INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

GOPEN ACCESS

Received: 22-09-2023 **Accepted:** 28-10-2023 **Published:** 11-12-2023

Citation: Melo JF, Vargas S, Castillo-Aguilar MA (2023) Feeding Guilds and Bill Volume of an Assemblage of Birds Present in Four Vegetation Covers of the Terrapreta PNR Guaviare-Colombia. Indian Journal of Science and Technology 16(46): 4300-4308. https://doi.org/ 10.17485/IJST/v16i46.2415

Corresponding author.

jmelop@unbosque.edu.co

Funding: FCDS Colombia

Competing Interests: None

Copyright: © 2023 Melo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

ISSN

Print: 0974-6846 Electronic: 0974-5645

Feeding Guilds and Bill Volume of an Assemblage of Birds Present in Four Vegetation Covers of the Terrapreta PNR Guaviare-Colombia

Juan Felipe Melo^{1*}, Santiago Vargas², Mónica Andrea Castillo-Aguilar¹

- 1 Biology Research Group-(GRIB), Faculty of Sciences, Biology Program, El Bosque University, Bogotá, Colombia
- 2 Research coordination BMC, Colombia

Abstract

Objectives: The objective was to determine the composition and distribution of feeding guilds and bill volume of an assemblage of birds in four vegetation covers within the Terrapreta Private Natural Reserve. **Methods:** The vegetation covers were classified using Corine Land Cover method. Six sampling zones were defined, and three rounds were conducted between February and May 2023. Feeding guilds were identified according to diet, substrate, and foraging. Birds were captured with mist nets, bill measurements were taken, and volume was calculated. To evaluate guilds with vegetation cover, Marimekko, Chisquare and linear regression were performed, to establish the relation between bill volume and feeding guilds, a Boxplot plot and Wilcoxon rank-sum test were performed in the Rstudio program V. 4.3.1. Findings: 211 individuals in 6 order, 18 families, and 49 species, were captured and seven feeding guilds were identified: the most diverse (30.61%) and abundant (19.91%) group was Insectivore-Frugivore. In contrast, Granivore-Insectivore and Insectivore-Animalivore, had two species (4.08%) and 11 individuals (5.21%) each. The most abundant guild was found in a High Dense Terra Firme Forest (34.12%) with the highest specificity in bill volume (0.04 cm³ to 0.92 cm³) with total length values ranging between 7.7 cm and 20 cm. The relation between vegetation cover and the proportion of feeding guilds were significant ($X^2 = 70.095$, df = 18, p-value <0.05); feeding guilds and bill volume had statistically significant differences Wilcoxon rank-sum test (with a p<0.05). The impact on vegetation cover because of habitat transformation, especially on food resources, can be reflected in the guild structure, which can be interpreted as less ecosystem complexity, with the presence or absence of determined feeding guilds. Novelty: Functional traits, bill volume, and feeding guilds provide a tool to evaluate strategies for restoration process and contribute to management and conservation plans within protected natural reserves.

Keywords: Bill Volume; Birds; Feeding Guilds; Functional Traits; Guaviare; Vegetation Cover

1 Introduction

Deforestation is a growing global problem, mainly in South America (1,2), where the degradation of ecosystems has generated concern due to the deterioration of biodiversity, its interactions, and heterogeneity (2,3). In the department of Guaviare, deforestation has been especially pronounced. Factors such as extensive cattle ranching, illegal mining, agricultural frontier expansion, unplanned transportation infrastructure, indiscriminate logging, and illicit crops are the leading causes of forest degradation (4-6). In 2020, the Department of Guaviare recorded 15,000 hectares affected, representing 16% of all deforestation in Colombia (4,6).

Birds are crucial in measuring ecosystem transformation because of their presence at different trophic levels, their mobility, their high diversity, and their sensitivity to habitat transformation or natural environmental changes, making them ideal for measuring environmental perturbations based on their response to transformations, habitat requirements, and feeding habits, associated with the functional traits of the species ^(7,8). Feeding guilds contain many ecologically similar subgroups within an assemblage and diverse species with similar food demand that they use analogously. The bird's beak adaptation is essential for feeding. The volume directly influences its diet and the way it uses food resources; therefore, these organisms are ideal for comparing coverage or environment with different conditions ⁽⁹⁻¹¹⁾.

This study aimed to determine the composition and distribution of feeding guilds and the bill volume of an assemblage of birds in four vegetation covers within the Terrapreta Private Natural Reserve (PNR), Guaviare-Colombia. Additionally, we propose a contribution as a mechanism of analysis in ecological restoration processes.

