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Abstract
Background: PaMIR is a novel approach for image-based human reconstruc-
tion that utilizes a parametric model-conditioned implicit representation. This
method enables the generation of a complete 3D mesh of a human body from
a single input image. It uses a neural network that is conditioned on a para-
metric model of the human body to produce an implicit representation of the
3D surface. Objectives: To develop a novel approach for image based human
reconstruction by training neural network and to generate high quality images.
Method: In our PaMIR-based reconstruction framework, a novel deep neural
network is proposed to regularize the free-formdeep implicit function using the
semantic features of the parametric model, which improves the generalization
ability under the scenarios of challenging poses and various clothing topolo-
gies. Findings: The quantitative comparison shows that PaMIR method out-
performs the state-of-the-art methods in terms of surface reconstruction accu-
racy. The errors are also provided when ground-truth SMPL annotations are
available to present the upper limit of the reconstruction accuracy if the SMPL
estimation is perfect. Overall, this method is more general, more robust and
more accurate than HMD, Molding Humans, Deep Human and PIFu. Novelty:
A novel depth-ambiguity-aware training loss is further integrated to resolve
depth ambiguities and enable successful surface detail reconstruction with
imperfect body reference. Finally, we propose a body reference optimization
method to improve the parametric model estimation accuracy and to enhance
the consistency between the parametric model and the implicit function. With
the PaMIR representation, our framework can be easily extended to multi-
image input scenarios without the need of multi-camera calibration and pose
synchronization.
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1 Introduction
Image based parsing of human bodies is a popular topic in computer vision and computer graphics. Among all the tasks of
image-based human parsing, recovering 3D humans from a single RGB image attracts more and more interests given its wide
applications in Virtual Reality/Augmented Reality (VR/AR) content creation, image and video editing, telepresence, and virtual
dressing (1). However, as an ill-posed problem, recovering 3D humans from a single RGB image is very challenging due to the
lack of depth information and the variations of body shapes, poses, clothing types and lighting conditions.

The 3D representation methods can be roughly classified into two categories: parametric methods and non-parametric
methods (2). However, the low dimensional parametric model limits the performance when handling different clothing types
such as long dresses and skirts (3). To achieve high-quality geometric detail reconstruction while maintaining robustness to
challenging pose and clothing styles (4). In this paper, we propose Parametric Model-Conditioned Implicit Representation,
dubbed PaMIR, to incorporate the parametric SMPL model and the free-form implicit surface function into a unified learning
and optimization framework (5). The implicit surface function overcomes the resolution limit of volumetric representation and
enables detailed surface reconstruction capability (1). Although being able to describe arbitrary clothes, current non-parametric
methods still suffer fromchallenging poses and self-occlusions due to the lack of semantic information anddepth ambiguities (6).

To fill the accuracy gap between the ground truth training data and the inaccurate testing input, we further propose a new
depth ambiguity-aware training loss and a body reference optimization module in the PaMIR based framework and achieve
surface detail reconstruction even under imperfect body reference initialization and depth ambiguity.

This work is to develop a method for generating a complete 3D mesh of a human body from a single input image (7). This
involves the use of a parametric model of the human body to provide prior knowledge about body shape, pose, and texture,
which is then used by a neural network to produce an implicit representation (8) (9).

The main objectives of PaMIR are:

• To develop a novel approach for image-based human reconstruction that uses a parametric model-conditioned implicit
representation.

• To train a neural network that can generate accurate and realistic 3D models of human bodies from 2D images.
• To incorporate a shape refinementmodule that allows for the generation of high-quality, detailedmeshes with sharp edges

and fine features.
• To evaluate the performance of PaMIR on several benchmark datasets and demonstrate that it outperforms existing state-

of-the-art methods in terms of accuracy and visual quality.

In contrast, we proposed a deep learning-based framework to combine the parametric SMPL model and the non-parametric
deep implicit function for 3D humanmodel reconstruction from a single RGB image (10). Benefiting from the proposed PaMIR
representation, the depth-ambiguity-aware reconstruction loss and the reference body optimization algorithm, our method
outperforms state-of-the-art methods in terms of both robustness and surface details.

