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Abstract
Objectives: To propose a novel AI-based quantum key distribution opti-
mization model to detect abnormal sensor readings, communication pattern
between nodes, and intrusions during data transformation in long-range wire-
less sensor networks (LoRA-WSNs). In order to optimize the QKD in WSNs,
machine learning boosting techniques are employed tominimize data loss and
maximize data integrity.Methods: The CatBoost machine learning-based gra-
dient boosting algorithm (CatBoost-MLGBA) is employed for QKD optimization
and to detect abnormal node communications and patterns during data trans-
fer by training historical network data. The linear regression method (LRM)
with key generation rates is used to predict network attacks, which helps opti-
mize the QKD more effectively. Lasso Regularization (L1R) is utilized to spot
and recover the data in networks, and Deep Q-Networks (DQN-WSN) com-
bined with the shortest path method is used to find alternate routing for the
finest node search and data transfer. The WSN-DS historical dataset is uti-
lized to train the CatBoost-MLGBA model to detect anomalies effectively. The
OMNET++ tool is used to assess the performance of the proposed CatBoost-
MLGBA model by comparing it with prevailing protocols such as ReLeC-WSN,
RTM-ANN, and DL-IDSWSN. Findings: The new AI based optimization model,
CatBoost-MLGBA outperforms the existing protocols in preventing data loss
by enhancing security features. The proven results show that the data loss is
minimized to 10%, with a 9% energy consumption rate, 95% network lifetime,
97% PDR rate, 91% robustness to anomaly attacks, and 6 seconds data trans-
mission speed rate. Novelty: The CatBoost-MLGBA model has the ability to
enhance security features and prevent data loss during data transfer in LoRa-
WSNs. The new method effectively optimizes the key distribution for secured
data transmission and improves the packet delivery ratio. The challenges of the
prevailing security protocols, such as ReLeC-WSN, RTM-ANN, and DL-IDSWSN,
are addressed.
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1 Introduction
In the development of 5G technology, the deployment of sensor nodes in WSNs has a
significant impact on how data is sent from one end to the other. An efficient WSN
protocol is required for IoT and LoRa (Long Range WSNs) environments to sense,
capture, and transfer the data reliably with low latency and high bandwidth. Various
ML algorithms are employed to improve the efficiency LoRa and IoT networks. The
major gaps found in the prevailing methods are: i) key optimization; ii) identifying
topology changes, iii) intrusion detection & abnormal patterns; and iv) dynamic error
recovery. This study claims the effective optimization of quantum key distribution to
assign the optimized encrypted key to data and pass through nodes securely in the
LoRa WSNs and addresses a few other challenges of prevailing approaches. The new
QKD optimization protocol is proposed to detect abnormal patterns and intrusions in
LoRa-WSNs to minimize data loss and maximize data integrity. CatBoost-MLGBA is
employed alongwith LRM, L1R, andDQN-WSN to ensure that data is transmitted from
one end to the other with high security and the finest path without error. The CatBoost
model provides a dynamic solution for key optimization, energy savings, PDR, and
robustness to attacks and addresses all the limitations of existing models. During the
topology changes and link failures, the error is recovered and data is passed in LoRa,
which enhances the delivery ratio.

Various security complexity issues in wireless network architecture (1)have been
discussed by the authors, which clearly show the types of attacks, risks, threats,
collisions, intrusions, eavesdroppers, etc. and how they are detected using adaptive
ML models, which helps to study the ML models and propose the new method in a
systematic manner. An empirical component analysis-based IDS (2)was introduced to
detect the vulnerabilities and challenges faced by intrusions into WSNs with the help
of deep learning models. The manual selection of features is overcome by the model.
Though it has effective detection capability, the model has drawbacks in identifying the
topology changes in LoRa. LSTM is used to identify the relevant features in the validated
WSN datasets, such as KDD, UNSW, CICIDS, NSI-KDD, etc. The false prediction
rate, accuracy rate, and collisions are the PEMs of the ECA-IDS model. The authors
also pointed out the challenges and methods to overcome issues in node deployments,
underwater node communications, noisy data removals, etc.