2 Methodology

2.1 Study area

The study was carried out in the Terrapreta PNR located in the department of Guaviare in Monserrate district (Figure 1). The reserve has 37 hectares of forest and 38 hectares delimited as open areas in the restoration process. It is strategically located and contributes to conserving the Department ecological connectivity, bordered to the north by the Serranía de la Lindosa and to the south by Caño Trueno, a tributary of Caño Grande (12). It has a monomodal precipitation regime with rainfall between April and July and an average annual temperature of 26 - 27 °C on the warm thermal floor. It has a very heterogeneous floristic composition characterized by numerous species of palms and xerophilous and macrocephalous plants (13).

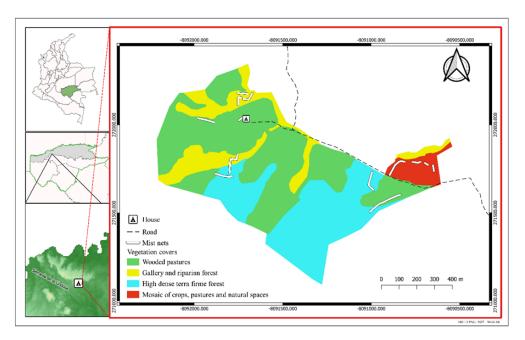


Fig 1. Map of the study area, highlighting four vegetation covers and the distribution of mist nets

2.2 Determination of vegetation cover

Four types of vegetation cover were established based on the Corine Land Cover method with different degrees of transformation and field verification: High Dense Terra Firme Forest (HDTFF), Gallery and Riparian Forest (GRF), Wooded Pasture (WP), and Mosaic of Crops, Pastures and Natural Spaces (MCPNS)⁽¹⁴⁾. Six sampling areas were determined: two zones in high dense forest, two in fragmented forest with pastures, one in gallery forest, and one in a mosaic of crops, pastures, and natural spaces. A round was defined as the sampling for each zone for 25 days. In total, three rounds were carried out between February and May 2023.

Transformed habitat is assumed to be places that have undergone processes of vegetation removal, with agriculture, cattle ranching, illicit crops, or presence of non-native species. Vegetation cover types include:

WP: land covered by pasture, trees taller than five meters distributed in a dispersed manner with tree cover more than 30% and less than 50% of the total area of the pasture unit, and the presence of non-native species.

MCPNS: areas of the territory occupied by crops and pastures in combination with natural spaces, occupying between 30% and 70% of the total area of the unit.

HDTFF: tree-type vegetation with an area equal to or greater than 70% of the total, canopy height between 5-15 meters, and no flood zones.

GRF: arboreal vegetation located on the margins of permanent or temporary watercourses.

2.3 Capture and measurement of functional traits in the bird assemblage

For the capture of birds, 96 meters of mist nets were used, with 30 mm of a net eye, during three continuous days per sampling zone, between the hours of 6:00 to 11:00 and 15:00 to 18:00. The nets were checked in every 30 minutes, and on the third day the nets were changed from one zone to another (8). The captured individual was placed in cloth bags to be weighed with a spring scale.

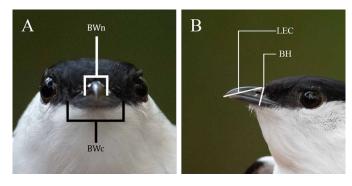


Fig 2. Morphometric measurements of the bills A) Bill width at nostrils (BWn) and bill width between commissures (BWc); B) Length of exposed culmen (LEC) and bill height (BH)

Morphometric measurements were recorded with the help of a digital vernier calibrator, and specific measurements of the bill were considered (Figure 2): bill height (BH), bill width between commissures (BWc), bill width at nostril level (BWn), length of the exposed culmen (LEC)⁽¹⁰⁾. With these measurements, the cone volume formula was applied to define the bill volume:

$$Bill\ volume = \frac{\pi \times (BWn/2)^2 \times LEC}{3}$$

Subsequently, the capture-mark-recapture method was used, the individual was marked using celluloid rings of different colors, recording the extremity on which the ring was placed, which allowed the organism to be recognized, the individual was released. This mark was not used in the Trochilidae family.

