24

(
α
∫ ∞

0
x(r+3)−1e−θxdx+

∫ ∞

0
x(r+5)−1e−θxx

)
(8)

After the simplification of Equation (8), we get,

E (X r) = µr
′
=

αθ 2(r+2)!+(r+4)!
θ r (2αθ 2 +24)

(9)

The initial set of moments of P2ND by letting r = 1,2,3, and Equation (4) in Equation (9).

E(X) = µ ′
1 =

6α·θ 2+120
θ(2·α·θ 2+24)

, E
(
X2
)
.= µ2

′
= 24αθ 2+720

θ 2(2αθ 2+24)

E
(
X3
)
= µ3

′
= 120αθ 2+5040

θ 3(2αθ 2+24)
, E
(
X4
)
= µ4

′
= 720αθ 2+40320

θ 4(2αθ 2+24)

Variance = (24αθ 2+720)(2αθ 2+24)−(6αθ 2+120)
2

θ 2(2αθ 2+24)
2

S.D(σ) =

√(
(24αθ 2+720)(2αθ 2+24)−(6αθ 2+120)

2

θ 2(2αθ 2+24)
2

)

3.2 Harmonic mean (HM) of P2ND is,

H.M = E
(

1
x

)
=
∫ ∞

0

1
x

fa(x)dx =
∫ ∞

0

xθ 5

2αθ 2 +24
(
α + x2)e−θxdx =

θ 5

2αθ 2 +24

∫ ∞

0
x
(
α + x2)e−θxdx

imples, H.M =
θ 5

2αθ 2 +24

(
α
∫ ∞

0
x(3)−2e−θxdx+

∫ ∞

0
x(4)−1e−θxdx

)
(10)

Simplifying Equation (10) we get,

H.M =
θ(2αθ +6)
2αθ 2 +24

3.3 Moment generating function and characteristic function

MX (t) = E
(
etx)= ∫ ∞

0
etx fa(x)dx

By Taylor’s series, we obtain,

=
∫ ∞

0

∞

∑
j=0

t j

j!
x j fa(x).dx =

∞

∑
j=0

t j

j!
µ j

′
=

∞

∑
j=0

t j

j!

(
αθ 2( j+2)!+( j+4)!

θ j (2αθ 2 +24)

)

MX (t) =
1

2αθ 2 +24

∞

∑
j=0

t j

j!θ j

(
αθ 2( j+2)!+( j+4)!

)
(11)

Also, the characteristic function of P2ND is,

φx(t) = MX (it) =
1

2αθ 2 +24

∞

∑
j=0

it j

j!θ j

(
αθ 2( j+2)!+( j+4)!

)
(12)
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3.4 Order Statistics (OS)

OS plays a key role in statistics and has a wide range of applicability in reliability.
Let X(i), i = 1,2,3, . . . ,n. be the OS of a random sample Xi, i = 1,2,3, . . . ,n with pdf fx (x)& cdf FX (x), then the pdf of

rthOS,X(r) is

fx(r)(x) =
n!

(r−1)!.(n− r)!
fX (x)(FX (x))

r−1 (1−FX (x))
n−r (13)

By applying Equations (5) and (7) in Equation (13), the pdf of rth OS of P2ND is,

fx(r)(x) = n!
(r−1)!(n−r)!

(
x2θ 5

2αθ 2+24

(
α + x2

)
e−θx

)
×
(

1
2αθ 2+24

(
αθ 2γ(3,θx)+ γ(5,θx)

))r−1

×
(

1− 1
2αθ 2+24

(
αθ 2γ(3,θx)+ γ(5,θx)

))n−r

Then, the pdf of X(n) of P2ND is,

fx(n)(x) =
nx2θ 5

2αθ 2 +24
(
α + x2)e−θx ×

(
1

2.α.θ 2 +24
(
αθ 2γ(3,θx)+ γ(5,θx)

))n−1

and the pdf of X(l) of P2ND is,

fx(1)(x) =
nx2θ 5

2αθ 2 +24
(
α + x2)e−θx ×

(
1− 1

2αθ 2 +24
(
αθ 2γ(3,θx)+ γ(5,θx)

))n−1

3.5 Likelihood Ratio Test

Consider the random sample, Xi, i = 1.2.3, . . . ,n from P2ND. To test its significance, the hypothesis is,

Ho : f (x) = f (x;θ ,α) against H1 : f (x) = fa(x;θ ,α)

To analyze and examine that the random sample comes from the P2ND, the test statistic used is,