TheML-PANN (3) technique was proposed to enhance the security features ofWSNs.
Sybil attacks, malicious node attacks, DoS attacks, etc. will be detected by using a multi-
layer perceptron ANN model. It also identifies the unknown sensor node position to
transfer the data effectively. All the harmful nodes are localized for high data integrity.
The only shortcoming of this method is that it will not detect malicious nodes in
LoRa, where the distance and data travel time are high, which leads to a high energy
depletion rate in ML-PANN. All the WSN security perspectives were discussed by
the authors, along with techniques to enhance the security limitations (4). Almost
all network architectures have security issues with data transmission due to lack of
memory, deployment of nodes in harsh environments, etc. The authors narrated how
the protection mechanism secures the data packets travels from one end to other
end. The results portrayed how the advanced AI and ML methods are utilized to
optimize the performance of protocols in WSNs, which gives a detailed overview
of security enhancements using AI and ML. Energy-aware sleep scheduling protocol
(EAB-IFBA) (5)was introduced to identify network topology changes and dynamic sleep
scheduling by sensor nodes to save energy at a maximum level. The model works well
in an IoT environment with minimal limitations, like processing data in LoRa-WSNs,
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overfitting errors, malicious node communications, threat nodes, the installation of high-end sensor nodes in insensitive
environments, etc. An IDS model was introduced for IoT devices and packets (6) to boost the security features and to transfer
the data more reliable. DL-KNN method was employed to focus more on capturing the significant patterns which seems
to be unusual and the same is sent to BS for action taken. The routing was done by ABS-PN model which take decisions
for data communications from each sensor node. The energy is optimized, security is enhanced and data loss is minimized.
The drawback of this model is, it doesn’t work in LoRa-WSNs as it has only short range network power. A modified reptile
search (7)method along with a deep learning technique was employed for intrusion detection and data security, where node
communications are traced and recorded every time and information is directly sent to the base station by a volatile node.
The retile model searches the malicious and infected nodes and gives the information to neighboring nodes to take action
on passing the data to the destination. This model is hyper-tuned by DL-RNN to identify abnormal features in the historic
WSNS-DS dataset during training, testing, and validation. ML with block-chain security (8,9) model for WSNs and QoS-IWAP
was introduced to detect dynamic link failure during data transmission from S → D. Data authentication, key distribution,
encryption, traceability, and operation of decentralized network nodes reduce the network load and data loss, which enhances
data integrity and reliable communication between nodes. Energy efficiency techniques inWSN and security enhancements (10)

are the key elements taken by the author, who introduced a protocol usingML techniques.The protocol initially exchanges keys
between the data for integrity and passes through the finest route for data delivery. The local interactions between the sensor
nodes are managed by the CHs, and server interactions are managed by the end-point node, which was deployed to manage the
information received by the BS. The drawback of this protocol is that the packet delivery and data transmission speed are not
remarkable, which are considered crucial things in WSNs. The trust-based approach using ML (11) was developed to evaluate
unknown scenarios like adaptability, coverage, scalability, limitless energy, etc. Trust-basedML security mechanisms enable the
system to predict anomalies periodically and secure the data through successful data transmission. Multi-path routing (12) was
suggested to secure data in underwater communications, and RSV-RP (13) was proposed to detect link failures in large-scale
WSNs. Both models secure data in a robust way and ensure successful transmission of packets to the specified location. The
latency time is a little high in this model compared to other protocols, but the PDR rate is 97%, which is a remarkable result
that is highly needed in WSNs. DL-IDS-WSN (14) was proposed to detect anomalies in WSNs that occur during large packet
deliveries. Malicious nodes and unusual patterns are identified for every transaction, which makes the system slow in data
delivery. The process time to deliver the packets in MAN is high, and the error rate is high due to the lack of a conventional
method for error recovery. RM-ANN (15) works on real-time adaptive networks and ensures a robust security level for the
data sent to the server. ANN works as a node agent and decides the finest route on which the data is to be transferred from
one end to the other. RSA with QKD is used for security purposes, and robustness is achieved up to 89%. The limitations
are that the protocol does not work on LoRa as it has minimum power and lacks memory. ReLeC-WSN (16) was introduced
for energy savings, network optimization, and error recovery to maintain and track node communications in all types of
actions. The method works efficiently and achieves high PDR transmission speeds with less energy depletion. The limitations
of the model are network adaptability, pattern recognition, and topology change prediction. Dynamic signal optimization in
communication devices, which is considered a dynamic model, along with the machine learning technique named enhanced
principal component analysis (ML-EPCA) to boost accuracy and delivery rate. This model serves as a robust approach to
optimizing signal processing within communication devices. (17–19). Robust deep learning optimization models are employed
to detect anomalies in the WSNs, which improve complex pattern matching, real-time detection, adaptability of networks,
FPR, and scalability. Here, all the malicious nodes are identified and marked, and duplicate data has been sent to those nodes
for security (20–22). Feed forward ANN, SMOTE & RFA, and ML Quantum Key Selector based protocols (23–25) are utilized to
achieve the performance of WSNs in terms of energy depletion, PDR, minimized data loss, and high transmission speed. The
limitations are LoRa deployments, data integrity, and robustness to attacks, which are considered significant things in allWSNs.
All the existing models have not performed with impressive outputs in terms of security, integrity, robustness, re-transmission,
rekeying, etc. To overcome the drawbacks of the existing models, the new anomaly detection model for LoRa is proposed to
optimize QKD in WSNs by employing the CatBoost-GBA model. The unique features of CatBoost are:

