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Abstract
Objective: To make study on generating a less number of class association
rules and predicting the class. Methods: Modified associative classification
model (MACM) is proposed here for diagnosing cancer from microarray gene
expression data using maximal frequent itemsets and probability distribution.
The proposed system performs supervised discretization, maximal frequent
itemset generation from 80% of the data and prediction processes on the
20% of the dataset. The frequent items set are generated using the minimum
support as 20%, 40% and 80% and the minimum confidence as 80%. Binary
class data sets and multi class data sets are used to evaluate the constructed
model and compared with the classical associative classification algorithms.
The model performance is evaluated with type of frequent itemset, number
of class association rules generated, accuracy and time taken during training
the model. The experiment uses the two colorectal cancer datasets, one lung
cancer dataset and one multi label cancer datasets. Findings: The maximal
frequent itemset generates the class association rules quickly with lesser
number and leads to consume lesser memory space. The performance of the
proposed method provides 100%, classification accuracy for the colon cancer
datasets GSE15781 and GSE25070 and 99.17% for the colon cancer data set
GSE87211. 94% classification accuracy is obtained for the lung cancer dataset
GSE43580 when used maximal frequent itemset types. Novelty: Proposed
Modified associative classification model has achieved very high performance
in classifying gene expression data. The associative classification model helps
to diagnose cancer diseases, pathway analysis and treat the cancer disease.
Keywords:Microarray; Discretization; Maximal frequent itemsets; Association
rules; Probability distribution
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1 Introduction

Early treatment of cancer increases the possibility of curing and reduces the fatality rate and cancer recurrence (1). An efficient
tool is required to diagnose the patients whether they are affected by cancer or not and distinguish different types of cancer. Data
mining provides data analysis to uncover interesting knowledge for understanding and diagnosing diseases from microarray
gene expression data. However, due to a large number of genes and small samples size of microarray data, the conventional
statistical and classification techniques may not be able to deal with it efficiently (2). Due to huge number of features or genes
in the microarray, data may produce redundant results and affect the classification accuracy. To overcome this problem,
feature selection, dimension reduction, informative genes identification (3), discretization and rules generation are important
in building an associative classification model for gene expression data. Identifying candidate genes for the specific cancers
using an informative genes and class associative rules are used to analyze the gene expression with biological information from
the gene ontology (4). The associative classification methods help the healthcare professionals in identifying the cancer risk
factorsand diagnose the genes which are cause for diseases. Veroneze et al. (5) have used association rule mining to identify
molecular profiles patterns from gene expression data on chronic inflammatory diseases. Luna et al. (6) have reviewed various
frequent itemset mining and pointed out that frequent itemset is an essential task for extracting frequently occurring events and
patterns in data. However, the computational complexity of the frequent itemsets algorithms is increased exponentially when
the data size is increased. Shan andMiao (7) have stated that the class association rule is a special type of association rule suitable
for classification problems. Many existing class association rule mining algorithms have inefficiencies when dealing with rules
and takes long time to generate the rules. Kenmogne et al. (8) have pointed out that extracting frequent patterns is important in
large databases and presented an algorithm for discovering gradual patterns usingmaximal frequent itemset by reducing search
space and the computational time. Alagukumar et al. (9)have used frequent itemsets to generate class association rules for the
gene expression data and pointed out that more rules can be minimized by using closed frequent itemsets or maximal frequent
itemsets instead of normal frequent itemset.

Sen et al. (10) have analyzed the dengue fever gene expression data using associative classification method and pointed out
that the process of mining all frequent itemsets is space and time-consuming when frequent itemsets along with Apriori or
FP-Growth algorithm is used. It is challenging to generate effective rules from the correlated genes. Abdo et al. (11) have pointed
out that frequent pattern mining is a significant research topic in the medical field and proposed a compressed maximal
frequent pattern for Corona virus disease (COVID-19) dataset. Existing associative classification approaches are generating
large number of rules from the frequent itemset, especially for dense dataset and occupies more memory space and consumes
more execution time. Generating frequent itemsets consume more memory and time. It leads to get research attention in
mining frequent itemsets. Also, existing methods are using discrete data to generate class association rules. In this paper, a
modified associative classification method is proposed for diagnosing diseases using maximal frequent itemset and probability
distribution to generate less number of class association rules. It leads to consume less time with minimummemory space.The
proposed method uses the discretized intervals for generating class association rules and is used for identifying the expressed
and unexpressed genes among class association rules.The paper is organized as follows. Proposed methodology is presented in
Section 2. Section 3 discusses the experimental results. Conclusions are given in section 4.