2 Methodology
The proposed system architecture is shown in Figure 1. It has the following modules.

2.1 Non Parametric Shape Estimation

The first part of the pipeline consists of a typical image-based CNN following the ResNet-50 architecture as showed in Figure 2.
From the original design ignore the final fully connected layer, keeping only the feature vector after the average pooling layer.
This CNN is used as a generic feature extractor from the input representation (11). Having the feature vector extracted by the
generic image-based network, attach these features to the 3D coordinates of each vertex in the template mesh (12). Graph CNN
uses as input the 3D coordinates of each vertex along with the input features and has the goal of estimating the regressed 3D
vertex coordinates. This processing is performed by a series of Graph Convolution layers.

https://www.indjst.org/ 4055

https://www.indjst.org/


Priya et al. / Indian Journal of Science and Technology 2023;16(44):4054–4062

Fig 1. Proposed System Architecture

Fig 2. Graph convolutional Neural Network Algorithm

________________________________________________
Algorithm 1: Graph Convolution Neural Network
________________________________________________
Input: 2D Image
Output: Regressed Shape
Function def graph_CNN(self, image):
batch_size = image.shape[0]
ref_vertices = self.ref_vertices[None, :, :].expand(batch_size, -1, -1)
image_resnet = self.resnet(image)
image_enc=image_resnet.view(batch_size, 2048, 1).expand(-1,ref_vertices.shape[-1])
x=torch.cat([ref_vertices,image_enc], dim=1)
x = self.gc(x)
shape = self.shape(x)
camera=self.camera_fc(x).view(batch_size, 3)
return shape, camera
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2.2 Parametric SMPL Estimation

Multi-Layer Perceptron network is trained to regresses pose (θ ) and shape (β )parameters of the Skinned Multi-Person Linear
parametric model given the regressed 3D vertex coordinate as input. Decoder is used to convert the output of Multi-Layer
Perceptron to SMPL parametric shape.

Algorithm 2: MLP Algorithm
_______________________________________
Input: Regressed 3D Shape
Output: SMPL Mesh
Function def SMPL(self, x):
batch_size = x.shape[0]
x = x.view(batch_size, -1)
x = self.layers(x)
rotmat = rotmat * det
rotmat = rotmat.view(batch_size, 24, 3, 3)
rotmat = rotmat.to(orig_device)
return rotmat, betas

2.3 Feature Extraction and Sampling

In the feature extraction step, the input image is encoded into a feature map by a 2D convolution network, while the occupancy
volume is encoded into a feature volume by a 3D convolution network (13). The occupancy volume is obtained by converting
SMPLmodel through voxelization. For each point in the 3D space, pixel-aligned image feature and voxel-aligned volume feature
are sampled in the feature map and the feature volume, respectively. Then the two feature vectors are then concatenated.

The quality of the occupancy volume will depend on the voxel size, with smaller voxels resulting in higher resolution but
larger files. Additionally, some voxelization algorithmsmay introduce errors or artifacts in the voxelized mesh, which can affect
the accuracy of the occupancy volume.Therefore, it is important to choose an appropriate voxelization algorithm and voxel size
based on your specific application requirements.

Algorithm 3: Feature Extraction and sampling
_______________________________
Input: 2D image & 3D SMPL mesh
Output: Concatenated Features
Function def concat_feature(self, img, vol, pts, pts_proj,attention_net=None):
pt_sdf = pt_output.view([1, point_num, 1])
pt_sdf_list.append(pt_sdf)
return pt_sdf_list

2.4 Surface Extraction

The concatenated feature is translated to an occupancy probability value. Feature-to-occupancy decoder is used to find
occupancy probability value. Learn an implicit function F(C(p)) that can classify whether p is inside or outside the surface,
by sampling the occupancy probability field over the 3D space and extract the iso- surface of the probability field at threshold
0.5 using the Marching Cubes algorithm.

Algorithm 4: Surface Extraction
Input: Concatenated feature.
Output: : Extracted surface of an image
Function def test_pifu(self, img, vol_res, betas, pose, scale, trans):
mesh = dict()
mesh[’v’] = vertices / vol_res - 0.5
mesh[’f ’] = simplices[:, (1, 0, 2)]
mesh[’vn’] = normals
return mesh
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• Step1: Determination of case index

The eight voxels of the volume cell have an assigned state, indicating whether their respective voxel value is greater, equal, or
smaller than the specified iso-value. The state of each voxel is interpreted as a binary digit (1 for inside, and 0 for outside) and
composed into an eight-bit number index. Figure 3 shows which voxel state goes to which position.