2.4 Feeding guilds

Bird species were classified according to three parameters: the main diet, the substrate used and the way of obtaining food, complemented with field observation and secondary information. (9). Feeding guilds were determined as: Insectivore Frugivore (I-Fr) which feed mainly on fruits but supplement their diet with insects; Omnivore (O) which consumes a wide range of food

including fruits, seeds, insects, small vertebrates and other available resources; Nectarivore (N) which extracts nectar from the flowers of plants; Foliage Insectivore (FI) which feed on insects located in the foliage of the entire vegetation column of the forest; Short-flying Insectivore (SFI) which feed on insects they catch in the air while flying short distances; Granivore-Insectivore (G-I) which feed mainly on seeds, supplementing their diet with some insects; and Insectivore-Animalivore (I-An) which obtain their food by visual perception from perches (species that feed on small vertebrates [amphibians, reptiles and small mammals] and some invertebrates [mainly insects] are counted within this guild) (15).

2.5 Data analysis

To determine the diversity of the feeding guilds in the vegetation covers, we used a Marimekko diagram and Chi-Square mean comparisonin Rstudio V. 4.3.1. To analyze the relation of the functional traits, the total length of the organism (TL) was used with the bill volume, as well as correlated with the vegetation covers and the feeding guilds, based on a linear regression analysis. To establish relation between bill volume and feeding guilds, a Boxplot plot and a Wilcoxon rank-sum test were performed in the program Rstudio V. 4.3.1.

3 Results

During the present study period a total of two hundred and eleven (211) individuals grouped in 6 orders, 18 families, and 49 species were captured (Table 1).

Table 1. Species composition and number of individuals captured

Family	Species	# individuals	Family	Species	# individuals
Trochilidae	Chionomesa fimbriata	4	Thraupidae	Ramphocelus carbo	4
	Chrysuronia oenone	1		Sporophila angolensis	9
	Glaucis hirsutus	3		Saltator maximus	2
	Phaethornis malaris	3		Sporophila minuta	1
	Phaethornis atrimetralis	3		Thraupis episcopus	3
	Phaethornis hispidus	20		Stilpnia cayana	2
	Thalurania furcata	13		Tersina viridis	1
	Heliomaster longirostris	1		Sporophila bouvronides	1
Columbidae	Leptotila rufaxila	1	Tytiridae	Pachyramphus polychopterus	1
Momotidae	Momotus momota	3		Pachyramphus marginatus	1
Cuculidae	Crotophaga ani	5	Troglodytidae	Troglodytes aedon	3
Fringillidae	Euphonia chrysopasta	1	Turdidae	Turdus ignobilis	6
Furnariidae	Dendrocincla fuliginosa	6		Catharus fuscescens*	4
	Glyphorynchus spirurus	11		Empidonax alnorum*	6
Icteridae	Cacicus cela	1		Leptopogon amaurocephalus	7
Mimidae	Mimus gilvus	1		Mionectes oleagineus	2
Parulidae	Leiothlypis peregrina*	1	Tyrannidae	Myiarchus tuberculifer	5
	Setophaga striata*	5		Myiodynastes maculatus	2
Pipridae	Ceratopipra erythrocephala	5		Myiozenetes cayanensis	1
	Manacus manacus	23		Pitangus lictor	1
	Machaeropterus striolatus	4		Pitangus sulphuratus	5
Thamnophilidae	Myrmotherula axilliaris	9		Poecilotriccus sylvia	8
	Thamnophilus amazonicus	3		Tyrannus melancholicus	3
	Cercomacroides tyrannina	2	Vireonidae	Vireo olivaceus*	3
	•		Capitonidae	Capito auratus	1

^{*}Migratory species

The most representative species were *Manacus manacus* (10.90%) and *Phaethornis hispidus* (9.47%). Five boreal migratory species were found (10.20%): *Leiothlypis peregrina, Setophaga striata, Catharus fuscescens, Empidonax alnorum* and *Vireo olivaceus*, representing 9% of the total number of individuals captured (Table 1 *).

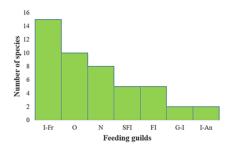


Fig 3. Number of species by feeding guilds

The recorded species were grouped into seven feeding guilds: the most diverse was Insectivore-Frugivore (I-Fr) with 15 species (30.61%), followed by Omnivore (O) with ten species (20.41%), and Nectarivore (N) with eight species (16. 33%). Foliage Insectivore (FI) and Short-flying Insectivore (SFI) were less represented with five species (10.20%) each, followed by Granivore-Insectivore (G-I) and Insectivore-Animalivore (I-An) with two species each (4.08%) (Figure 3). The feeding guilds with the highest abundance of individuals were I-Fr (n = 72, 32.12%) and N (n = 48, 22.75%). The least abundant guilds were FI (n = 18, 4.74%), G-I (n = 11, 5.21%) and I-An (n = 11, 5.21). The boxplot representation and the Wilcoxon rank-sum test showed significant differences between feeding guilds and bill volume.