2 Methodology

2.1 Data Set

The National Center for Biotechnology and Information (NCBI) Gene Expression Omnibus (GEO) database is a
public functional genomics database with high-throughput gene expression data, chips, and microarrays. GSE15781 (12),
GSE87211 (13), GSE25070 (14) andGSE43580 (15) was downloaded fromGEO.TheGSE15781 dataset consists of colorectal cancer
patients includes 13 cancer tissue and 10 normal tissues.The dataset GSE87211 contains 203 colorectal cancer samples and 160
control samples. The GSE25070 dataset contains the 26 tumor samples and 26 normal samples. In this research, the proposed
method tested with the multiclass dataset. The GSE43580 gene expression profiles datasets contain 77 lung adeno carcinoma
and 73 lung squamous cell carcinoma samples from Gene Expression Omnibus (GEO) under accession number GSE43580.
NCI60 is a data set of gene expression profiles of 60 National Cancer Institute (NCI) cell lines. The data set (16)consists of 7129
genes and 60 samples.The 60 human tumor cell lines are divided into eight different cancer classes such as, eight is breast cancer,
six CNS cancer, seven colon cancer, six leukemia cancer, eight melanoma cancer, nine non-small-cell lung carcinoma cancer,
six ovarian cancers, eight renal cancer tumors and two prostate cancers.
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Fig 1. An Associative Classification Model

2.2 Modified Associative Classification Model

Theobjective of this work is to present an associative classificationmethod for gene expression data to enhance the performance,
time and space in the high dimensional data set. In this section, the new proposed method, namely Modified Associative
Classification Model (MACM) for microarray gene expression data classification.The proposed model has four phases namely
data preprocessing, data transformation, associative classification, and biomarker prediction. Figure 1depicts the phases.

2.3 Data Preprocessing

Thegene expression data are standardized using the z-score standardization.The standardization brings all geneswithin a range.
After that, informative genes are identified using the LIMMApackage which is used to reduce the dimensionality of the dataset.

2.3.1 Data Standardization
Normalization and standardizationmethods are applied to remove certain systematic biases that are inherent on the data. Before
analyzing the data, the gene expression data must be normalized to avoid large variation in the gene expressions and to avoid
errors during data processing (17). The Z-score (17) is used for standardizing data and makes significant changes in the gene
expression between different samples and conditions. Z score data standardization formula is given as follows:

Z =
D−µ

σ
(1)
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where, D is the data to be normalized, µ is the arithmetic mean and σ is the standard deviation of that data and Z is the
standardized variable with mean 0 and variance 1. This method is used to normalize the gene expression data.

2.3.2 Statistical Gene Selection
Gene selection is a main task for microarray data classification to find the differentially expressed genes and to reduce
dimensionality by removing irrelevant and noisy data (18). The Linear Models for Microarray Data (LIMMA) package is R-
based open-source software in statistical genomics (19). LIMMA package uses linear models to preprocess and analyze the
microarray experiments (19). The LIMMA model requires design matrix and contrast matrix. The first step is to fit a linear
model using E (Yi] = Xα j, where Yi contains the expression data for the gene j, X is the design matrix and α j is the vector
of coefficient, The coefficients component of the fitted model is produced by linear model. Define β j = CT α j, where C is the
contrast matrix.The linear model for gene j has residual variance σ2

j with sample value s2
j and degree of freedom f j.The limma

uses moderated t test. The moderated t-statistic is used for significance analysis, and is computed for each gene and for each
contrast.The empirical Bayesmethod assumes an inverse Chi-square prior value of theσ2

j with themean s2
0, degrees of freedom

f0 and S̃2
j the posterior values for the residual variances which are calculated using Equation (2).

