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Abstract

Objective: To develop a robust and effective computer vision system that can
automatically identify and classify human actions in video data, considering
the temporal dynamics and various environmental conditions. This technology
has numerous applications in surveillance, human-computer interaction, and
video analysis. Methods: The key methods for dense trajectory extraction
include the dense optical flow, which computes motion vectors for each point,
and the use of key point detectors like the Scale-Invariant Feature Transform
(SIFT) or the Harris corner detector. Findings: By describing the motion of the
trajectories, trajectory descriptors produce remarkably strong results on their
own, such as 90.2% on KTH and 47.7% on Hollywood2 for dense trajectories.
This demonstrates the significance of the motion data present in the local
trajectory patterns. Because the trajectory descriptors catch a lot of camera
motion, we only report 67.2% on YouTube. Novelty: In this study, a method
for modelling movies that combines dense sampling and feature tracking
is presented. Compared to earlier video descriptions, our dense trajectories
are more reliable. They effectively capture the motion data in the movies
and outperform cutting-edge action categorization techniques in terms of
performance.

Keywords: Human action recognition; Scale-Invariant feature transform;
Histograms of oriented gradients; Spatial and temporal interest points;
Histograms of optical flow

1 Introduction

Computer vision research has seen substantial advancement in the area of human action
recognition in videos in recent years, spurred forward by the vast array of practical
uses. Video surveillance, video indexing and browsing, gesture detection, human-
computer interaction, and sports event analysis are some of these uses. In spite of these
developments, the work is still difficult because of a variety of characteristics, such as
crowded backdrops, shifting lighting, varied human body types, varying clothes, camera
movements, partial occlusions, shifting viewpoints, and size differences in video frames.

https://www.indjst.org/

3846


https://doi.org/10.17485/IJST/v16i43.2408
https://doi.org/10.17485/IJST/v16i43.2408
https://doi.org/10.17485/IJST/v16i43.2408
dileep.labana@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/

Labana & Modi / Indian Journal of Science and Technology 2023;16(43):3846-3853

Action representation, action learning, and categorization are typically the two main processes in the human action
recognition process. According to(!, previous methods of action recognition are based on action representation and may be
roughly classified into two groups: global and local representations.

By using backdrop removal or tracking approaches, global representation methods focus on detecting the complete human
body. For the localized person, silhouettes, contours, or visual flow are frequently used. These representations are more
vulnerable to perspective shifts, changes in physical characteristics, and partial occlusions, however.

Videos are represented using local representation techniques as a collection of tiny, independent patches, each including areas
with sizable spatial and temporal changes. Spatial and temporal interest points (STIPs) are the names given to these areas?).
By extracting appearance and/or motion information from each of the discovered points’ corresponding patches, the points are
then classified using a dictionary of prototypes or visual words.

The Bag of Words model (BOW) is then used to depict each action sequence®. Due to their resounding effectiveness,
these strategies have gained a lot of ground in the study of human activity. They successfully solve some of the drawbacks of
global representation, including noise sensitivity, partial occlusion, and the requirement for precise localization via background
removal and tracking.

2 Methodology

It is common practice to use local characteristics to represent videos, especially when paired with a bag-of-features
representation, which produces cutting-edge results in action classification. Interest point detectors and local descriptors have
recently been effectively used on both pictures and movies.

Videos, however, show different properties in both the 1D temporal domain and the 2D spatial domain. Therefore, treating
them differentially makes more sense than employing interest point detection in a single 3D area. Tracking attention spots
when watching video sequences offers a simple and effective alternative. Utilising motion data from trajectories, astounding
progress in action detection has been shown in recent works ®). Trajectories are categorized into clusters throughout the video
analysis process, and an affine transformation matrix is produced for each cluster center to effectively capture the essence of the
trajectories. This was accomplished by extracting trajectories by matching SIFT descriptors between successive frames. They
applied a unique-match restriction among the descriptors and eliminated matches that were too far apart from one another to
assure correctness.

