
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

OPEN ACCESS

Received: 17-03-2023
Accepted: 29-07-2023
Published: 30-09-2023

Citation: Thomas M, Dongjun H,
Antoine N (2023) An Optional
Memory Balancing Algorithm for Big
Data Based on Distributed File
System. Indian Journal of Science
and Technology 16(37): 3043-3049.
https://doi.org/
10.17485/IJST/v16i37.611
∗
Corresponding author.

mukmaforo@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2023 Thomas et al.
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

An Optional Memory Balancing
Algorithm for Big Data Based on
Distributed File System

Mukunzi Thomas1∗, Huang Dongjun1, Nzaramba Antoine1

1 Central South University, School of Computer Science and Technology, Department of
Computer Science, China

Abstract
Background/Objectives: Load balancing algorithms are a type of algorithm
that assists with efficient workloads spread. To reduce server overload,
increase resource usage, lower latency, and maximize throughput, efficient
distribution is required. There are several load balancing algorithms, all of
these algorithms have flaws that render them ineffectual in many real-world
settings. The current paper aims to improvise the algorithm by proposing a
heuristic to decide the next job to be allotted to reduce the net response
time. This is achieved by storing the incoming jobs in a priority queue (heap)
and using ageing to prevent starvation. Methods: In the current research,
we assign the incoming client request to the virtual machine such that
estimated finish time of the service is minimum. We calculate finishTime for
all the virtual machines, then the VM which gives the minimum finishTime
is assigned the incoming client request. Once a client request is assigned
to a VM, it gets added to the virtual Machine Queue. The virtual Machine
Queue behaves like a priority queue; it gives priority to the task which has the
least instruction Count. This ensures that the Net Response Time of the load
balancer isminimized. Findings: Significant improvements have been achieved
with respect to response time and throughput. We calculated the Response
Time and the Throughput Time for the Load Balancing Using Estimated Finish
Time Algorithm compared to IEFTA. The numbers of client requests were varied
by a factor of 10, starting from 10, andwe got an efficient distribution.Novelty:
By using our proposed Algorithm Pseudocode of Load Balancing Algorithm,
different coefficient of VMswere calculated.We compared the Estimated Finish
Time Algorithm to IEFTA, we suggest an approach that addresses this limitation
while also improving responsiveness and processing time.
Keywords: Cloud Computing; Distributed Systems; Load Balancing; Virtual
Machines; Data Migration

1 Introduction
Load balancing is a strategy for offloading task distribution across linked nodes in a
parallel and/or distributed computing environment in order to optimize system

https://www.indjst.org/ 3043

https://doi.org/10.17485/IJST/v16i37.611
https://doi.org/10.17485/IJST/v16i37.611
https://doi.org/10.17485/IJST/v16i37.611
mukmaforo@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/

Thomas et al. / Indian Journal of Science and Technology 2023;16(37):3043–3049

performance. Load balancing is required to guarantee efficient resource usage and the absence of overloaded servers. Load
balancing may be divided into two categories: static and dynamic. While static load balancing does not consider the condition
of the system (such as node performance) while making judgments regarding job allocation, dynamic load balancing does.
Static load balancing algorithms operate based on previous knowledge of the services and their overall condition, resource
requirements, and communication time (1). They are preferable in cases when the work queue’s behavior is predictable and
jobs are comparable in nature. They have a shorter processing time and are less sophisticated than dynamic load balancing
methods (2). Dynamic load balancing algorithms (3), on the other hand, respond spontaneously to changes in the system. They
often employ a master-slave architecture in which the master delegate’s incoming processes to slaves based on the condition
of the environment. Load balancing is performed at two levels-host level (known as Virtual Machine (VM) scheduling policy)
and VM level (known as task scheduling policy) (4). For more details on load balancing, we advise readers to the huge number
of papers (2,5–7). Furthermore, decisions can be made at either level to pick between Time-Shared (TS) scheduling and Space-
Shared (SS) scheduling.