S̃2
j =

f0s2
0 + f js2

j

f0 + f j
(2)

The moderated t-statistic for the kth contrast for the gene j is calculated using Equation (3).

t jk =
β jk

U jkS̃ j
(3)

whereU jk is the unscaled standard deviation. The moderated t test follows t-distribution on f0 + f j degree of freedom if β jk is
equal to 1. The output of empirical Bayes method contains t jk and corresponding p-value.

2.4 Data Transformation

Data transformation (20) is used to integrate various types of data and to apply association rule mining successfully in the
rule generation phase. Data discretization is a data transformation method, where the gene expression data are transformed
from continuous data into nominal data.There are several discretization techniques such as equal width binning, cluster-based
discretization, equal depth discretization, class attribute contingency discretization and entropy-based discretization etc. The
entropy-based discretization is a supervised approach that discretizes attributes using the class information.

The discretization process (21) follows four steps, such as sorting the continuous values, calculating cut points for splitting
intervals or merging intervals, based on some condition or criterion, and finally stopping at some point based on the splitting or
merging intervals. Gene expression data sets are continuous variables andmeasured by the interval.The process of partitioning
continuous variables into categories is known as discretization.The discretization techniques are located along two dimensions
such as supervised versus unsupervised and local versus global. In this work, the entropy-based discretization is used.

2.4.1 Entropy-based Discretization
Entropy-based discretization is a supervised technique, which uses the class information to transform the data into nominal
data. The entropy-based discretization process is explained in the following algorithm 1.

Algorithm 1: Entropy Based Discretization
Input: Gene Expression with samples and filtered genes
Output: Discretized Gene Expression
Process:
Begin
Step1: Read the statistically and significantly expressed genes
Step2: Sort the gene expression values
Step3: Calculate the entropy H (X)for gene expression data using Equation (4).

H (X) =−∑n
i=0 pi ∗ log2 (pi) (4)

Step4: Search a suitable cut point with the lowest entropy
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Step5: Split the range of continuous gene expression values according to cut point is calculated using Equation (5).

In f o(S,T ) = −pl ∑m
j=1 p j, l log2 p j, l − pr ∑m

j=1 p j, rlog2 p j, r (5)

Step6: Repeat steps 4-5 until satisfy the stopping criteria and discretize all the continuous values
End.

2.5 Associative Classification

The filtered and discretized microarray data set is transformed into a transaction set. A microarray transaction table is built
based on the class labels before rule mining is applied. The number of transactions in a gene expression dataset corresponds
to its number of samples. The number of transactions of biological information is the total number of discrete data acquired.
These sets of transactions are passed to the maximal class rule generation phase for model building. Association rule (22) and
classification are combined into associative classification. Generating a frequent itemset is the one of the key processes in the
association analysis to identify the interesting set of genes.Mining frequent itemsets is essential for discovering class association
rules. Many of the frequent itemset generation algorithms follow Apriori (23), which uses a bottom-up and breadth-first search
approach. Generating long frequent patterns in dense data is computationally infeasible. A solution to this problem is to mine
only the maximal frequent itemsets (24). The maximal frequent itemset is the frequent itemset for which none of its immediate
supersets are frequent, and the maximal pattern set is less than all frequent patterns. Maximum frequent itemset sentences
helps to understand long patterns in gene expression data.The process of Class Association Rules follows two steps (1) generate
the maximal frequent itemsets and (2) build a classifier from the class association rules. The procedure of the maximal class
association rules is explained in the algorithm 2.

2.5.1 Maximal Frequent Itemset
Given a set of items I= {i1, i2, i3… in} and a set of transaction T = {t1, t2, t3… tm}, a subset of I is called a frequent, if support(S)
≥ minimum support, where minimum support is a user defined threshold. The maximal frequent itemset (24) is smaller than
the frequent closed itemset and frequent itemset.

The method to generate maximal frequent itemsets follows a depth first search approach.The frequent itemset is maximal if
it is frequent but none of its proper supersets is frequent.