Tracking in each spatial scale separately Trajectory description

Dense sampling
in each spatial scale

O HOG  HOF  MBH

Fig 1. Example of our dense trajectory description: Left: Feature points are sampled densely for multiple spatial scales; Middle: Tracking
is done in the corresponding spatial scale over L frames; Right: Trajectory descriptors are based on its shape represented by relative point
coordinates; as well as appearance and motion information over a local neighborhood of NXN pixels along the trajectory

For picture classification, dense sampling has proven to perform better than sparse interest spots ). Similarly, dense sampling
at predictable geographical and temporal places fared better than cutting-edge space-time interest point detectors in recent
assessments of action identification. However, in order to monitor sparse interest sites, the KLT tracker is commonly used to
acquire trajectories. Although successful, matching dense SIFT descriptors is computationally expensive, making it impractical
for big video collections.

Our article provides an effective technique for extracting dense trajectories. Tracking highly sampled sites using optical flow
fields yields the trajectories. Due to the fact that dense flow fields have already been computed, the number of monitored points
may simply be scaled up. In contrast to separately tracking or matching points, Figure 1 shows how the application of global
smoothness criteria among points in dense optical flow fields produces more reliable trajectories. Action recognition has not
before used dense trajectories. By grouping dense trajectories together, we segmented the objects.
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The most useful signal for identifying actions is motion. It could be brought on by the interesting action, but it might also be
brought on by the background or camera movement. When dealing with actual behaviors in uncontrolled environments, this
is unavoidable. A lingering issue is how to distinguish between motion that is important and motion that is not. The motion
correction technique for video stabilization removes the majority of camera motion.

We address the problem of camera motion by providing a local descriptor that emphasizes foreground motion. Our
description makes it possible to include dense trajectories into the motion coding method based on motion boundaries that
was initially developed for human detection. We demonstrate that motion bounds recorded along the trajectories perform
noticeably better than cutting-edge descriptors. The structure of this essay is as follows: We introduce the method for obtaining
dense trajectories in Section 2. Then, in section 3, we demonstrate how to encode feature descriptors throughout the trajectory.
Finally, in sections 3 and 4, respectively, we provide the experimental design and talk about the findings.

2.1 Dense Trajectories

Figure 1 shows the extraction of dense trajectories at various spatial scales. Feature points are sampled and each scale tracks
them independently on a grid with W-pixel spacing. Through investigation, we discovered that a sample step size of W = 5 is
adequate to produce reliable results. We used 8 spatial scales that were divided in half. Every point Pt = (Xt, Yt) at frame t is
tracked to the frame t+ 1 after median filtering in a dense optical flow field = (ut), vt).

Pr+1=(Xr+1,Yr+1)=(Xt4+Yt)+ (Mxo)| (Xt, Y1) (1)

A median filtering kernel M is used to round (Xt, Yt) in order to obtain the position (Xt, Yt). In particular, for sites close to
motion boundaries, this method is more reliable than the bilinear interpolation method used in Points may be monitored
in great detail once the dense optical flow field has been generated without adding more computing work. Points from the
following frames are combined to form a trajectory: (Pt, Pt+1, Pt+2). We employ the Farneback technique as implemented in
the OpenCV library2 to extract dense optical flow. This method, in our opinion, strikes a decent balance between accuracy and
speed.

Trajectories that stray from their starting places are a challenge that tracking frequently faces. We handle the length of each
trajectory by restricting it to L frames in order to alleviate this problem. As seen in Figure 2 (middle), once a trajectory reaches
this length, it is removed from the tracking process. We check each frame for the existence of a track on our thick grid to ensure
complete coverage across the video. If a W-W neighborhood has no monitored points, a feature point is sampled and used in
the tracking procedure. We used a trajectory length of L = 15 frames for our experiment.

Optical flow Motion boundaries on I,

-

Gradient information Motion boundaries on I,

__ time

Fig 2. Example of the data gathered by the HOG, HOF, and MBH descriptors. Color (hue) and saturation serve as indicators of the
gradient/flow direction and magnitude for each picture. Motion boundaries are calculated as the individual x and y optical flow
gradients. Motion boundaries, as opposed to optical flow, emphasize foreground motion while suppressing the majority of background
camera motion. Motion bounds, as opposed to gradient information, remove the majority of texture data from the static backdrop

It is impossible to follow points in areas of uniform images devoid of any pattern®). We examine the lower eigenvalue
of an autocorrelation matrix after sampling a feature point. Additionally, erroneous trajectory with sudden and substantial
displacements is deleted®. The dense and KLT trajectories are compared in Figure 1. We can see that dense trajectories
outperform those produced by the KLT tracker in terms of robustness and density.