There is a dynamic load balancing algorithm based on estimating the finish times of the jobs. It builds upon Active
Monitoring Load Balancer (AMLB) algorithm (8).The readers can refer also to (9–13) for a detailed information on load balancing
algorithm and load balancing for effectively distributed in-memory based on computing. AMLBmaintains a datacenter broker
which logs information and current activity status of eachVM (14). Upon the arrival of a job, it identifies the least loadedVMand
assigns the job to it. Although the algorithm improves the response time and works fine to reduce bottleneck scenarios, it does
not consider the job size and actual instant powers of VMs (2). To counter this issue, an algorithm was proposed to take both
the missing factors into consideration. It demarcates four scheduling scenarios as follows and aims to improve the processing
time and response time:

a) SS in host level and SS in VM level;
b) SS in host level and TS in VM level;
c) TS in host level and SS in VM level;
d) TS in host level and TS in VM level.
The algorithm utilizes a datacenter broker to maintain the status of all VMs. While there is a job available in the queue to be

allocated, it calculates the finish time of the job for each VM using the formulae discussed later. Finally, it picks the VM with
the earliest completion time and assigns the task to it.The proposed algorithm has a shortcoming that although it considers the
earliest finish time which can be offered to a client request by a virtual machine, it fails to schedule the request within the virtual
machine queue effectively. It stores the incoming jobs in a queue and processes them in a First in First Out (FIFO) fashion.This
does not allowmuch room to decide upon as to which job should be processed next.This paper aims to improvise the algorithm
by proposing a heuristic to decide the next job to be allotted to reduce the net response time. This is achieved by storing the
incoming jobs in a priority queue (heap) and using ageing to prevent starvation.

The following section analyses some of the load balancing algorithms:

1.1 Round Robin

Round robin load balancing is effective when all the servers have similar compute capabilities, specifications and storage
capacity. In this, the load balancer assigns the client requests to the servers in a specific sequence. Upon reaching the end
of the sequence, it loops back to be beginning, i.e., client requests are handled in a cyclic manner.

The main advantage of this algorithm is that it is effective if servers are homogeneous in nature, and it is extremely easy to
implement such a load balancer. However, it is common to have heterogeneous systems in place, in such cases the following
variants are useful:

• Weighted Round Robin: Each of the servers is assigned a weight depending on the load-handling capacity of the server,
decided using an adaptive algorithm or by the system administrator. A server with higher weight is assigned a larger
portion of the client requests.

• Dynamic Round Robin: The servers are assigned weights dynamically depending on the server’s current capacity and
idleness. Then, the client requests are assigned to a server, proportional to its weight.

1.2 Least connection

A least connection load balancer assigns a client request to the server which has the least number of active connections. This is
a dynamic load balancing algorithm since it makes use of the server’s current state, rather than following an arbitrary sequence,
unlike round robin approaches. The main disadvantage of such an approach is that the current server load is not taken into
consideration while distributing requests, this leads to degradation of performance of the load balancer.There exists a weighted

https://www.indjst.org/ 3044

https://www.indjst.org/

Thomas et al. / Indian Journal of Science and Technology 2023;16(37):3043–3049

variant for least connection load balancing algorithm as well. In weighted least connection load balancing, a numerical weight
is assigned to each server depending on the compute capability of the server. If multiple servers have the same number of active
connections, then the server with higher weight is chosen to process the request.

1.3 Mapping Policy based Load balancing

The authors (15) proposed a load balancing algorithm based on virtual machine to physical machine mapping. The algorithm
contains a resource monitor and a scheduling con-troller. The resource monitor tracks the usage, idleness, and availability of
the resources. Whereas the scheduling controller does the task of assigning requests to the appropriate server.

1.4 Load balancing using Ant colony optimization

In (10), the authors suggested a probabilistic load balancing algorithmwhichmakes use of ant-colony optimization (ACO). In the
approach proposed by the paper, the ants keep track of overloaded and under loaded nodes in the network, and the pheromone
table is updated. The pheromone table gives an estimate of resource utilization by each node.

The traversal is done using two types of movements:

• Forward movement:The ants continuously move in the forward direction in the network and keep track of over-loaded
and under loaded nodes.