Fig 3.Determining case Index

• Step 2: Determination of intersected edges

After the case index for the cell is determined, the cell edges that are intersected by the iso-surface can be looked up in the case
table. In (right), six cell edges are intersected by the iso-surface. As an example, in case 9 (9=1∗20+1∗23), the states of voxel 0
and voxel 3 are set. Now have 256 possible configurations of voxel states, and hence there will be 256 possible triangulations of a
volume cell. However, not all these configurations generate different triangulations.Most cases can be sorted into 15 equivalence
classes, considering rotation or mirroring.

• Step 3: Computation of Intersections

Once the intersected cell edges are determined, the intersection itself is calculated by linear interpolation as shown in Figure 4.

Fig 4.Determining Intersected edged

https://www.indjst.org/ 4058

https://www.indjst.org/


Priya et al. / Indian Journal of Science and Technology 2023;16(44):4054–4062

• Step 4: Triangulation of the Intersections

Then by combining the interpolated intersections with the information, how the edge intersections are composed into triangles
will be known, which is also stored in the case table. With that, the triangles can be determined.

• Step 5: Computation of Outward-pointing Surface Normal

Usually, surface normal are determined based on the orientation of the triangle. However, in the context of surface extraction,
the gradients of the scalar field might be approximated by computing intensity differences. The use of the original data of the
scalar field leads to amore precise definition of surface normal.This computation is performed for the three vertices of a triangle
and as a simple solution it is averaged. The resulting gradient needs to be normalized for the use in an illumination model. The
very same strategy is used for the integration of illumination in direct volume rendering.

2.5 Texture Reconstruction

To perform texture inference, make some simple modification to the network as in geometry inference.Then define the output
of the decoder as an RGBα vector field instead of a scalar field. In texture inference, the output of the decoder is taken as RGBα
vector field.TheRGB value is the network prediction of the color of a specific point on themesh surface, while the alpha channel
is used to blend the predicted value with the observed one (14). The texture network first recovers the color on the whole surface
as well as an alpha channel which is used to blend the predicted color with the observation. The extracted surface combines
with texture of an image to produce an output of 3D reconstructed image.

• Algorithm 5: Texture Reconstruction

Input: Concatenated Feature
Output: Photorealistic 3D Reconstructed Image.
Function
defforward_infer_color_value_group(self, img, vol, pts, pts_proj, group_size):
pts_clr = np.concatenate(pts_clr)
pts_clr = np.array(pts_clr)
return pts_clr

3 Results and Discussion

Fig 5. 3D model of the human body

This method normalizes images according to the mean and standard deviation values specified for the ResNet model. Then,
it normalizes the images. Finally, it returns the normalized images. The ResNet architecture is composed of multiple ”blocks”
that use the Bottleneck block (15). It defines a Mesh class used for handling certain graph operations.Themethod takes an input
image and a set of reference vertices and encodes them using a ResNet architecture. The encoded image is then concatenated
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with the reference vertices. The reference vertices and these feature vectors are then concatenated and passed through a series
of GraphResBlock layers, which are used to update the feature vectors at each vertex based on the features of its neighbors.

The output of the GCNN is then passed through a sequence of fully connected layers to predict the 3D shape and camera
parameters of the object in the input image (16). This is a neural network model that takes in some input and outputs the
parameters of the SMPL (Skinned Multi-Person Linear) body model. The SMPL model is a 3D model of the human body
that represents body shape and pose using a linear combination of learned basis shapes and joint rotations as shown in Figure 5
.

This method implements a forward pass of a neural network that predicts the rotation matrix and shape parameters of the
SMPL model given an input feature vector. Then other function performs an optimization to refine the SMPL parameters by
minimizing the difference between the projected 3D keypoints and the detected 2D keypoints, as well as the difference between
the predicted SDF and the ground truth SDF.

An instance of HourglassNet, with input channel count of 4, output channel count of 128, and number of stages of 4.This
is the definition of an MLP (Multi-Layer Perceptron) network, which is a type of feedforward neural network that consists of
multiple layers of fully connected linear units (called neurons) followed by nonlinear activation functions.

This is similar to shape reconstruction, but only the output of MLP network changes to produce scalar field instead of vector
field. The 2D and 3D features are concatenated and passed through a multi-layer perceptron (MLP) to predict the texture of
each point in the point cloud. The predicted texture is a 3-channel RGB value, while the attention weights are a single scalar
value.

3.1 Performance Metrics

• Body Fitting Loss

Table 1. Body Fitting Loss values at specific steps
Epochs Body fitting loss
0 0.297105
15 0.270218
25 0.256969
49 0.236855

• Depth-ambiguity-aware Reconstruction Loss

Reconstruction loss is defined as themean Square error between the occupancy probability of the point samples and the ground-
truth ones. Predicted models may not be well aligned with the ground-truth along the z-axis. To deal with this issue, here novel
depth ambiguity aware reconstruction loss is proposed. This can be calculated using (1). ∆pi = (0, 0, ∆zi) is the compensating
translation along z-axis.