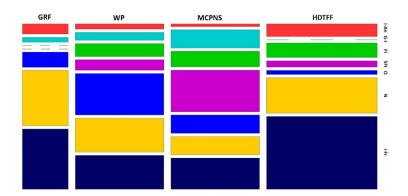


Fig 4. Marimekko plot between seven bird feeding guilds in four vegetation covers ($X^2 = 70.095$, df = 18, p-value <0.05).

All feeding guilds were present in the MCPNS and WP coverages. SFI and FI guilds were not present in the GRF coverage, G-I guild was not reported in the HDTFF coverage. The relation between vegetation cover and the proportion of feeding guilds were significant ($X^2 = 70.095$, df = 18, p-value <0.05). The vegetation cover that presented the greatest diversity of feeding guilds was HDTFF (Figure 4), where I-Fr represents 50% of its totality and corresponds to the guild with the highest abundance (34.12%), followed by the Nectarivore (22.74%) and Omnivore (13.27%) feeding guilds. The boxplot representation and the Wilcoxon rank-sum test showed significant differences between feeding guilds and bill volume (with a significant level of p < 0.05) (Figure 5).

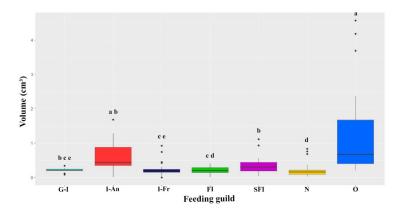


Fig 5. Box plot representation and Wilcoxon rank-sum test results of feeding guilds and bill volume. Different letters within feeding groups indicate statistically significant differences at a significant level of p < 0.05

The relation between the total length and bill volume (**Figure 6A**) is grouped mainly in the FI guild with values ranges 8.7-14.7 cm for total length and 0.01- 0.41cm³ for volume, followed by I-Fr (total length = 7.7- 20 cm, volume 0.04- 0.92 cm³). Guild N presented values for total length 8.75-21cm and bill volume 0.03-0.83cm³. On the other hand, a broad size spectrum of individuals was observed in the feeding guild O, which comprises the most dispersed values of the sample: 14.4-43.8 cm for total length and 0.20-4.57cm³ for bill volume. This relation between bill volume and total length for all the guilds is directly proportional (R^2 =0.754) and highlights the influence of total length on bill morphology and suggests a specific adaptation of birds according to their body size and diet. (Figure 6)

Vegetation cover with the highest abundance was HDTFF (Figure 6B) with values in a specific range: 8.1cm-22.8cm for total length and 0.01-1.68cm³ for volume, demonstrating that individuals present with both small size and small beaks. This is consistent with the overlap of data (Figure 6 A, B) between HDTFF and I-Fr, being the most representative guild of the sampling, followed by MCPNS coverage (8.5-31cm for total length, 0.04-1.85cm³ for volume).

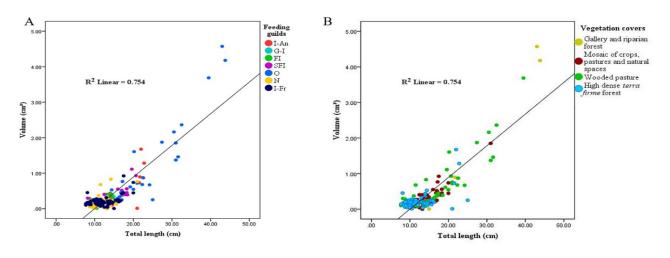


Fig 6. Linear regression between Total length (cm) and volume (cm³) categorized in A) Feeding Guilds B) Vegetation Covers

GRF has the least abundant vegetation cover with 29 individuals; however, it presents a great diversity of feeding guilds and the broader size spectrum (8.1-43.8cm for total length, 0.004 - 4.57cm³ for volume). These birds present with bills of considerable size compared to total length, but also contain individuals with smaller bills in proportion to their body size. WP presented morphometric values ranging from 7.7 cm to 39.5 cm in total length and from 0.08 cm³ to 3.69 cm³ in beak volume.

