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Abstract
Objectives: In complex networks, the identification of key regions is deter-
mined through centrality measures. There are various centrality measures in
which leverage centrality is specially designed for neural networks. In this arti-
cle, we review all the recent research works on leverage centrality, focusing
mainly on its mathematical perspective. Further, our present research work
and the future scope of leverage centrality are given. Methods: For this sys-
tematic review, we referred all the relevant articles in this area from 2019 to
till present. Findings: Leverage centrality analysis of some infrastructure net-
works and group leverage centrality are recently investigated. At the application
level, leverage centrality has been used in the analysis of functional magnetic
resonance imaging (fMRI) data, and real-world networks including airline con-
nections, electrical power grids, co-authorship collaborations, molecular inter-
action networks, and sparse complex networks.Novelty: Brain networks have
demonstrated hierarchical structure and may be decomposed into modules
or neighborhoods of nodes that perform similar processes. A novel centrality
metric called leverage centrality proposed by Joyce et al. may be of particular
use in such hierarchical networks as an aid in identifying hubs, nodes that are
important to maintaining local topological structure.
Keywords: Centrality Measure; Neural Network; Fmri; Hubs; Group Leverage
Centrality

1 Introduction
Node centrality measures are among themost commonly used analytical techniques for
networks. They have long helped analysts to identify important nodes that hold power
in a complex network. The integration of computational bio-modeling approaches
with different hybrid network-based techniques provides additional information about
the behavior of complex systems (1,2). Many different centrality measures have been
proposed, but the degree to which they offer unique information, and whether it is
advantageous to use multiple centrality measures to define node roles, is unclear (3).The
identification of critical nodes can be divided into three categories. The first is based on
local information, such as degree centrality. Here a large amount of information in the
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network is ignored, resulting in inaccurate results. The second is from the perspective of global structure, such as betweenness
centrality, closeness centrality, and eigenvector centrality. It is time-consuming and is not suitable for large-scale networks.The
third is a kind ofmethod between globality and locality. Leverage centrality belongs to this category. Leverage centrality captures
nodes in the network which are connected to more nodes than their neighbors and, therefore, control the content and quality
of the information received by their neighbors (4).

Leverage centrality can allocate a negative value to a node in contrast with the measurement of other centrality measures.
A node of positive value can have more connections than its neighbors (5,6). Leverage centrality considers the degree of a node
relative to its neighbors and operates under the principle that a node in a network is central if its immediate neighbors rely
on that node for information. A node with negative leverage centrality is considered to be influenced by its neighbors, as the
neighbors connect and interact with farther nodes. A node with positive leverage centrality, on the other hand, influences its
neighbors since the neighbors tend to have fewer connections (7).

Now the major recent works on leverage centrality include the leverage centrality analysis of some infrastructure networks
like wheel, cycle, path, and their related networks (8) and the notion of group leverage centrality (9). In addition to the findings
above, leverage centrality is used in the determination of regional development priorities in the graph representation of
Kalimantan island (10) and the correlation between leverage centrality and critical nodes is investigated for the first time in (11).
Leverage centrality is strongly correlated with page rank centrality and degree centrality in the context of complex networks (12).
In spite of its great application in diverse fields, leverage centrality has yet to be explored more from amathematical standpoint.
In this article, we also highlight the future scope of research in this emerging field.

2 Methodology
We have reviewed the recent articles that highlight the mathematical perspectives of leverage centrality as well as those research
that utilize leverage centrality as a tool for hub identification. In this review article, to include all the major results with figures,
we excluded the proofs. The structure of the paper is as follows: There are four major sections in which the first describes some
basic properties and recent major works on leverage centrality. The second section outlines some of the basic propositions on
leverage centrality. In the third section, we present results on leverage centrality analysis of some infrastructure networks and
group leverage centrality. The last section includes a conclusion with our present research on leverage centrality.

2.1 Some basic propositions on leverage centrality
Definition 2.1The degree of a vertex v is the number of edges incident to v and is denoted by deg(v).

The formal definition of leverage centrality is as follows:
Definition 2.2 (8) Leverage centrality is a measure of the relationship between the degree of a given node v and the degree of

each of its neighbors vi, averaged over all neighbors Nv, and is defined as:

l(v) =
1

deg(v) ∑
vi∈Nv

deg(v)−deg(vi)

deg(v)+deg(vi)

It is seen from the definition that this measure is unique from existing measures and counts not only the degree of a given node
but also the degree of neighbors.