• Backward movement: If an ant encounters an overloaded node and it has previously encountered a under loaded node,
it redistributed the work. The process can be vice-versa as well.

2 Methodology

2.1 Proposed algorithm

In the proposed algorithm, we assign the incoming client request to the virtual machine such that estimated finish time of the
service is minimum. To do this, we calculate finishTime according to formula (2) and (3) for all the virtual machines. The VM
which gives the minimum finishTime is assigned the incoming client request. Once a client request is assigned to a VM, it gets
added to the virtualMachine Queue.The virtualMachine Queue behaves like a priority queue; it gives priority to the task which
has the least instruction Count. This ensures that the Net Response Time (9) of the load balancer is minimized.

Response time for a job with arrival time arrivalTime, finish time finishTime and transmission delay TDelay is given as:

Response Time = f inish Time − arrival Time + T Delay (1)

Assuming startTime (x) as the time when the job x started, time as the current simulation time, instructionCount as the total
number of instructions of a job, core (x) as the number of cores or processing elements required by the job, capacity as the
average processing capacity (in MIPS) of a core for a job, we obtain following equations:

If the host scheduling policy is SS-SS or TS-SS, finishTime is calculated as:

f inish Time = start Time (x)+
instruction Count

capacity × core(x)
(2)

If the host scheduling policy is SS-TS or TS-TS, finishTime is calculated as:

f inish Time = time+
instruction Count

capacity × core(x)
(3)

Execution time of a job is calculated as:

Execution Time =
instruction Count

capacity × core(x)
(4)

Capacity in each case is calculated as follows:
1) VM scheduling policy is SS, task scheduling policy is SS

Capacity = ∑np
i=1

Cap(i)
np

(5)

https://www.indjst.org/ 3045

https://www.indjst.org/

Thomas et al. / Indian Journal of Science and Technology 2023;16(37):3043–3049

where,Cap(i) is the processing power of the corei, npis the number of real cores of the considered host.
2) VM scheduling policy is SS, task scheduling policy is TS:

Capacity =
∑np

i=1 Cap(i)
max(∑α

j=1 cores(j) ,np))
(6)

where, cores(j) are number of cores that job j needs. α is total job in VM which contains the job.
3) VM scheduling policy is TS, task scheduling policy is SS:

Capacity =
∑np

i=1 Cap(i)

max(∑β
k=1 ∑γ

j=1 cores(j) ,np))
(7)

where, β is the number of VMs in the current host, γ is number of jobs running simultaneously in VMk.
4) VM scheduling policy is TS, task scheduling policy is TS:

Capacity =
∑np

i=1 Cap(i)

max(∑δ
j=1 cores(j) ,np))

(8)

where, δ is total job of the considered host.
However, this approach creates a problem, if a task has extremely low priority it is likely that it will never get scheduled.

This problem is commonly known as starvation. The proposed algorithm resolves this issue by using ageing. In ageing a client
request’s priority is artificially increased by an amount quantified by its wait time. This ensures that upon passage of time, even
a request with low instructionCount will eventually gain sufficient priority to get scheduled. Such an approach guarantees low
response time and no starvation.

The Net Response Time for the load balancer is finally calculated using Response Time of each request as follows:

NetResponseTime = ∑
requestCount

ResponseTime (i)
requestCount

i=1

(9)

Fig 1. Load Balancing Algorithm Diagram

3 Results and Discussion
The results are shown and described according to the figures and tables, but there is no discussion that contrasts the results
with related works, so it is suggested that the authors should include a discussion of the results duly compared contrasted with
related studies.

https://www.indjst.org/ 3046

https://www.indjst.org/

Thomas et al. / Indian Journal of Science and Technology 2023;16(37):3043–3049

3.1 Experimental results

Significant improvements have been achieved with respect to response time and throughput. Metrics have been logged in the
tables below. To simulation, a variable number of cores were used (ranging upto 5) per VM.The numbers of client requests were
varied by a factor of 10, starting from 10, as indicated in the tables. The algorithm was implemented using C++ (gcc version
7.5.0). The experiments were run on a system having Intel® CoreTM i7-8550U CPU @ 1.80GHz× 8 processor.