2.5.2 Maximal Class-Association Rules
The maximal classifier model is built from the maximal frequent itemset. A class association rule is the form of A → C, For a
rule A → C, A is called an antecedent of the rule, the antecedent of the rule must contains the gene itemsets and C is called a
consequent of the rule, the consequent of the rulemust contains class labels.The rules are filtered using the confidence threshold
given by the user. In this work 20%, 40% and 80 % of support and confidence are used to obtain the maximal class association
rules.

The confidence of rule A → C is computed by calculating the co-occurrence of transactions A and C within the dataset in
ratio to transactions containing only A. The confidence of the class association rule is calculated using Equation (6). Finally,
the class association rules are regenerated using the Equation (7). In this equation, rc

n represents class association rules for each
class and MaxRc represents total number of maximal class association rules.

Algorithm 2: Maximal Class Association Rules
Input: Gene Expression with samples and Gene values with intervals
Output: Class Association rules and Classifier Model
Process:
Begin
Step 1: Read discretized dataset for each classc
Step 2: Transform the dataset into transaction set
Step 3: For each class compute the maximal frequent itemsets
Step 4: Generate a set of rules that have confidence above the minimum confidence threshold frommaximal frequent items

Con f idence (A →C) =
s(A∪C)

s(A)
(6)

Step5: Make a classifier model from these Class Association Rules

MaxRc = (rc
1,r

c
2 . . . .,r

c
n} (7)
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Step6: Repeat steps 4-6 until form the maximal class association rules for all classes
End.

2.6 Biomarker Prediction

Prediction in associative classification is one of the important steps to determine the accuracy for the developed model. During
prediction a sample is predicted to be a particular class when it satisfies more number of eligible rules of the concerned class
otherwise it is declared as the default class, which is the majority class in the dataset. Assigning default classes to a sample can
affect classifier accuracy. The challenge is to make use of the generated rules in the model to produce a good accuracy. In this
paper, a probability-based prediction method in associative classification is proposed. Poisson probability distribution predicts
the probability of occurrence of certain events when how often the event has occurred is known. It gives us the number of
occurrences of the event in a fixed interval. The Poisson probability distribution is calculated using the Equation (8).

P(x; µ) =
e−µ ∗µx

x!
(8)

Where, µ is the expected number of occurrences in the rule,e is the base of the logarithm 2.71828 and x represents the test data.
The prediction phase of the associative classification is explained in algorithm 3.

Algorithm 3: Prediction using probability distribution
Input: Classification Association Rules (Model) Unknown Sample Data set (Test Data)
Output: Classified gene expression
Process:
Begin
Step1: Read Unknown Sample
Step2: Read the Class Association Rules and evaluates how many rules are satisfied in each class
Step3: Assign the test data to that class, whose rules are satisfied maximally using Poisson probability formula
Step4: Repeat steps 2-3 until classify all the test data.
End.

3 Results and Discussion
The data of the microarray are presented in the gene expression matrix. Experiments for the proposed method are carried out
by the R statistical programming language. Table 1 represents the overview of microarray cancer data sets. Table 2 represents
the sample gene expression data matrix. The proposed method can be captured in four phases.

First, in the data preprocessing phase, the raw microarray data were normalized using Z-score normalization and candidate
gene features were selected from the normalized data using the LIMMA test. Selected candidate gene features can achieve
the highest classification accuracy with the fewest number of genes. Table 3 shows the candidate genes selected using the
LIMMA test. There are 10 significant genes extracted using p-value < 0.001. The selected significant gene features are highly
correlatedwith colon cancer.The selected gene features are discretized in the data transformation phase using the entropy-based
discretization method. Table 4 shows the candidate gene features discretized by gene intervals.The significant gene expressions
are discretized into several intervals using entropy-based discretization algorithm. Table 5 shows that the discrete values for
selected candidate genes. The discretized data are converted into the transactional dataset, which are used to generate the
frequent item set and class association rules. The frequent items set are generated using the minimum support as 20%, 40%
and 80% and the minimum confidence as 80%. Finally, the class association rules are generated, and are used to classify the test
dataset using probability distributions.
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Table 1. Overview of the microarray datasets
Dataset GSE ID No. of samples No. of tumor sample No. of normal samples
Colon Cancer GSE15781 23 13 10
Colon Cancer GSE87211 363 203 106
Colon Cancer GSE25070 52 26 26
Lung Cancer GSE43580 150 73 77