4 Discussion

The most abundant species in this study was *Manacus manacus*; its distribution in the understory of the HDTFF is evident mainly by its diet, which is based primarily on fruits and insects characteristic of this vegetation layer ⁽¹⁶⁾. We found that the average total length of *Manacus manacus* was 11.02 cm, while the average volume of its beak was 0.21 cm³. These morphometric values strengthen the adaptation of this species for the feeding guild I-Fr⁽¹⁶⁾, where the marked ratio between the volume index of the mouth cavity and its body allows it to effectively exploit a great variety of fruits present in both preserved primary forests and secondary forests with a diversity of plant species ^(16,17). *Phaethornis hispidus* was the second most abundant species and was found in 11.42% of HDTFF, 8.93% of MCPNS, 8.93% of WP, and a smaller proportion in GRF (6.89%); however, this species is commonly associated with flooded ecosystems typical of the Amazon (varzea forest, floodplain) ⁽¹⁸⁾.

Boreal migration occurs from September to May, overlapping with the sampling season, which supports the capture of migratory species in the vegetation cover. Search for food availability, climatic conditions, and reproductive opportunity allows the presence of migratory species contribute to the species composition, and temporarily establish a greater diversity of species in the habitat (19).

The Insectivore-Frugivore (I-Fr) feeding guild is described as sensitive in multiple investigations; it is composed of forage species, showing specificity in the exploitation of food resources $^{(20-22)}$. The large percentage of this guild, specifically in HDTFF (Figure 4), can be related to the sampling and the availability of specific feeding niches for birds of conservation importance. The specific climatic conditions in this vegetation strip have a higher degree of humidity throughout the year and less exposure to the sun, favoring the presence of insects and the growth of fruit plants. These characteristics increase the possibility of encountering birds of the I-Fr guild $^{(23,24)}$.

The N and FI guilds presented the most specific bill volumes, differentiating them from the other groups (Figure 5). The Nectarivore guild, represented by hummingbird species, has a marked adaptation to the nectar resource. Their niches tend to overlap, showing a homogeneous distribution in the study coverage independently of the transformation presented by each habitat, and the resources are being used in the same way (25).

The slight variation in the ranges between total length and bill volume of the FI guild individuals (Figure 6A) accounts for the specificity of the diet. This morphometric adaptation in beak volume may be due to the decrease in competition for this resource in the different coverage and the subsequent reduction in energy expenditure that this entails ⁽²⁶⁾. The way of capturing food, the type of substrate, and the vegetation stratum have specific functions that may cause the morphology of each species to manifest in a specific way for a microhabitat, resulting in the absence of the guild in certain coverage, such as GRF ⁽²⁷⁾.

On the contrary, the Omnivore and Insectivore-Animalivore guilds presented the most dispersed distribution of bill volume (Figure 5), probably due to the variety of their diet. The O guild is mainly found in WP where habitat transformation is more evident, favoring diverse foraging, whereas HDTFF cover may offer a wider range of prey sizes for I-An (Figure 6). (24,28)

SFI is the most abundant guild in MCPNS; the heterogeneity in the structure of the landscape can favor the availability of food in this cover, increasing the proliferation of insects by the variation of light and temperature. This contributes to the use of new niches that cannot be exploited by several species, where the border between the forest and the cultivation areas suggests zones of more significant benefit for these insectivorous species ⁽²⁸⁾. Likewise, the absence of this guild in the GRF coverage contrasts with prior studies where the percentage of this group was significant in their sampling. In this study data collection at the end of the dry season and the beginning of the rainy season, could have influenced the availability and distribution of resources used by these individuals ^(9,27).

In HDTFF, the absence of the G-I guild could suggest that the drought period at the beginning of the study could decrease this food resource where this habitat could not be exploited. Numerous studies mention the dominance of this guild in early forest successional stages, where there is a high degree of habitat transformation (26,29). Furthermore, the diversity of feeding guilds in degraded areas (WP and MCPNS) can be attributed to the ability of generalist species to adapt to these degraded environments (25); however, these coverage present a lower proportion of individuals and species diversity than habitats with a higher degree of conservation.

The bill volume values were clustered in the HDTFF cover which can be attributed to the existence of a greater variety of food resources, resulting in a high specialization in the use of the bills and their relation with great ecological complexity. This contrasts with the three remaining vegetation coverage BGR, WP and MCPNS; beak volumes were scattered, possibly associated to the lower supply of food resources and habitat degradation, which may represent difficulties in harnessing resources, therefore favoring species with generalist diets ⁽³⁰⁾.