• Optimization of QKD:Thequantum key is optimized to secure the data transfer from node to node, to ensure systematic
protection in LoRa-WSNs.

• Error Detection and Recovery: Errors are detected and recovered for a smooth transition of packets from the source
node to the destination node.

• Key Generation with Encryption: An encrypted key is generated and appended to the data to prevent intruders from
stealing it.

• Network TopologyMonitoring: Regularly monitors the network topology changes and sends the data through the finest
route, which leads to minimal energy consumption.
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2 Methodology
The newly suggested QKD-optimized model CatBoost-MLGBA focuses on optimizing dynamic key distribution for end-to-
end data security in LoRa WSNs and IoT. During the data transmission process, the quantum key is optimized and appended
to the data, which cannot be decrypted by the intruders. The CatBoost model, along with encryption, access control, and node
authentication, provides comprehensive data security by detecting unusual patterns, compromised node communications, and
data injection attacks to ensure successful transmission from source to destination. The LRM with key generation method is
employed to generate the random Q-key for all the data that is ready to transfer, which helps the CatBoost model optimize the
instant key more effectively and encrypt the data for transmission. Lasso Regularization (L1R) handles node signal processing,
spotting, and recovering the network errors in LoRa WSNs indirectly by reducing the overfitting. Deep Q-Networks combined
with SPM is utilized for the finest routing, where the data is transferred in a robustmanner.This CatBoost approachwill enhance
the security of IoT and LoRa WSNs for effective data transmission.

2.1 Proposed Methodology

The new quantum key distribution optimization model specifically works on data security during the end-to-end transmission
process by employing the CatBoost machine learning-based gradient boosting method. Here, the sensor nodes are deployed in
LoRa WSNs (long-range) and IoT environments. The number of nodes in the historical dataset trained, validated, and tested in
this study is 9000–13000 byusing theOMNET++ simulator.TheCatBoostmodelworks by distributing the key randomly to each
piece of data that is ready to transfer. The five main features that CatBoost collects from the sensor node are, node transmission
power, IoT or LoRa bandwidth, base station code, initial energy level, and nearest neighbor node information to forward the
appropriate data by using the available application server. Once the quantum key is appended with data, the key is optimized
by using encryption and a node authentication model to make it more secure. The optimization takes place in two ways: i)
by installing chip code, and ii) by allocating bit-keys in the data to secure it from intruders. After the optimization, the data is
boostedwith two-factor authentication, whichwill be known by the sender and receiver.The details of the transmission gateway,
application server, and network server are collected by the CatBoost protocol for the transmission process. LRM, L1R, and
DQM methods are additionally employed for protocol enhancement and to achieve performance in terms of robustness, data
delivery, network lifetime, and energy consumption. Assume nodes(n) is deployed in LoRa environment. The initial_energy
of the node is measured and node_id is allotted to each and every node deployed. The distance between each node is node_s
and node_d which refers the source and destination of each node, the addition nodes will be incremented up to last node
installation will be as nodes1, nodes2...etc. The access points, BS, key values are measured. The transferred bit rate is calculated
initially by using the below equation,

NodeTrans f erBitRate =

(
Number o f data Trans f erred

Total Data in Network

]
+(initialenergy − Balanceenergy) (1)

where, the balance energy of node and data transfer bit rate is measured. Also, successful delivery rate of data is calculated using
the below equation using modulation scheme, LoRa bandwidth and signal noise ratio.