Table 2. Gene Expression Data Set
Sample class PCSK1N C9orf100 LGALS4 …. SPIB AKR1B10 INSL5 HSD17B2 SLC4A4 KRT20
GSM396309 1 -0.97 -1.08 -0.55 …. -0.84 -0.86 -0.89 -1 -0.93 -0.42
GSM396310 1 -0.63 -0.73 -0.96 …. -0.47 -1.11 -0.91 -1.15 -0.96 -0.89
GSM396311 1 -1.1 -0.8 -0.92 …. -0.95 -0.72 -0.91 -1.18 -0.9 -0.74
GSM396312 1 -0.18 -0.64 0.05 …. -0.8 -0.76 -0.06 0.24 0.49 0.12
GSM396313 1 -1.23 -0.97 -1.01 …. -0.92 -1.22 -0.91 -0.96 -0.93 -1.15
GSM396314 1 0.39 -0.16 0.33 …. 0.45 0.07 0.39 0.32 -0.04 0.49
GSM396315 1 -0.38 -0.83 -0.96 …. -0.91 -0.97 -0.85 -0.86 -0.75 -1.06

Table 3. Selected Significant Genes using LIMMA Test
Sample class PCSK1N C9orf100 LGALS4 PDGFD SPIB AKR1B10 INSL5 HSD17B2 SLC4A4 KRT20
GSM396309 1 -0.97 -1.08 -0.55 -1.36 -0.84 -0.86 -0.89 -1 -0.93 -0.42
GSM396310 1 -0.63 -0.73 -0.96 -1.39 -0.47 -1.11 -0.91 -1.15 -0.96 -0.89
GSM396311 1 -1.1 -0.8 -0.92 -1.39 -0.95 -0.72 -0.91 -1.18 -0.9 -0.74
GSM396312 1 -0.18 -0.64 0.05 0.16 -0.8 -0.76 -0.06 0.24 0.49 0.12
GSM396313 1 -1.23 -0.97 -1.01 -0.67 -0.92 -1.22 -0.91 -0.96 -0.93 -1.15
GSM396314 1 0.39 -0.16 0.33 0.03 0.45 0.07 0.39 0.32 -0.04 0.49
GSM396315 1 -0.38 -0.83 -0.96 -0.54 -0.91 -0.97 -0.85 -0.86 -0.75 -1.06
GSM396316 1 -0.77 -0.36 -1.14 -0.01 -0.8 -0.82 -0.84 -0.83 -0.86 -0.91
GSM396317 1 -1.14 -0.7 -0.93 -1.25 -1.04 -1.15 -0.91 -0.8 -0.89 -1.12
GSM396318 1 -1.3 -0.41 -1.3 -1.36 -0.97 -1.22 -0.92 -0.96 -0.94 -1.13
GSM396319 1 -0.95 -0.98 -0.79 -0.05 -0.83 -0.07 -0.9 -0.63 -0.84 -0.78
GSM396320 1 -0.44 -0.97 -0.6 -0.5 -0.57 -0.07 -0.7 -0.51 -0.81 -0.65
GSM396321 1 -0.84 -0.68 -0.52 -0.95 -0.61 -0.35 -0.78 -0.86 -0.74 -0.85
GSM396322 0 0.87 0.82 1.43 0.74 1.31 1.81 1.32 1.62 2.15 0.93
GSM396323 0 1.47 1.72 -0.07 0.32 1.85 -0.27 1.57 0.15 0.4 1.03
GSM396324 0 0.5 0.18 0.97 1.38 1.54 1.11 -0.11 1.76 0.96 0.98
GSM396325 0 0.59 -0.09 0.62 0.4 0.53 0.5 1.65 0.64 0.23 2.52
GSM396326 0 0.77 2.55 1.82 1.3 0.14 2.04 2.12 1.88 1.72 1.4
GSM396327 0 0.37 1.16 0.61 1.51 -0.04 0.49 0.39 0.49 0.51 0.12
GSM396328 0 0.58 0.87 1.4 1.04 0.46 0.32 0.46 0.09 0.9 0.32
GSM396329 0 2.09 1 0.58 1.47 0.95 1.11 1.23 1.43 1.06 0.34
GSM396330 0 0.58 1.08 0.1 0.07 0.41 1.09 0.06 0.2 -0.37 0.47
GSM396331 0 1.71 0.02 1.85 1.04 2.12 1.06 0.48 0.91 1.53 0.98