Local motion patterns are encoded in a trajectory’s form. Given a trajectory of length L, we may determine its form from a
sequence of displacement vectors Pt = (Pt+1 Pt) = (xt+1 xt, yt+1 yt) called S = (Pt, Pt+L1). The sum of the displacement vectors’
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magnitudes is used to normalize the resultant vector:

g_(BPL API+L—1)

t+L—1 . 2)
T (AP
This vector is referred to as a trajectory description. In order to distinguish between activities that are carried out at various
speeds, we have also considered expressing trajectories at various temporal scales. In reality, this had no positive impact on the
outcomes. As a result, in our studies, we adopt trajectory types with fixed length L.

2.2 Descriptors with a trajectory

As a method of representing video, local descriptors calculated inside a 3D video volume near interest spots have grown in
favor 7)., Figure 2 illustrates how we compute descriptors inside a space-time container enclosing the trajectory in order to
maximize the motion information in our dense trajectories. This volume spans L frames and is NXN pixels in size. We split the
volume into a spatio-temporal grid of dimension nxn in order to add structural information to the representation. We employ
the default values N = 32, n = 2, and n = 3 for our studies because cross-validation on the Hollywood2 training set has shown
them to be the most effective.

Among the well-known descriptors, HOGHOF has demonstrated itself to be extremely successful for action recognition
across a variety of datasets. HOG (histograms of oriented gradients) ® concentrates on the static appearance features, whereas
HOF (histograms of optical flow) primarily collects local motion information. We calculate the HOGHOF description along
with our dense trajectories. An additional ninth bin is utilized for HOF, making a total of nine bins. Orientations are quantized
for HOG and HOF into 8 bins that include full orientations. The L2 norm is used to normalize both descriptors. A depiction of
the HOGHOF is shown in Figure 2.

Biking Shooting Spiking Swinging Walking dog

Fig 3. Examples of video frames from action datasets from KTH (top row), YouTube (second row), Hollywood2 (third row), and UCF
sports (last row)

The MBH descriptor separates the optical flow field I = (Ix, Iy) into its x and y components. The orientation data is quantized
into histograms, and, like the HOG descriptor, spatial derivatives are computed for each of them. We obtain an 8-bin histogram
for each component, and we separately normalize each one using the L2 norm. Because MBH reflects the gradient of the optical
flow and suppresses information about steady motion, it only retains information about changes in the flow field, such as
motion boundaries. Compared to video stabilization® and motion correction, this is a simple way to remove noise caused
by background motion.

3 Results and Discussion

We first discuss the datasets utilized for action recognition in this section. The bag-of-features methodology used to assess our
dense trajectory characteristics and the KTL tracking baseline is then briefly presented.

3.1 Dataset

Figure 3 shows an exhaustive evaluation of our dense trajectories on four common action datasets: KTH, YouTube, Hollywood2,
and UCF sports. The datasets here are highly varied. While the Hollywood2 dataset includes actual movies with a cluttered
background, the KTH dataset shows activities against a homogeneous background. The UCF sports videos are excellent
resolution, in contrast to the low-quality YouTube videos.

https://www.indjst.org/ 3849
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Six human activity classes—walking, jogging, sprinting, boxing, waving, and clapping—are included in the KTH dataset. 25
individuals execute each activity many times. The four circumstances in which the clips were captured were outdoors, outdoors
with scale variation, outdoors with various attire, and inside. Most segments have uniform and motionless backgrounds ).
The data consists of 2391 video clips in total. Following the authors’ initial experimental design, we split the data into a training
set (the remaining 16 participants) and a test set (9 subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22). We train and assess a multi-class
classifier, the same as we did in the first study, and we present average accuracy across all classes as a performance metric.