R = BW.log2(1+SNR)∗NodeTrans f erBitRate (2)

2.2 Training of WSNs-DS for Anomaly Detection & Simulation Settings

The historic WSNs-DS network LoRa data is used to train the newly proposed QKD optimization protocol to detect anomalies,
which include gray-hole (GH) attacks, black-hole (BH) attacks, flooding attacks, scheduling attacks, and normal attacks. The
model is trained using the gradient boosting method, where the quantum key is optimized to ensure secured data transmission
from one end to the other. 19 features are extracted from WSNs-DS and normalized as data parameters for the training and
testing processes in the OMNET testbed. 2250 nodes are employed and tested with 25 clusters, and the time limit is set to 3600
seconds with a maximum transmission range of 1000m. OMNET calls the CatBoost-MLGBA library and employs the machine
learning techniques within the simulation to train and test the WSNs-DS data for effective learning of anomaly detection and
network behavior. Real-time optimization can be done effectively with the help of training theCatBoostmodel to detect unusual
node communications and abnormal patterns to improve the security feature. The transfer rate is increased during the testing
process in the multi-hop LoRa networks, which gives promising results in terms of transmission speed, energy consumption,
PDR, and security robustness.
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Table 1. Parameter Settings for Simulation
Parameters Values
LoRa WSNs Network Range 1000 m
Sensor Nodes Count 500-2250
Number o f Clusters 25
Size o f data packet 1000 Bytes
Mobility Model Random Way Point
Nature o f Tra f f ic LoRa Constant Bit Rate
Nature o f Medium IoT - Wireless Medium
Base Station Location (50, 75)
Initial energy o f each node 80 J
Sensing Range 10 m
T hreshold Distance 130 m
Simulator Name and Version OMNET C++
Learning Rate 0.5 (alpha)
Simulation Time 3600 seconds
Attackers Intensity 10%, 40%, 60%
Transmission Range 200 m
QKD Optimizing Protocol CatBoost-MLGBA
Routing Protocol Deep-QN with SPM

WSN Network Dataset/Simulation Source: https://opendatalab.co
m/WSN-DS

Training of the Historic WSNs-DS dataset includes,

• Data cleaning: handling missing data and outliers.
• Selection of 19 WSNS-DS LoRa datasets to detect unusual patterns & node communications.
• Labeling the data to train with the CatBoost model with different scenarios.
• Employ QKD for each and every piece of data that transmits from source to destination.
• Optimize the key using a node authentication and encryption model.
• Model integration with LoRa-WSNs to make real-time anomaly detection.
• Feedback loop to adapt to LoRa network dynamics.

2.3 QKD - Optimization with LRM

The anomaly detection CatBoost-MLGBA model works on optimizing the key generated by the QKD method. The Linear
Regression Method with Key Generation (LRM) helps to optimize the key effectively in the source node. A key exchange
model is employed to establish random security keys between communication nodes. Once the key is assigned to the data,
it is encrypted and secured, which means it cannot be hacked by intruders. By optimizing the key, it ensures the distribution to
the correct node, which will minimize the risk of compromise. CatBoost ensures that keys are generated with a high degree
of randomness to withstand attacks based on predictability. Here, the data with keys is exchanged securely between two
communication nodes. Assume that the two entities are communicating in the un-trusted LoRa networks.The key is established
for communication from the key exchangemodel is implemented here usingDiffe-Hellman orQKD.TheLRMwill optimize the
key, which is generated by Diffe-Hellman or QKD and exchanged between the nodes. Once the key is optimized, it will detect
the anomalies easily in LoRa-WSNs as it takes a long travel time between source and destination. Even if an eavesdropper
intercepts, the data is securely transferred from S → D in a robust manner. The CatBoost model follows the below steps for
QKD key optimization:

• Identify the source node that has data ready to transmit to destiny
• Generate a random key with QKD and distribute it to nodes
• Exchange random keys using Diffe-Hellman or QKD
• Optimize the key using LRM
• Measure the distance from source to destination
• Communicate with the neighbor node to exchange optimized keys
• Detect an anomaly and send a signal to the base station
• Transmit the encrypted data with optimized key values
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• Calculate the data transmission speed and time
• Decrypt the data at the destination
• Calculate the energy level of nodes
• Initiate rekeying and rotation
• Repeat the process.