LR =
1
np

np

∑
i=1

|F (C (pi +∆pi))−F ∗ (pi)|2 (1)

• Mean Per Joint Position Error

Mean Per Joint Position Error is the average Euclidean distance between the location of real-life joints on human bodies and
the location of predicted joints on 3D pose model. For a frame f and skeleton S, MPJPE can be calculated using (2).

EMPJPE( f , S) =
1

NS

NS

∑
i=1

∥∥∥m( f )
f ,S(i)−m( f )

gt,S(i)
∥∥∥

2
(2)

• Comparative Analysis

By qualitatively comparing PaMIR method with several state-of-the-art methods including HMD, Tex2Shape, Moulding
Humans, DeepHuman and PIFu. Among them, HMD and Tex2Shape are parametric methods based on SMPL model
deformation, PIFu uses a deep implicit function as geometry representation, Moulding Humans uses the combination of a
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front depth map and a back depth map for representation, and Deep Human combines volumetric representation with the
SMPL model.

In this experiments, DeepHuman, PIFu and Moulding Humans are all retrained on the dataset, while parametric methods
like HMD and Tex2shape are not because the dataset contains loose garments like dresses which will deteriorate the
performance of those methods.

By quantitatively comparing PaMIR method with the state-of-the-art methods using both Twindom testing dataset and
BUFF rendering dataset to evaluate the geometry reconstruction accuracy. Similar to the experiments in PIFu, point-to-surface
error as well as the Chamfer distance is used as error metric.

This method needs high-quality human scans for training. However, it is highly costly and time consuming to obtain a large-
scale dataset of high-quality human scans. Moreover, the currently available scanners for human bodies require the subject to
keep static poses in a sophisticated capturing environment, which makes them incapable to capture real-world humanmotions
in the wild and consequently the training data is biased towards simple static poses like standing (17) (18). Although the proposed
method alreadymakes a step forward in terms of generalization capability, it still fails in the cases of extremely challenging poses.
One important future direction is to alleviate the reliance on ground-truth by exploring large-scale image and video dataset for
unsupervised training.

The quantitative comparison shows that PaMIR method outperforms the state-of the-art methods in terms of surface
reconstruction accuracy. The errors are also provided when ground-truth SMPL annotations are available to present the upper
limit of the reconstruction accuracy if the SMPL estimation is perfect. Overall, this method is more general, more robust and
more accurate than HMD, Moulding Humans, DeepHuman and PIFu (6).

Table 2.Numerical comparison results
Dataset BUFF TWINDOM
Method P2S (Point to Surface)

(cm)
Chamfer (cm) P2S (Point to Sur-

face) (cm)
Chamfer (cm)

HMD 2.48 3.92 2.50 4.01
Moulding Humans 2.25 2.68 2.84 3.35
DeepHuman 2.15 2.80 2.35 2.97
PIFu 1.93 2.22 2.34 2.65
PaMIR Method 1.52 1.92 1.80 2.12
PaMIR Method using
groundtruth SMPL

0.709 0.936 0.744 1.00

4 Conclusion
A deep learning-based framework for combining the parametric SMPL model and the non-parametric deep implicit function
for 3D humanmodel reconstruction from a single RGB image is proposed in this work. A temporally consistent reconstruction
results by applying PaMIR method to video frames individually is obtained. This method will enable many applications and
further stimulate the research in this area. From amore general perspective of view, this approach made a step forward towards
integrating semantic information into the free-form implicit fields which have attracted more and more attention from the
research community for its flexibility, representation power and compact nature. Moreover, the semantic implicit functions can
also be adopted in research on 3D perception and parsing.This method needs high-quality human scans for training. However,
it is highly costly and time consuming to obtain a large-scale dataset of high-quality human scans. Moreover, the currently
available scanners for human bodies require the subject to keep static poses in a sophisticated capturing environment, which
makes them incapable to capture real-world human motions in the wild and consequently the training data is biased towards
simple static poses like standing. Although the proposed method already makes a step forward in terms of generalization
capability, it still fails in the cases of extremely challenging poses. One important future direction is to alleviate the reliance
on ground-truth by exploring large-scale image and video dataset for unsupervised training.
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