The change in the availability of food resources and its impact on vegetation cover because of habitat transformation can be reflected in the feeding structure, as shown in the current study. This can be interpreted as less complex for the absence of feeding guilds, and the dominance of each guild in the habitat sampled (31). In addition, functional traits can give early signals of the response of birds to disturbances, which allows faster and more efficient detection of environmental impacts and

the prioritization of plans for the conservation of strategic ecosystems and areas in the process of regeneration or ecological restoration (22,24).

Although the individual birds' adaptability to human disturbances is not as affected by the diversity of feeding guilds present in degraded areas such as WP and MCPNS, the impact of the decrease in the health of habitats and bird assemblages is reflected in the vegetation cover. The morphometry of the bill observed from the volume provides a perspective of analysis on the relation between feeding guilds and the birds' response to human disturbances in different vegetation covers of restoration processes. This is observed in the species richness and abundance of individuals (32–34).

Could the proportion of feeding guilds and bill volume be considered an indicator of the degree of habitat transformation? In this study, the proportion of feeding guilds with more specific diets occurred in less transformed cover, in contrast to the presence of the G-I guild only in transformed habitats. The high specificity of bill volume was observed in the I-Fr guild and found in greater proportion in the less transformed cover HDTFF. That means that this feeding guild could be sensitive to human disturbances; therefore, it is important in the evaluation of the state of habitats, and its presence in covers symbolizes higher ecosystem complexity. Besides, the WP and MCPN coverage show bill volume morphometric values dispersed, with generalist species that reflect processes of less ecological complexity. This information may be helpful when monitoring a restoration process in these ecosystems. How the bill volume values behave over time in a given ecosystem could reflect whether its restoration is being carried out successfully in the tropical rain forests of the northern Colombian Amazon.

5 Conclusions

The highest abundance of organisms and the highest number of species were found in HDTFF cover, while GRF had the lowest abundance and species diversity. The seven feeding guilds were present in the WP and MCPNS coverage. Nectarivore and Foliage Insectivore guilds exhibited specific bill volumes, while the Omnivore and Insectivore-Animalivore guilds displayed a more dispersed distribution of bill volumes. For the Insectivore-Frugivore guild (I-Fr), bill volume specificity was observed mainly in less transformed and abundant habitats such as HDTFF and more dispersed volumes in Omnivore guild (O) at WP and GRF. The most generalist species of bill volume and feeding guild were found in the most transformed covers; therefore, the relation between feeding guilds and bill volume can provide essential information on the morphometric adaptations of a bird assemblage in response to degree of habitat disturbance.

6 Acknowledgement

We thank the Fundación para la Conservación y el Desarrollo Sostenible (FCDS) for the opportunity to develop the internship in the Terrapreta (PNR) and for funding the project, Mr. Luis Ramírez and his family for receiving us in the reserve and accompanying us in the field, and Daniel Rodríguez for his help in field data collection.

References

- 1) Porro Z, Chiatante G, Bogliani G. Associations between forest specialist birds and composition of woodland habitats in a highly modified landscape. Forest Ecology and Management. 2020;458:117732. Available from: https://doi.org/10.1016/j.foreco.2019.117732.
- Armenteras D, Vargas O. Landscape patterns and restoration scenarios: bringing scales closer together (Patrones del Paisaje y Escenarios de Restauración en Colombia&58; Acercando Escalas). Acta Biológica Colombiana. 2016;21(Supplement 1):229–239. Available from: https://www.ingentaconnect.com/ content/doaj/0120548x/2016/00000021/a00101s1/art00003.
- 3) Tabares ET. Importance of ecosystem services and biodiversity valuation for decision making. Notes from engineering. Revista Científica en Ciencias Ambientales y Sostenibilidad. 2014;1(1):16–28. Available from: https://revistas.udea.edu.co/index.php/CAA/article/view/19559.
- 4) Sanabria-Moyano JE, Rodríguez-Vivas DE. Colombiana, S.A. Editorial Planeta. 2021. Available from: https://doi.org/10.25062/9786280000701.02.
- 5) Martínez JN, Tamayo CAV. Armed conflict, post-conflict with the FARC-EP and the environment in Colombia. A conjunctural view of the department of Putumayo. *Revista Estudiantes Facultad de Ciencias Económicas*. 2016;VI(1):19–30. Available from: https://revistas.unimilitar.edu.co/index.php/CREFCE/article/viewFile/3270/2840.
- 6) Presentation of Deforestation Monitoring Results. 2019. Available from: http://www.ideam.gov.co/documents/10182/105413996/presentacionbalancedeforestacion2019/7c9323fc-d0a1-4c95-b1a1-1892b162c067.
- 7) Leaver J, Mulvaney J, Smith DAE, Smith YCE, Cherry MI. Response of bird functional diversity to forest product harvesting in the Eastern Cape South Africa. Forest Ecology and Management. 2019;445:82–95. Available from: https://doi.org/10.1016/j.foreco.2019.04.054.
- 8) Villarreal H, Alvarez M, Cordoba S, Escobar G, Fagua G, Gast F, et al. Manual of methods for the development of biodiversity inventories. and others, editor;Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 2004. Available from: http://repository.humboldt.org.co/bitstream/handle/20.500.11761/31419/63.pdf?sequence=1&isAllowed=y.
- 9) Marateo G, Arturi M. Seasonal dynamics and local variation of trophic guilds of birds in a gallery forest and a subtropical palm grove in South America. *Ornitologia Neotropical*. 2013;24(2):213–223. Available from: https://www.researchgate.net/publication/299060836_Seasonal_dynamics_and_local_variation_of_bird_trophic_guilds_in_a_subtropical_gallery_forest_and_palm_tree_forest_in_South_America.
- Salgado B. Functional ecology as an approach to the study, management and conservation of biodiversity: protocols and applications. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. 2015;p. 1–236.