Table 1. Response Time: Load Balancing Using Estimated Finish Time Algorithm versus IEFTA
Number of Client Requests Estimated Finish Time Algorithm IEFTA
10 14.944537 14.944537
102 38.853931 36.879389
103 434.767279 313.244709
104 4549.779616 3205.598167
105 45868.511618 32449.084248

Table 2.Throughput Time: Load Balancing Using Estimated Finish Time Algorithm versus IEFTA
Number of Client Requests Estimated Finish Time Algorithm IEFTA
10 0.05614448 0.05614448
102 0.02767749 0.03199268723
103 0.00228050171 0.00396647467
104 0.00021972473 0.0003918567
105 0.00002177804 0.0000384324

Table 3. Pseudocode of Load Balancing Algorithm
Pseudocode of load balancing algorithm
1. Input: The set task; the set VM
2.While there are tasks in the list do
3. For all VMs of a host do
4. The Ci and LV M j,I of every VMs are calculated
5. The PTi and PT of every VMs are calculated
6. The δ of every VMs is calculated
7. Ifδ≤ T, then
8. System is balanced, and Send Task to Partition;
9. The Pos j of every VMs is calculated
10. The P j and CTi of every tasks are calculated
11. If Pos jmax and CTimax
12. Assign taski to VM
13. Exit
14. If L > maximum capacity
15. Load balancing is not possible
16. Else
17. Trigger loading balancing
18. End For
19. End while

https://www.indjst.org/ 3047

https://www.indjst.org/

Thomas et al. / Indian Journal of Science and Technology 2023;16(37):3043–3049

Fig 2. Response Time: Load Balancing using Estimated Finish Time Algorithm versus IEFTA

Fig 3.Throughput: Load Balancing using Estimated Finish Time Algorithm versus IEFTA

4 Conclusion
Conclusion must be pepped up with novelty connecting with objectives of the study. It should also be embedded with
quantitative data to buttress the claim. Conclusion should not look verbose. Load balancing aids in the efficient use of cloud
computing resources and has an impact on the issue of data center power consumption. Within virtual machines, the study
provides an effective load balancing algorithm based on the concept of forecasting the end of service time paired with a
shortest task first queue. To avoid famine in diverse cloud computing settings, it is complemented with ageing. We investigated
scheduling situations of space sharing (SS) at the host level and space sharing (SS) at the VM level, and a set of equations were
constructed to compute the virtual core’s average reaction time and throughput. The simulation results demonstrated that the
suggested method is more effective, with shorter processing and reaction times when compared to existing state-of-the-art
techniques. Such an effective approach will result in more efficient use of computer resources.

References
1) Joshi V. Load Balancing Algorithms in Cloud Computing. International Journal of Research in Engineering and Innovation. 2019;3:530–532. Available

from: https://hal.archives-ouvertes.fr/hal-02884073.
2) Bok K, Choi K, Choi D, Lim J, Yoo J. Load Balancing Scheme for Effectively Supporting Distributed In-Memory Based Computing. Electronics.

2019;8(5):546. Available from: https://doi.org/10.3390/electronics8050546.
3) Patel KD, Bhalodia TM. An Efficient Dynamic Load Balancing Algorithm for Virtual Machine in Cloud Computing. In: 2019 International Conference

on Intelligent Computing and Control Systems (ICCS). IEEE. 2019;p. 145–150. Available from: https://doi.org/10.1109/ICCS45141.2019.9065292.
4) Xia H, Liu M, Chen Y, Jin X, Wang Z, Wang F. A Load Balancing Strategy Of ”Container Virtual Machine” Cloud Microservice Based On Deadline

Limit. 2022 14th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). 2022;p. 998–1002. Available from:
https://doi.org/10.1109/ICMTMA54903.2022.00202.