To calculate the anomaly detection score, identify the threat severity, complexity, affected node, and likely-to-be affected node.
PDR is evaluated to calculate the ratio of successfully transmitted data from end to end in LoRa-WSNs. The latency time is
assessed to identify the severity score of anomalies and intrusions from which node the key sends the signal to the base station.
The PDR, anomaly detection, and latency are calculated by using the below equation.

Number o f Packets
Received
Delivered

x100 & Calculate {NodeKey| AnomalyNode} (3)

where, AnomalyNode refers to the node that is affected in LoRa-WSNs where the intruders fail to steal the data due to the
optimized key,which has highly encrypted data boosted by theCatBoostmodel.ThehistoricWSNs-DSdata is trained, validated,
and tested in the testbed by using the function points of five types of attacks, which include gray-hole (GH) attacks, black-hole
(BH) attacks, flooding attacks, scheduling attacks, and normal attacks. The LRM optimizes the QKD keys distributed in the
node for successful transmission.

CatBoost -MLGBA Algorithm
Input:OMNET++ Simulation settings with Parameter Values
Begin: Initialize the nodes and set num_nodes = 2250
Set Communication_Range = 10m
Calculate InitialFitnesso f Node
Set Unique identifier Point in Network
Initialize WSNs-DS Dataset
Set train_ratio = 0.8 (As per network testbed)
Set train_size = int(train_ratio ∗ len(simulation_data))
traindata = simulationdata (trainsize]

testdata = simulation_data(trainsize :]
Initialize CatBoost GBA Model
Assign Q−Key for each node
Calculate node delivery = (Assigning_NodeData]
Encrypt (Assigned_NodeData]
confusion = confusion_matrix(y_test, y_pred)
anomalies = [ ] and anomaly_keys = [ ]
For i = (true_label, pred_label, data_id, timestamp) enumerate(zip(y_test, y_pred,
test_data[data_id], test_data[timestamp])): if pred_label == 1:
anomalies.append(data_id)
key = f_Anomaly_{data_id}_{timestamp}
anomaly_keys.append(key)
for anomaly, key (node, anomaly_keys)
Calculate the PDR and DL
ComputeRobustness Level
Calculate FinalNodeEnergy based on active nodes in LoRa
Measure Transmission Speed and Get the Optimal Value
End

2.4 CatBoost-MLGBA Key Flow Diagram

Here, the diagram shows the phase-level data flow from client to server as a model to present the work of the CatBoost-MLGBA
model. The phase 1 deals with assigning keys to every node that has data and the QKD is optimized using the proposed model
with authentication and encryption, which allows the node to travel to its destination. The intruders are detected by the key,
and the signal has been sent to BS for recovery.
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Fig 1. CatBoost Phase Flow Diagram

2.5 Error detection & recovery using Lasso Regularization (L1R)

L1R is a machine learning technique used to improve error detection and recovery in the CatBoost QKD optimization model.
During the training and testing process of WSNs-DS, features like sensor readings, relevant error corrections, and critical
data points are selected and trained for robust error detection. Before feature selection, the noisy data is removed for effective
detection and recovery of errors in WSNs and to avoid false alarm triggers. L1R reads the patterns of intruders and matches
in real-time for data integrity issues. L1R also reduces data dimensionality during the stringent energy constraints found in
LoRa-WSNs. L1R assists in checking the overfitting, which helps to detect errors more effectively. During topology changes,
the data is transferred with high security from source to destination. If an error is spotted or a dynamic link failure occurs,
the L1R immediately takes an alternate path to deliver the data as part of the detection and recovery method. If unusual
node communications are found, the L1R matches the patterns, detects the anomalies, and notifies the base station for quick
resolution.

For efficient detection and recovery, the following steps are used.
• Employ L1R in the CatBoost model.
• Measure the node distance in LoRa-WSNs or IoT.
• Monitor the topology changes during data transmission.
• Identify the L1R patterns to detect unusual anomaly detections or node communications.
• If an error is found, detect the error data.
• Notify the base station.
• Recover using L1R for smooth transmission.
If there is an error, L1R indicates 1 and no error it indicates 0 to the base station to initiate the status of data transmission.

ErrorDetection = Sum(Data Bytes)| Modulus some value (4)

where, (Data Bytes) denotes the data sent and received by each node and received checksum excluding the checksum appended
by the sender.