- 11) Korňan M, Holmes R, Recher H, Adamík P, Kropil R. Convergence in foraging guild structure of forest breeding bird assemblages across three continents is related to habitat structure and foraging opportunities. *Community Ecology*. 2013;14(1):89–100. Available from: https://doi.org/10.1556/ComEc.14. 2013.1.10.
- 12) Terrapreta: a laboratory of Amazonian thought in the lands of the Guaviare FCDS. 2023. Available from: https://fcds.org.co/terrapreta-un-laboratorio-de-pensamiento-amazonico-en-las-tierras-del-guaviare/.
- 13) del Guaviare G. Integrated Climate Change Management Plan for the department of Guaviare. 1st ed. Guaviare. San José del Guaviare. 2020.
- 14) National Land Cover Legend. CORINE Land Cover Methodology adapted for Colombia Scale 1:100.000. 1st ed. Bogotá. Instituto de Hidrología, Meteorología y Estudios Ambientales. 2010.
- 15) Reales C, Urich G, Deshayes N, Medrano J, Alessio V, Leon E, et al. Contribution to the knowledge of trophic guilds in an assemblage of farmland birds of the middle Paraná. Fave Ciencias Veterinarias. 2009;8:61–69. Available from: http://hdl.handle.net/11336/103376.
- 16) Cestari C. Behavioral ecology of the lacewing (Manacus manacus): a small dancing bird from the restinga forests of the Juréia-Itatins Ecological Station. *Unisanta BioScience*. 2016;5(1):27–41. Available from: https://periodicos.unisanta.br/index.php/bio/article/view/615/684.
- 17) Cestari C, Pizo MA. Frugivory by the White-bearded Manakin (Manacus manacus, Pipridae) in restinga forest, an ecosystem associated to the Atlantic forest. *Biota Neotropica*. 2013;13(2):345–350. Available from: https://www.researchgate.net/publication/259623132_Frugivory_by_the_White-bearded_Manakin_Manacus_manacus_Pipridae_in_restinga_forest_an_ecosystem_associated_to_the_Atlantic_forest.
- 18) Beja P, Santos CD, Santana J, Pereira MJ, Marques JT, Queiroz HL, et al. Seasonal patterns of spatial variation in understory bird assemblages across a mosaic of flooded and unflooded Amazonian forests. *Biodiversity and Conservation*. 2010;19(1):129–152. Available from: https://doi.org/10.1007/s10531-009-9711-6.
- 19) Ramírez-Albores JE. Variación en la composición de comunidades de aves en la Reserva de la Biosfera Montes Azules y áreas adyacentes, Chiapas, México. Biota Neotropica. 2006;6(2):1–19. Available from: https://www.redalyc.org/articulo.oa?id=199114291018.
- 20) Bregman TP, Sekercioglu CH, Tobias JA. Global patterns and predictors of bird species responses to forest fragmentation: Implications for ecosystem function and conservation. *Biological Conservation*. 2014;169:372–383. Available from: https://doi.org/10.1016/j.biocon.2013.11.024.
- 21) Sam K, Koane B, Bardos DC, Jeppy S, Novotny V. Species richness of birds along a complete rain forest elevational gradient in the tropics: Habitat complexity and food resources matter. *Journal of Biogeography*. 2019;46(2):279–290. Available from: https://doi.org/10.1111/jbi.13482.
- 22) Newbold T, Scharlemann JPW, Butchart SHM, Şekercioğlu ÇH, Alkemade R, Booth H, et al. Ecological traits affect the response of tropical forest bird species to land-use intensity. *Proceedings of the Royal Society B: Biological Sciences*. 2013;280(1750). Available from: https://doi.org/10.1098/rspb.2012. 2131.