∆ =
L1

Lo
=

n

∏
i=1

fa(x;θ ,α)

f (x;θ ,α)
=

n

∏
i=1

(
x2

i θ 2
(
αθ 2 +2

)
2αθ 2 +24

)
=

(
θ 2
(
αθ 2 +2

)
2αθ 2 +24

)n n

∏
i=1

x2
i

We refuse to retain the H0, if

∆ =

(
θ 2.
(
α/θ 2 +2

)
2.α .θ 2 +24

)n n

∏
i=1

x2
i > k

Equivalently, we should also refuse to retain the H0 where

∆∗ =
n

∏
i=1

x2
i > k∗, here k∗ = k

(
2αθ 2 +24

θ 2 (αθ 2 +2)

)n

Whether, if the sample n is large, 2log∆ is Chi-square having 1 degree of freedom. Then, we refused to accept H0, while the
probability is,p(∆∗ > β ∗), Where β ∗ = ∏n

i=1 xi
2 is less than a specified level of significance and ∏n

i=1 xi
2· is the observed

statistic ∆∗.

3.6 Bonferroni Curve (BoC) and Lorenz Curve (LoC)

The BoC and LoC are called classical curves and are being utilized to calculate the distribution of inequality in poverty or
income. The BoC & LoC are defined as

B(p) =
1

pµ ′
1

′

∫ q
x f (x)dx
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and L(p) = pB(p) = 1
µ1

′
∫ q

0 x f (x)dx Where µ1
′
= 6αθ 2+120

θ(2αθ 2+24)
and q = F−1(p)

B(p) =
θ(2.αθ 2+24)
p(6.αθ 2+120)

∫ q
0

x3θ 5

2αθ 2+24

(
α + x2

)
e−θxdx

= θ 6

p(6αθ 2+120)

∫ q
0 x3

(
α + x2

)
e−θxdx

= θ 6

p(6αθ 2+120)

(
α
∫ q

0 x4−1e−θxdx+
∫ q

0 x6−1e−θxdx
)

Simplifying, we get

B(p) = θ 6

p(6αθ 2+120)
(αγ(4,θq)+ γ(6,θq))

L(p) = θ 6

(6αθ 2+120)
(αγ(4,θq)+ γ(6,θq))

3.7 Renyi Entropy and Tsallis Entropy

Entropy plays a key role in various areas of research.
The Renyi Entropy, denoted as e(β ). That is,

e(β ) = 1
1−β log

(∫
f β (x)dx

)
Where β > 0 and β ̸= 1

= 1
1−β log

∫ ∞
0

(
x2θ 5

2αθ 2+24

(
α + x2

)
e−θx

)β
dx

=
1

1−β
log

((
θ 5

2αθ 2 +24

)β ∫ ∞

0
x2β e−θβx (α + x2)β

dx

)
(14)

By binomial expansion, Equation (14),

= 1
1−β log

((
θ 5

2αθ 2+24

)β
∑∞

j=0

(
β
j

)
αβ− jx2 j∫ ∞

0 x2β e−θβxdx
)

= 1
1−β log

((
θ 5

2αθ 2+24

)β
∑∞

j=0

(
β
j

)
αβ− j∫ ∞

0 x(2β+2 j+1)−1e−θβxdx
)

e(β ) = 1
1−β log

((
θ 5

2αθ 2+24

)β
∑∞

j=0

(
β
j

)
αβ− j Γ(2β+2 j+1)

(θβ )2β+2 j+1

)
The Tsallis Entropy for the continuous random variable, it is expressed as,

Sλ =
1

λ −1
·
(

1−
∫ ∞

0
f λ · (x)dx

)
=

1
λ −1

·

(
1−

∫ ∞

0

(
x2 ·θ 5

2αθ 2 +24
(
α + x2)e−θx

)λ

dx

)

=
1

λ −1

(
1−
(

θ 5

2αθ 2 +24

)λ ∫ ∞

0
x2λ e−λθx (α + x2)λ

dx

)
(15)

By binomial expansion in Equation (13),

= 1
λ−1

(
1−
(

θ 5

2αθ 2+24

)λ
∑∞

k=0

(
λ
k

)
αλ−kx2k∫ ∞

0 x2λ e−λθxdx
)

= 1
λ−1

(
1−
(

θ 5

2αθ 2+24

)λ
∑∞

k=0

(
λ
k

)λ−k∫ ∞
0 x(2λ+2k+1)−1e−λθxdx

)
Sλ = 1

λ−1

(
1−
(

θ 5

2αθ 2+24

)λ
∑∞

k=0

(
λ
k

)
αλ−k Γ(2λ+2k+1)

(λθ)2λ+2k+1

)
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3.8 Estimation of Parameters

The MLE (Maximum Likelihood Estimate) of the parameters of P2ND is estimated. For all Xi, i=1, 2,…,n. a random sample of
the n size by the P2ND, the probability function is,