11 different activity genres are included in the YouTube dataset: basketball shooting, biking/cycling, diving, golf swinging,
horseback riding, soccer juggling, swinging, tennis swinging, trampoline leaping, volleyball spiking, and walking a dog. Large
changes in camera movements, item size, shape, and attitude, perspective, a crowded background, and lighting conditions
make this dataset tough. There are 1168 sequences altogether in the collection. We use leave-one-out cross-validation for a
predetermined set of 25 folds in accordance with the original configuration. As a performance indicator, the overall average
accuracy for all courses is presented.

A total of 69 distinct Hollywood films made up the Hollywood2 dataset ('), There are 12 action classes: picking up the phone,
operating a vehicle, eating, engaging in conflict, exiting a vehicle, shaking hands, hugging, and kissing, as well as moving, sitting,
sitting up, standing, and sprinting. We utilized the clean training dataset for our research. A training set (823 sequences) and a
test set (884 sequences) comprise the entire 1707 action samples. Different movies are used for the train and test segments. By
calculating the average accuracy (AP) for each action class and providing the mean AP across all classes (MAP), the performance
is assessed.

Ten human movements are included in the UCF sport dataset: swinging (on the pommel horse and on the ground), diving,
kicking (a ball), lifting weights, riding a horse, running, skateboarding, swinging (at the high bar), swinging a golf club, and
walking. 150 video clips make up the dataset, which exhibits significant intra-class heterogeneity. We expand the dataset by
including a horizontally flipped version of each sequence in order to increase the number of data samples. We train a multi-class
classifier using data from the KTH action and then present the average accuracy across all classes. We employ a leave-one-out
arrangement, testing each original sequence while training each other’s flipped versions of all other sequences (i.e., the flipped
version of the tested sequence is excluded from the training process).

3.2 Collection of attributes

We employ the common collection of attributes method to assess how well our dense trajectory’s function for each descriptor
(trajectory, HOG, HOE, and MBH) independently!?), we first create a codebook. We chose the maximum number of visual
words per descriptor at 4000 since this amount has been empirically proven to produce satisfactory results for a variety of
datasets. We use k-means to cluster a subset of 100,000 randomly chosen training characteristics in order to reduce the
complexity. We run k-means eight times and keep the result with the lowest error to enhance precision. Euclidean distance
is used to assign descriptors to the nearest vocabulary term. As video descriptors, the generated histograms of visual word
occurrences are employed.
Multichannel technique is used to mix several descriptors, as in 13):

1
K (xivY.?) =exp(= Lo7z D(x55)) ®

where D (xf,y‘} ) is the c-th channel-dependent 2 distances between video xi and xj. A€ is the average value of the c-th channel’s

training samples’ distances of 2. When dealing with several classes, we employ a one-against-rest strategy and choose the class
with the greatest score.

3.3 Results from experiment
In this part, we assess the effectiveness of our description and compare it to cutting-edge techniques. We also assess the impact
of various parameter values.

3.4 An assessment of our dense trajectory descriptors

In this part, we compare the various descriptors and the dense and KLT trajectories. In order to do this comparison, we utilize
our default settings. We used N = 32, n = 2, and n = 3 for baseline KLT and dense trajectories to construct the descriptors. We
set the dense sampling step size to be W = 5 and the trajectory length to be L = 15. Table 1 displays the outcomes for the four
datasets. Overall, our dense trajectories perform 2% to 6% better than KLT trajectories. This shows that our dense trajectories
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represent the video structures more precisely since the descriptors are the same.

Only describing the motion of the trajectories, trajectory descriptors produce remarkably strong results on their own,
such as 90.2% on KTH and 47.7% on Hollywood2 for dense trajectories. This demonstrates the significance of the motion
data present in the local trajectory patterns. Because the trajectory descriptors catch a lot of camera motion, we only report
67.2% on YouTube. In general, HOF performs better than HOG because motion is more discriminative for recognizing actions
than static appearance. HOG, though, does well on UCF sports and YouTube. Since many YouTube videos are captured with
hand-held cameras, the HOF descriptors calculated on those films are highly contaminated by camera movements. For UCF
sports activities, which frequently entail specialized equipment and scene kinds, static scene context is crucial. On all four
datasets, MBH consistently outperforms the other descriptors. The uncontrolled realistic datasets YouTube and Hollywood2
show the biggest progress. On YouTube, for instance, MBH is 11.1% superior to HOF. This demonstrates the benefit of reducing
background motion while handling optical flow.