Proposition 2.1 (9) For any graph G,∑v∈G l(v)≤ 0.
A vertex of the lowest degree (highest degree) cannot have a positive (negative) leverage centrality. In the star graph K1,n−1,

there are n− 1 vertices with negative leverage centrality. Therefore, it is possible to have all the vertices in a graph except for
one to have negative leverage centrality, similarly all but one has positive leverage centrality (9).

Theorem 2.1 (9) In a graph G of order n, the maximum number of vertices with positive leverage centrality is n −1.
In regular graphs, the leverage centrality of all the vertices is zero. In fact, l(v) = 0 for every vertex v if and only if G is a

regular graph (9).

3 Results and Discussion
This section presents the formulae for the leverage centrality of nodes in some infrastructure networks including wheels and
related networks, cycles and related networks and also paths and related networks.

3.1 Leverage Centrality of Some Infrastructure Networks (8)

Wheels and related networks
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3.1.1 Wheel networks
ThewheelW n , with n spokes is a graph that contains an n−cycle and one additional central node c that is adjacent to all nodes
of the cycle. Label the nodes of the n−cycle sequentially as {v0,v1, . . . ,vn−1.}

Theorem 3.1 (8) Let G = Wn, of order n+1. Then, for v∈V (G),

l(v) =

{
n−3
n+3 , if v = c

−(n−3)
3(n+3) , otherwise

}

Here the central node has the maximum node degree and is the best-connected node within the network.

3.1.2 Gear networks
Gear network is a wheel graph with a node added between each pair adjacent graph nodes of the outer cycle. The
central node c of Gn has degree of n. Label the major (degree three)and minor nodes(degree two), respectively, as
{v0,v1, . . . ,vn−1 }and {w0,w1, . . . ,wn−1 } and let wi be adjacent to the nodes vi and vi+1 for 0 ≤ i ≤ n− 1, where i+ 1 is
taken modulo n .

Theorem 3.2 Let G = Gn of order 2n + 1. Then, for v ∈V (G)

l(v) =


n−3
n+3 if v = c

7−n
5(n+3) if v = vi
−1
5 if v = wi


Minor nodes of the underlying network are of the lowest degree and so cannot have a positive leverage centrality.

Friendship networks
Friendship graph f n is collection of n triangles with a common point. The central node c of f n has a node degree of 2n.

Fig 1. Friendship network f n for n = 8.

Theorem 3.3 Let G = fn of order 2n+1. Then, for v∈V (G),

l(v) =

{
n−1
n+1 if v = c

−(n−1)
2(n+1) otherwise

}
For n > 1, the central node has a positive leverage centrality whereas other nodes of the triangles have negative leverage

centralities.

3.1.4 Helm networks
Helm Hn is a graph of order 2n + 1 obtained from a wheel Wn with cycle Cn having a pendant link attached to each
node of the cycle. Hn consists of the node set V (Hn)= (vi : 0 ≤ i ≤ n−1} ∪ (ui : 0 ≤ i ≤ n−1} ∪ (c} and link set E(Hn)
{vivi+1 : 0 ≤ i ≤ n−1}

∪{viui : 0 ≤ i ≤ n−1}
∪{vic : 0 ≤ i ≤ n−1}

, where i+1 is taken modulo n. The central node c of Hn has a node degree of n.

Theorem 3.4 Let G = Hn of order 2n + 1. Then, for v ∈V (G)
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l(v) =


n−4
n+4 if v = c

−(n−16)
10(n+4) if v = vi(0 ≤ i ≤ n−1)

−3
5 if v = ui(0 ≤ i ≤ n−1)


For n > 5, the central node has the highest leverage centrality and so the best-connected node within the network.

3.1.5 Sunflower networks
Sunflower network SFn consists of a wheel with central node c and an n−cycle {v0,v1, . . . ,vn−1 } and additional n nodes
{u0,u1, . . . ,un−1 } where ui is joined by links to vi, vi+1 for 0 ≤ i ≤ n−1, where i+1 is taken modulo n. The central node c of
SFn has a node degree of n.