L(x) =
n

∏
i=1

fa(x) =
n

∏
i=1

(
x2

i θ 5

2αθ 2 +24
(
α + x2

i
)

e−θxi

)
=

θ 5n

(2αθ 2 +24)n

n

∏
i=1

(
x2

i
(
α + x2

i
)

e−θxi
)

logL = 5nlogθ −nlog
(
2αθ 2 +24

)
+2∑n

i=1 logxi +∑n
i=1 log

(
α + x2

i
)
−θ ∑n

i=1 xi (16)

∂ logL
∂θ

=
5n
θ

−n
(

4θα
2αθ 2 +24

)
−

n

∑
i=1

xi = 0 and
∂ logL

∂α
=−n

(
2θ 2

2αθ 2 +24

)
+

n

∑
i=1

(
1(

α + x2
i

))= 0

The solution of these systems of equations by using R program results the MLE of α and θ .
By the asymptotic normality outcomes, attain the CI (Confidence Interval). If β̂ = (θ̂ , α̂) shows the MLE of β = (θ , α).√

n(β̂ −β )→ N2
(
0, I−1(β )

)
, Where I(β ) is FEM (Fisher’s Information Matrix),

I(β ) =− 1
n

 E
(

∂ 2logL
∂θ 2

)
E
(

∂ 2logL
∂θ∂α

)
E
(

∂ 2logL
∂α ·∂θ

)
E
(

∂ 2logL
∂α2

)  ,

E
(

∂ 2logL
∂θ 2

)
=− 5n

θ 2 −n
(

4α(2αθ 2+24)−16α2θ 2

(2αθ 2+24)
2

)
E
(

∂ 2logL
∂α2

)
= n

(
4θ 4

(2αθ 2+24)
2

)
−∑n

i=1

(
1

(α+x2
i )

2

)
&

E
(

∂ 2logL
∂θ ·∂α

)
=−n ·

(
4θ(2αθ 2+24)−8αθ 3

(2αθ 2+24)
2

)

Since β is not known, estimate I−1(β ) by I−1(β̂ ) obtain asymptotic CI for θ and α .

3.9 Application

Here, the fitting of a lifetimemedical real data in P2NDis considered. It shows that the P2NDfits quite satisfactorily over Lindley,
TAD, Akash, and exponential distributions.

The real lifetime medical data (Table 1) consists of the weight loss (kilograms (Kg)) after the first cycle of chemotherapy, of
randomly selected 60 patients from a hospital in Thrissur district, Kerala who were suffering from any type of gastrointestinal
(GI) cancer (involves all cancers in digestive tract organs for example the small & large intestine, stomach, colon, pancreas,
anus, rectum, biliary system, and liver).

Table 1. Weight loss (kilograms (Kg))
4.390 4.395 4.645 3.765 3.750 3.855 3.985 4.050
0.320 0.490 0.620 1.150 1.210 1.260 1.410 2.025
2.910 3.190 3.265 3.350 3.350 4.975 5.075 5.380
2.035 2.160 2.210 2.370 2.530 2.690 2.800 2.910
2.910 3.190 3.265 3.350 3.350 3.430 3.500 3.535
3.765 3.750 3.855 3.985 4.050 4.245 4.325 4.380
4.390 4.395 4.645 4.755 4.930 4.975 5.075 5.380
3.350 3.430 3.500 3.535

To compare the performance of P2ND with Lindley, TAD, Akash & exponential distributions, consider the standard general
criteria & notations. The lesser values of BIC, AIC, -2logL, and AICC imply the better distribution to which they correspond.

Table 2 implies that P2ND has lesser BIC, AIC, -2logL, and AICC values by comparing to the other distributions. Hence, it
can be concluded that the P2NDis a better fit.
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Table 2. Analysis of Fitted Distributions
Distributions MLE Standard error

(S.E)
-2logL AIC BIC AICC

P2ND α̂ = 1.6977
θ̂ == 1.4369

α̂ = 1.6893
θ = 0.1293

143.7944 147.7944 151.1927 148.1987

TAD α̂ = 0.02967
θ = 0.8936

α̂ = 0.1596
θ̂ = 0.0894

147.2922 151.2922 154.67 151.6165

Akash θ̂ = 0.8010 θ̂ = 0.0697 152.6894 154.6894 156.3783 154.7946
Exponential θ̂ = 0.2931 θ̂ = 0.0495 170.9553 172.9556 174.9245 172.9661
Lindley θ̂ = 0.4952 θ̂ = 0.0610 159.9501 161.9501 163.919 161.9606

4 Conclusion
A generalized format of TAD distribution was suggested and termed asP2ND. Its several statistical properties involving the
mean, harmonic mean, variance, moments, BoC, and LoC have been studied. The MLE of the distribution parameters are
estimated. P2ND has been examined and investigated with medical data to demonstrate its significance. It is really important
to study the characteristics of such bio-medical data. The findings show that the suggested P2ND fits across TAD, Akash,
exponential, and Lindley distributions rather well.
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