2.6 Finest Routing with Deep-QN & SPM

To enhance routing decisions in LoRa WSN environments, DQN learns the optimal path for data delivery based on various
factors like signal strength, node energy, traffic, topology changes, error rate, etc. DQN includes 4 steps: i) representing states
ii) action space; iii) reward; and iv) training, which will maximize the routing decisions for successful data delivery. The quality
of choosing the path reflects the delivery of data in a robust manner. DQN acts as a routing agent, while SPM measures the
shortest path for reference. The DQN suggests the path and aligns with SPM, which meets the LoRa-WSNs goals of effective
data transmission, reliable routing, and energy efficiency. As DQN evaluates the state of the network in a dynamic manner, the
routing path will be suggested to the protocol in which the data has to be delivered. SPM also assigns weights to edges based on
LoRa node distance or network graph. It acts as a baseline for routing decisions for data delivery. In equation 5, DQN SPM is
calculated based on distance from each node in LoRa WSNs.

DQN −SPM d (v) = min {d (v) , d (u)+ w(u,v)} (5)
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where, d (v) , d (u) , w(u,v) represents current distance estimation & weight of edges of nodes u and v. The initial distance of
source node is set to 0.

2.7 Comparative Analysis using OMNET++
The comparative analysis is done for the proposed QKD optimization model CatBoost-MLGBA against the prevailing models
such as DL-IDS-WSN (14), RM-ANN (15) and ReLeC-WSN (16) using the OMNET++ simulator tool, which helps to create
realistic simulation scenarios with real-time and historical network data. The tool is integrated with ML and DL algorithms
for optimization, anomaly detection, real-time simulations, etc. to produce key performance results. The comparative results
obtained in OMNET++ can be inherited by future researchers. Visualization is done effectively, which helps the users analyze
and simulate network protocols in a robust manner. As it supports parallel and distributed simulations, large-scale and LoRa-
WSN model simulation processes can be done. Also, it identifies load balancing problems, node deployment issues, resource
allocation, sleep and alive nodes, etc. to test the protocol effectively in the testbed.

2.8 CatBoost-MLGBA Evaluation Metrics
The performance and comparative analysis of the proposed CatBoost-MLGBA model is done against the baseline models such
as DL-IDS-WSN (14), RM-ANN (15) and ReLeC-WSN (16) which was chosen in the preceding section. The following are PEM
and equation to measure the protocol.

• (EDR) Energy Depletion Rate: The overall energy spent to transmit the data from S → D by the proposed QKD
optimization protocol CatBoost-MLGBA and for data sensing and capturing.

EDR =
(Initial Energy−Remaining Energy )

(Time (Duration))
(6)

• (LN) Lifespan of Network:Calculates the sensor node lifespan after the overall transmission process by dividing the total
energy and consumed energy by CatBoost-MLGBA.

Network LS =
Total Energy

(Energy Depletion Rate)
(7)

• (PDR) Packet Delivery Ratio: Calculates the amount of packets or data delivered against the total number of packets by
the proposed optimization model during the testing process.

Packet Delivery Ratio =
No.o f Success f ul Packets
(Total No o f Packets)

x 100 (8)

• ( TS) Transmission Speed: Measures the speed in time of the data transferred by utilizing the finest path for successful
delivery in the proposed model.

Data Transmission Speed =
Data Size

(Transmission Time)
(9)

• (DLR) Data Loss Rate : Calculates the total amount of data sent and received from S → D during data sensing and
capturing process by the CatBoost model.

Data Loss Rate =
(Data Sent −Data Received )

Total Amount o f Data Sent
(10)

• (SR) Security Robustness : To assess the robustness & calculate vulnerability and threat severity score of the CatBoost-
MLGBA model against the attacks and topology changes.

SR (Robustness) = (1−V S)x (1−T SS) (11)
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3 Results and Discussions
This chapter deals with the various parameter evaluation results of the novel QKD optimization CatBoost-MLGBA and how it
overcomes and addresses the drawbacks of the prevailingmodels such as DL-IDS-WSN (14), RM-ANN (15) and ReLeC-WSN (16)

in terms of detecting anomalies and unusual patterns in LoRa-WSNs. The data loss and error rate are drastically minimized,
and the robustness level to withstand attacks is improved. The new model works in an IoT environment and transmits the data
more securely. In addition, a security error detection and recovery method is utilized to spot the error occurring in sensor
nodes and notify the base station or neighbor node to find the best alternative route to minimize data loss. The unique feature
of this model is that it detects abnormal communications and unusual patterns during topology changes and secures the data
by optimizing QKD for effective transmission with a zero error rate. Figures 2, 3, 4, 5, 6 and 7 shows the simulation results
where X axis shows the node counts and Y axis shows the percentage values of the existing and proposed protocols.