Fig 2. Sunflower network SFn for n = 8.

Theorem 3.5 Let G = SFn of order 2n+1. Then, for v ∈V (G)

l(v) =


n−5
n+5 if v = c

−(n−65)
35(n+5) if v = vi(0 ≤ i ≤ n−1)

−3
7 if v = ui(0 ≤ i ≤ n−1)


For n > 6, the central node has the highest degree, highest leverage centrality, therefore is the best-connected node and

influences its neighbors.
Cycles and related networks

3.1.6 Cycle networks
Theorem 3.6 Let G =Cn of order n. Then, ∀v ∈V (G) , l(v) = 0.

3.1.7 Fans
If we join a node ofCn to all other nodes, then the resulting graph is called a fan and is denoted by Fn. Let (c,v0,v1, . . . ,vn−2 }
be the nodes of Fn, where v0 and vn−2 are the nodes of degree two and let c be the node that is connected to all other nodes.
Then c is the central node of Fnwith degree n−1. The nodes of degree two are referred to as minor nodes and nodes of degree
three to as major nodes.

Theorem 3.7 Let G = Fn,n > 5 of order n. Then, for v ∈V (G)

l(v) =


n(n−3)

(n+1)(n+2) if v = c
2(11−2n)
15(n+2) if v is a major node (adjacent to a minor node)

4−n
3(n+2) if v is a major node (not adjacent to a minor node)
7−3n

5(n+1) if v is a minor node


For n ≥ 6, the central node has positive leverage centrality and influences its neighbors since the neighbors tend to have far

fewer connections.
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3.1.8 k-pyramids
The join graph Cn ∨Nk(n ≥ 3, k ≥ 1) where Nk is the null graph of order k is called k−pyramid and is denoted by kP(n) .
The 2-pyramid graphCn ∨N2 is called bipyramid graph and is denoted by BP(n) . Let {u1,u1, . . . ,un } be the nodes ofCn and
{w1,w2, . . . ,wk } be the nodes of Nk.
Theorem 3.8 Let G = kP(n) of order n + k. Then, for v ∈V (G)

l(v) =

{
k(k−n+2)

(k+2)(k+n+2) if v = ui(1 ≤ i ≤ n)
n−k−2
n+k+2 if v = w j(1 ≤ j ≤ k)

}
Corollary 3.1 Let G = BP(n) of order n+2. Then, for v ∈V (G)

l(v) =

{
−(n−4)
2(n+4) if v = ui(1 ≤ i ≤ n)

n−4
n+4 if v = w j(1 ≤ j ≤ 2)

}
If n = k+2, then the underlying network is regular yielding l(v) = 0 for ∀v ∈V (kP(n)) .
If n < k + 2, then l (ui) > 0(1 ≤ i ≤ n) whereas l (w j) < 0(1 ≤ j ≤ k) meaning that the nodes of Cn influence their

neighbors.
If n > k+2, then l (w j)> 0(1 ≤ j ≤ k) and l (ui)< 0(1 ≤ i ≤ n) .

3.1.9 n-gon books
When k copies of Cn(n ≥ 3) share a common link, it will form an n−gon book of k pages and is denoted by B(n,k). Here the
nodes of degree 2 are referred to as minor nodes and nodes of degree k+1 to as major nodes.

Fig 3. n−gon book of k pages B(n,k) for n = 4, k = 5.

Theorem 3.9 Let G = B(n,k),k > 1 of order ( n−2)k+2. Then, for v ∈V (G)

l(v) =


k(k−1)

(k+1)(k+3) if v is a major node
−(k−1)
(k+3) if n = 3 and v is a minor node

−(k−1)
2(k+3) if n > 3 and v is a minor node adjacent to a major node
0 if n > 4 and v is a minor node adjacent to only minor nodes


Major nodes have the highest leverage centralities since their degrees are the highest with respect to other nodes in the

neighborhood and are the best-connected nodes within the network.
Paths and related networks

3.1.10 Paths
There are three types of nodes in Pn,n ≥ 5.

• Type I: v is an end node with deg(v) = 1.
• Type II: v is a node adjacent to an end node.
• Type III: v is a node adjacent only to the nodes of degree 2.
Theorem 3.10 Let G = Pn,n ≥ 5 of order n. Then, for v ∈V (G)
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l(v) =


−1
3 if v is a node of Type I
1
6 if v is a node of Type II
0 if v is a node of Type III


The nodes of Type II with positive leverage centralities influence its neighbors and are the best-connected nodes within the

network.