- 23) Ángel David Salas Correa, Mancera-Rodríguez NJ. Birds as ecological indicators of successional stages in a secondary forest, Antioquia, Colombia. *Revista de Biología Tropical*. 2020;68(1):23–39. Available from: https://revistas.ucr.ac.cr/index.php/rbt/article/view/34913/41203.
- 24) Codesido M, Drozd A, Gado PA, Bilenca D. Responses of a bird assemblage to manual shrub removal in a semiarid subtropical forest of the Argentina Chaco. *Ornitología Neotropical*. 2009;20(1):47–60. Available from: https://www.researchgate.net/publication/289702855_Responses_of_a_bird_assemblage_to_manual_shrub_removal_in_a_Chacoan_subtropical_semiarid_forest_Argentina.
- 25) da Silva LF, Guilherme E. Understory bird assemblage in a riparian environment dominated by Cecropia membranacea (Urticaceae) in southwestern Amazonia. *Journal of Field Ornithology*. 2023;94(1):1–16. Available from: https://doi.org/10.5751/JFO-00234-940111.
- 26) Limonta OT, Garcia GGH, Jiménez JE, Cabrera IL. Trophic structure and niche partitioning in a Cuban tropical forest bird community. *Revista Chilena de Ornitología*. 2019;25(2):47–61. Available from: https://aveschile.cl/wp-content/uploads/2019/12/Triay-et-al-aves-Cuba.pdf.
- 27) Vaccaro AS, Bellocq MI. Taxonomic and functional diversity of birds: Differences between anthropic habitats in a subtropical forest. *Ecología austral*. 2019;29(3):285–445. Available from: https://doi.org/10.25260/EA.19.29.3.0.873.
- 28) Salas-Correa AD, Mancera-Rodríguez NJ. Relationships between bird diversity and vegetation structure in four secondary forest successional stages, Antioquia, Colombia. Revista UDCA Actualidad & Divulgación Científica. 2018;21(2):519–529. Available from: https://revistas.udca.edu.co/index.php/ruadc/article/view/970.
- 29) Tinoco B. Seasonality of the bird community in a Tumbesian deciduous forest in southwestern Ecuador. *Ornitología Neotropical*. 2009;20(2):157–170. Available from: https://www.researchgate.net/publication/275970719_Seasonality_of_the_bird_community_in_the_Tumbesian_dry_forest_in_south_west Ecuador.
- 30) Codesido M, Fischer CMG, Bilenca D. Associations between different land use patterns and bird assemblages in agroecosystems of the Pampas region. *Ornitología Neotropical*. 2008;19:575–585. Available from: https://www.researchgate.net/publication/236877226_Asociaciones_entre_diferentes_patrones_de_uso_de_la_tierra_y_ensambles_de_aves_en_agroecosistemas_de_la_Region_Pampeana_Argentina28.
- 31) Chettri A, Thakuri B, Acharya BK. Foraging Strategy and Guild Structure of Avifauna in Sikkim, Eastern Himalaya, India. *Proceedings of the Zoological Society*. 2022;75(1):65–82. Available from: https://doi.org/10.1007/s12595-021-00396-0.
- 32) Yañez-Dukon LA, Hernández NFV, Espinosa ÍF, Montoya PL, Ruiz-Toquica JS. Rapid Assessment of the Families and Groups of Trophic Birds Associated with Savannas and Gallery Forests at El Caduceo Nature Reserve. *Revista Mutis*. 2021;11(2):132–142. Available from: https://doi.org/10.21789/22561498.
- 33) Arriaga-Weiss SL, Calmé S, Kampichler C. Bird communities in rainforest fragments: guild responses to habitat variables in Tabasco, Mexico. *Biodiversity and Conservation*. 2008;17(1):173–190. Available from: https://doi.org/10.1007/s10531-007-9238-7.
- 34) Córdova-Tapia F, Zambrano L. Functional diversity in community ecology. Ecosistemas. 2015;24(3):78–87. Available from: https://doi.org/10.7818/ECOS. 2015.24-3.10.