3.1 Energy Depletion Rate - Comparative Analysis

Figure 2 presents the amount of energy consumed by the sensor nodes deployed in an IoT environment by utilizing the novel
QKD optimization CatBoost-MLGBA model. The performance of the new model is compared against the existing methods to
measure the energy depletion rate of CatBoost. It is observed that the newmodel outperforms the existingmodel by consuming
less energy during data transmission from source to destination.Themodel workswell in taking the finest route for data delivery
in a robust manner. During simulation testing, only 9% of energy was consumed by a sensor node after the delivery process.
The sensor node will be idle and save energy until the next data arrives.

Table 2. Rate of Energy Depletion (%)
Node Counts / Protocols 500 1000 1500 2000 2250
ReLeC-WSN (16) 44 46 48 50 52
RM-ANN (15) 40 42 44 46 49
DL-IDS-WSN (14) 35 37 38 39 40
CatBoost-MLGBA (Proposed) 15 13 11 10 09

Fig 2. Performance Analysis of Energy Depletion

3.2 Network Lifespan - Comparative Analysis

The performance analysis of the QKD optimization model CatBoost-MLGBA in terms of network lifetime is portrayed in
Figure 3. It is observed that the new optimization model outperforms on data transmission at a high speed, the lifetime of
the sensor nodes increases. The nodes will stay idle or sleep during nil transmission, and only when a communication signal
arises will they wake up and work for data transmission. The results are compared against the prevailing network optimization
protocols, such as DL-IDS-WSN (14), RM-ANN (15) and ReLeC-WSN (16). As the sensor nodes consume less energy while using
the CatBoost technique with DQN to take the shortest path for data delivery, the lifetime of the sensor node is maximized to
95%.
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Table 3. Network Lifetime (%)
Node Counts / Protocols 500 1000 1500 2000 2250
ReLeC-WSN (16) 30 28 22 18 16
RM-ANN (15) 72 68 65 60 58
DL-IDS-WSN (14) 82 78 76 73 70
CatBoost-MLGBA (Proposed) 95 91 87 85 81

Fig 3. Performance Analysis of N/W Lifetime

3.3 Packet Delivery Ratio - Comparative Analysis

The packet delivery rate of the new and existing models is showcased in Figure 4. The total number of packets delivered from S
→ D is calculated against the total number of packets. The CatBoost optimization model outperforms in delivering the packet
in a robust manner as it takes the shortest path to deliver the data without any noise or error. As the sensor node has the
maximum energy to transmit the data at a high speed, the PDR is maximized up to 97%. The PDA results of CatBoost-MLGBA
are compared with baseline approaches and the results are portrayed below. The new proposed model works well in IoT and
LoRa-WSNs, which help end users, capture the data robustly without any dynamic link failure. If an error occurs, it is detected
and recovered by the lasso regularization method.

Table 4. PDR Rate Analysis (%)
Node Counts / Protocols 500 1000 1500 2000 2250
ReLeC-WSN (16) 30 26 20 18 18
RM-ANN (15) 74 68 62 60 58
DL-IDS-WSN (14) 85 80 76 74 74
CatBoost-MLGBA (Proposed) 97 94 90 88 84

Fig 4. Performance Analysis of PDR Rate

https://www.indjst.org/ 4556

https://www.indjst.org/


Kowsalya & Banupriya / Indian Journal of Science and Technology 2023;16(47):4547–4560

3 .4 Data Transmission Speed - Comparative Analysis

The simulation results of the data transmission speed of the proposed QKD optimization protocol are shown in Figure 5. The
results are compared against the other ML quantum key distribution models & the results are shown below. As the new model
distributes the key in an optimized manner by employing the CatBoost model, the sensor node gets the data with a secured key
that cannot be stolen by intruders.TheDQNwith shortest pathmodel works to identify the finest route to transfer the data, and
in case a dynamic link failure occurs, the alternate route will be taken by the node itself in the shortest oath to deliver the data
in a robust way. The data is transferred in 6 seconds with 500 node counts, which is comparatively high compared to existing
models.