3.1.11 Regular Caterpillars
A tree T is called a caterpillar, if removal of all its pendant nodes results in a path called the spine of T . If all nodes of the spine
have equal number of pendant nodes, then the resulting graph is called regular caterpillar and is denoted by Tn,m where n is the
number of nodes of the spine and m is the number of pendant nodes attached to each node of the spine.

There are six types of nodes in Tn,m as follows:
• Type 1: v is an end node of Pn.
• Type 2: v is a node of Pn adjacent to an end node.
• Type 3: v is a node of Pn adjacent only to the nodes of degree 2 in Pn.
• Type 4: ui j(1 ≤ j ≤ m) is a pendant node attached to node vi, where vi is of Type 1
• Type 5: ui j(1 ≤ j ≤ m) is a pendant node attached to node vi, where vi is of Type 2.
• Type 6: ui j(1 ≤ j ≤ m) is a pendant node attached to node vi, where vi is of Type 3.

Fig 4. Regular caterpillar Tn,m for n = 5, m = 3.

Theorem 3.11 Let G = Tn,m,n > 3 of order n(m+1). Then, for v ∈V (G)

l(v) =



m(2m2+3m−1)−2
(m+1)(2m+3)(m+2) if v is a node of Type 1
m(2m2+5m+4)+3
(m+2)(2m+3)(m+3) if v is a node of Type 2

m(m+1)
(m+2)(m+3) if v is a node of Type 3

−m
(m+2) if v is a node of Type 4

−(m+1)
(m+3) if v is a node of Type 5 or Type 6


For m ≥ 3, the nodes of Type 1 with the highest leverage centralities are the best-connected nodes within the network.
Another work in this field is due to (9) is the concept of group leverage centrality which is an extension of leverage centrality.

3.2 Group Leverage Centrality

As the brain network is highly complex and vast, it can be clustered into working regions, or lobes, to effectively model it. Since
every lobe of the brain is a set of nodes, (9) introduced a new centrality measure for a subset of nodes- group leverage centrality.
It is a measure of how important a subset of nodes is in the network. The effects of meditation on different lobes of the brain
were quantified using this new centrality measure.

The two different ways in which group leverage centrality be defined as:

3.2.1 Total Group Leverage Centrality
Total group leverage centrality (T G) is defined as the average of leverage centralities of all the nodes in a given set of nodes S,
where S is the subset ofV , the vertices of the graph in consideration.

T G(S) =
1
|S|∑v∈S

l (v) , S ⊆V
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Total group leverage centrality is found by finding the average of all the leverage centralities of the vertices (all neighbors)
present in the specified subset.

3.2.2 Complement Group Leverage Centrality
Complement group leverage centrality (CG) is defined as the average of leverage centralities of all the nodes in a given set
of nodes S, where S is the subset of V , (the vertices of the graph in consideration) and only the vertices in the set V\S are
considered for computing the leverage centralities.

CG(S) =
1
|S| ∑

v∈S

(
1
kv

∑
i∈SNv

(
kv − ki

kv + ki

))
where S′ =V\S

Here, kv and Nv represent the degree and set of neighbors of node v respectively.
Complement group leverage centrality is found by finding the average of all the leverage centralities of the vertices while

considering only the neighbors outside the specified subset.This centrality has been used to found thatmeditation has profound
effects on the human mind, and can cause increased cognitive processing and perception, decreased stress, and general well-
being.

As it is a novel metric, the research in this field is going on tremendously and we expect a rapid solution of the existing
challenges in this field, from a mathematical perspective.

4 Conclusion
In this review article, we included all the relevant and recent research works on leverage centrality. This includes leverage
centrality analysis of some infrastructure networks like wheels, cycles, paths and their related networks. Also, a new centrality
measure derived from leverage centrality is alsomentioned alongwith its application. For the further development of the theory,
our present research work is on certain graph products for the leverage centrality analysis of nodes and finding how it is related
to the centralities of the component graphs. In the future, the study can be extended to various graph operations.
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