Table 1. KLT and dense trajectory comparisons, as well as comparisons of other descriptions on KTH, YouTube, Hollywood2, and

UCEF sports
KTH YouTube Hollywood UCEF Sports
KLT Dense Tra- KLT Dense Tra- KLT Dense Tra- KLT Dense
jectories jectories jectories Trajectories
TRAJE. 88.40% 90.20% 58.20% 67.20% 46.20% 47.70% 72.80% 75.20%
HOG 84.00% 86.50% 71.00% 74.50% 41.00% 41.50% 80.20% 83.80%
HOF 92.40% 93.20% 64.10% 72.80% 48.40% 50.80% 72.70% 77.60%
MBH 93.40% 95.00% 72.90% 83.90% 48.60% 54.20% 78.40% 84.80%
Our 93.20% 94.10% 79.60% 84.10% 54.50% 58.20% 82.00% 88.10%
Approach
Table 2. Accuracy for the YouTube dataset per action class.
KLT Dense trajectories Ikizler-Cinbis ©)
B_shoot 33.0% 42.0% 47.48%
Bike 86.6% 90.7% 74.17%
Dive 98.0% 98.0% 95.0%
Golf 96.0% 97.0% 96.0%
Hride 77.0% 85.0% 72.0%
Sjuggle 64.0% 76.0% 53.0%
Swing 85.0% 88.0% 66.0%
Tswing 70.0% 71.0% 77.0%
Tjump 92.0% 94.0% 92.0%
Vspike 96.0% 95.0% 84.0%
Walk 75.4% 87.0% 65.67%
Accuracy 78.9% 83.2% 74.21%
https://www.indjst.org/ 3851
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Table 3. Per action class average accuracy for the Hollywood dataset

KLT Dense trajectories Ullah ¥
Answerphone 18.3% 32.6% 25.9%
Drive Car 88.8% 88.0% 85.9%
Eating 73.4% 65.2% 56.4%
Fight Person 74.2% 81.4% 74.9%
GetOut_Car 47.9% 52.7% 44.0%
Hand_Shake 18.4% 29.6% 29.7%
Hug Person 42.6% 54.2% 46.1%
Run 76.3% 82.1% 69.4%
Sit_down 59.0% 62.5% 58.9%
Sit_Up 27.7% 20.0% 18.4%
Stand_Up 63.4% 65.2% 57.4%
MAP 54.5% 58.2% 51.8%

3.5 Comparison to the state-of-the-art

We contrast the outcomes for each action class on YouTube. When compared to the KLT baseline and the technique of

(13-15)

our dense trajectories on YouTube produce the best results for 8 out of the 11 action classes, as shown in Table 2. See Table 3
for a comparison of the AP for each action class on Hollywood2 with the KLT baseline and the technique, which combines 24
spatiotemporal grids. The best outcomes come from our dense trajectories for 8 out of the 12 action classes.
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4 Conclusion

In this study, a method for modelling movies that combines dense sampling and feature tracking is presented. Compared to
earlier video descriptions, our dense trajectories are more reliable. They effectively capture the motion data in the movies and
outperform cutting-edge action categorization techniques in terms of performance. By generating motion boundary descriptors
along the dense trajectories, we have also devised an effective way to eliminate camera motion. Our trajectory descriptors
produce remarkably strong results on their own, such as 90.2% on KTH and 47.7% on Hollywood2 for dense trajectories. This
demonstrates the significance of the motion data present in the local trajectory patterns. Because the trajectory descriptors
catch a lot of camera motion, we only report 67.2% on YouTube. This beats earlier video stabilizing techniques and effectively
separates relevant motion from background motion. Our descriptors incorporate information on trajectory shape, appearance,
and velocity. A similar form has proven effective for classifying actions, but it might also be used for other tasks like action
localization and video retrieval. Future research should put a focus on integrating deep learning methods, improving temporal
modelling, addressing ethical issues, and expanding recognition capabilities to include 3D trajectories, interactions, and group
behaviors.
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