Table 5. Data Transmission Speed (in Seconds)
Node Counts / Protocols 500 1000 1500 2000 2250
ReLeC-WSN (16) 30 32 33 33 35
RM-ANN (15) 24 26 26 28 30
DL-IDS-WSN (14) 20 20 22 24 25
CatBoost-MLGBA (Proposed) 06 07 08 08 10

Fig 5. Performance Analysis of Transmission Speed

3.5 Security Robustness - Comparative Analysis

Figure 6 presents the security robustness of data transmission from source to destination without any loss of the proposed
novel QKD dynamic key distribution optimization protocol, CatBoost-MLGBA. The simulation results are compared against
the existing models, such as DL-IDS-WSN (14), RM-ANN (15) and ReLeC-WSN (16). It is noted that the new model detects
abnormal node communications, unusual patterns, and anomalies during the data transmission and secures the data for
successful delivery. The model is trained with historical DS-WSN data for greater robustness to work on LoRa-WSNs and
IoT environments.

Table 6. Robustness to Attacks (%)
Node Counts / Protocols 500 1000 1500 2000 2250
ReLeC-WSN (16) 24 20 20 18 18
RM-ANN (15) 64 60 60 58 56
DL-IDS-WSN (14) 78 76 75 74 72
CatBoost-MLGBA (Pro-
posed)

91 88 86 82 80
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Fig 6. Performance Analysis of SRA

3.6 Data Loss – Comparative Analysis

The simulation results of data loss are assessed by employing the new CatBoost-MLGBA model to measure the amount of data
loss during data transmission. The comparative results are presented below. Node placement, communication channels, and
power levels are constantly increased in this model as the EDR is very less due to the high speed and finest route process for
successful data delivery. The data loss is minimized to 10%, which is comparatively low compared to the prevailing models.
The sensor node hibernates itself when there is no communication from the base station or neighbor node. Only the nodes will
work during the data transmission process. The link failure is detected in a dynamic manner, which is one of the major reasons
for the high amount of data transmission.

Table 7. Data Loss Rate (%)
Node Counts / Protocols 500 1000 1500 2000 2250
ReLeC-WSN (16) 58 60 62 62 64
RM-ANN (15) 45 48 52 53 54
DL-IDS-WSN (14) 37 39 42 44 45
CatBoost-MLGBA (Proposed) 10 12 16 18 20

Fig 7. Performance Analysis of Data Loss

https://www.indjst.org/ 4558

https://www.indjst.org/


Kowsalya & Banupriya / Indian Journal of Science and Technology 2023;16(47):4547–4560

4 Conclusion
The proposed novel artificial intelligence-based WSN security protocol, CatBoost-MLGBA (Machine Learning Gradient Boost
Algorithm), is used to enhance security features by detecting abnormal patterns and intrusions in WSNs to minimize data
loss and maximize the packet delivery ratio in LoRa-WSNs. As LoRa has more nodes deployed, there is a high possibility of
malicious nodes affecting data transfer and network shutdown. To overcome the issue, quantum key distribution is optimized
by the CatBoost model, where the network data is trained to detect anomalies to secure data transfer from S → D in a robust
manner. To predict the type of network attack, LRM is used, which optimizes the QKD in the form of dynamic encryption
and prevents data L1R is employed for error recovery, and DQN combined with the shortest path is used to find the alternate
finest route when node failure occurs during data transfer. The WSN-DS historical dataset is used with 19 features to train
the model effectively for anomaly detection. CatBoost-MLGBA is tested in the network testbed, where 1000+ sensor nodes
are deployed in long-range networks to collect real-time traffic data. The model captures the type of attacks, amount of data,
number of active nodes, etc., and optimizes the quantum key to add a security feature for data transfer. The promising results
of CatBoost-MLGBA show that the model addresses security features in terms of minimizing data loss and maximizing the
PDR. The OMNET++ simulator is used to assess the performance of the CatBoost-MLGBA model. Energy consumption is
reduced to 9%, data loss is minimized to 10%, network lifespan and PDR are maximized to 95% and 97%, robustness to attacks
is increased to 91%, and DTR speed is minimized to 6 seconds.

The model has a few limitations, such as: i) high overhead where it deals with computational resources, bandwidth, and
memory; ii) challenges in heterogeneity; iii) frequent monitoring of security breaches; and iv) complex routing decisions, etc.
The recommendations are that, in the future, themodel can be enhanced by adding real-time LoRa-WSNs data to build a breach
assumption AI model to address heterogeneity and other challenges.
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