5) Chen S, Zhou M. Evolving Container to Unikernel for Edge Computing and Applications in Process Industry. Processes. 2021;9(2):351. Available from:
https://doi.org/10.3390/pr9020351.

https://www.indjst.org/ 3048

https://hal.archives-ouvertes.fr/hal-02884073
https://doi.org/10.3390/electronics8050546
https://doi.org/10.1109/ICCS45141.2019.9065292
https://doi.org/10.1109/ICMTMA54903.2022.00202
https://doi.org/10.3390/pr9020351
https://www.indjst.org/

Thomas et al. / Indian Journal of Science and Technology 2023;16(37):3043–3049

6) Murugan S, Jeyalaksshmi S, Mahalakshmi B, Suseendran G, Jabeen TN, Manikandan R. Comparison of ACO and PSO algorithm using energy
consumption and load balancing in emerging MANET and VANET infrastructure. Journal of critical reviews. 2020;7(09). Available from: https:
//doi.org/10.31838/jcr.07.09.219.

7) Priya N, Priya SS. An Experimental Evaluation of Load Balancing Policies Using Cloud Analyst. In: Lecture Notes in Networks and Systems. Springer
Nature Singapore. 2022;p. 185–198. Available from: https://doi.org/10.1007/978-981-16-7657-4_16.

8) Ijeoma CC, Inyiama P, Samuel A, Okechukwu OM. Review of Hybrid Load Balancing Algorithms in Cloud Computing Environment. . Available from:
https://arxiv.org/abs/2202.13181.

9) Ibrahim IA, Bassiouni M. Improvement of job completion time in data-intensive cloud computing applications. Journal of Cloud Computing. 2020;9(1).
Available from: https://doi.org/10.1186/s13677-019-0139-6.

10) Pradhan P, Ku P, Ray BA. A New Load Balancing Algorithm for Virtual Machine Allocation in Cloud Computing. 2020.
11) Suseendran G, Chandrasekaran E, Akila D, Kumar AS. Banking and FinTech (Financial Technology) Embraced with IoT Device. Data Management,

Analytics and Innovation. 2020;1:197–211. Available from: https://doi.org/10.1007/978-981-32-9949-8_15.
12) Ekwonwune EN, Ezeoha BU. Scalable Distributed File Sharing System: A Robust Strategy for a Reliable Networked Environment in Tertiary Institutions.

International Journal of Communications, Network and System Sciences. 2019;12(04):49–58.
13) Xing QJJ, Shen YYY, Cao R, Zong SX, Zhao SX, Shen YFY. Functional movement screen dataset collected with two Azure Kinect depth sensors. Scientific

Data. 2022;9(1). Available from: https://doi.org/10.1038/s41597-022-01188-7.
14) Jyoti A, Shrimali M. Dynamic provisioning of resources based on load balancing and service broker policy in cloud computing. Cluster Computing.

2020;23(1):377–395. Available from: https://doi.org/10.1007/s10586-019-02928-y.
15) Sanjaya KP, Prasanta KJ. Load balanced task scheduling for cloud computing: a probabilistic approach. 2019. Available from: https://link.springer.com/

article/10.1007/s10115-019-01327-4.

https://www.indjst.org/ 3049

https://doi.org/10.31838/jcr.07.09.219
https://doi.org/10.31838/jcr.07.09.219
https://doi.org/10.1007/978-981-16-7657-4_16
https://arxiv.org/abs/2202.13181
https://doi.org/10.1186/s13677-019-0139-6
https://doi.org/10.1007/978-981-32-9949-8_15
https://doi.org/10.1038/s41597-022-01188-7
https://doi.org/10.1007/s10586-019-02928-y
https://link.springer.com/article/10.1007/s10115-019-01327-4
https://link.springer.com/article/10.1007/s10115-019-01327-4
https://www.indjst.org/

	Introduction
	1.1 Round Robin
	1.2 Least connection
	1.3 Mapping Policy based Load balancing
	1.4 Load balancing using Ant colony optimization

	Methodology
	2.1 Proposed algorithm

	Results and Discussion
	3.1 Experimental results

	Conclusion