Table 4. Discretized Data using Entropy
Sample class PCSK-

1N
C9orf100 LGALS4 PDGFD SPIB AKR1B10 INSL5 HSD17B2 SLC4A4 KRT20

Continued on next page
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Table 4 continued
GSM396309 1 0, 0.095 -Inf,-

0.125
-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396310 1 0, 0.095 -Inf,-
0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396311 1 0, 0.095 -Inf,-
0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396312 1 0, 0.095 -Inf
-0.125

-0.010
0.075

0.115
0.240

-Inf
-0.255

-Inf
-0.31

-0.085
0.000

0.220
0.405

0.445
0.500

-0.15 0.22

GSM396313 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396314 1 0.380,
0.445

-Inf
-0.125

0.215
0.455

-Inf
0.05

0.430
0.455

-0.170
0.195

0.225
0.425

0.220
0.405

-0.205
0.095

0.48 0.71

GSM396315 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396316 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396317 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396318 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396319 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-0.170
0.195

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396320 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-0.170
0.195

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396321 1 0, 0.095 -Inf
-0.125

-Inf
-0.295

-Inf
0.05

-Inf
-0.255

-Inf
-0.31

-Inf
-0.405

-Inf
-0.21

-Inf
-0.555

-Inf -0.15

GSM396322 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf 0.455
Inf

0.195
Inf

0.425
Inf

0.405
Inf

0.5 Inf 0.71 Inf

GSM396323 0 0.445 ,
Inf

-0.125
Inf

-0.305 0.24 Inf 0.455
Inf

-0.48 0.425
Inf

-0.21
0.22

0.095
0.445

0.71 Inf

GSM396324 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf 0.455
Inf

0.195
Inf

-0.49 0.405
Inf

0.5 Inf 0.71 Inf

GSM396325 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf 0.455
Inf

0.195
Inf

0.425
Inf

0.405
Inf

0.095
0.445

0.71 Inf

GSM396326 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf -0.255
0.430

0.195
Inf

0.425
Inf

0.405
Inf

0.5 Inf 0.71,Inf

GSM396327 0 0.095,
0.380

-0.125
Inf

0.455
Inf

0.24 Inf -0.255
0.430

0.195
Inf

0.225
0.425

0.405
Inf

0.5 Inf -0.15 0.22

GSM396328 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf 0.455
Inf

0.195
Inf

0.425
Inf

-0.21
0.22

0.5 Inf 0.22 0.48

GSM396329 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf 0.455
Inf

0.195
Inf

0.425
Inf

0.405
Inf

0.5 Inf 0.22 0.48

GSM396330 0 0.445 ,
Inf

-0.125
Inf

0.075
0.215

0.050
0.115

-0.255
0.430

0.195
Inf

0.000
0.225

-0.21
0.22

-0.76 0.22 0.48

GSM396331 0 0.445 ,
Inf

-0.125
Inf

0.455
Inf

0.24 Inf 0.455
Inf

0.195
Inf

0.425
Inf

0.405
Inf

0.5 Inf 0.71 Inf

Table 5. Discretized Data
Samples class PCSK1N C9orf100 LGALS4 PDGFD SPIB AKR1B10INSL5 HSD17B2SLC4A4 KRT20
GSM396309 1 1 1 1 1 1 1 1 1 1 1
GSM396310 1 1 1 1 1 1 1 1 1 1 1
GSM396311 1 1 1 1 1 1 1 1 1 1 1
GSM396312 1 1 1 3 3 1 1 3 3 5 2
GSM396313 1 1 1 1 1 1 1 1 1 1 1
GSM396314 1 3 1 5 1 3 3 5 3 3 4

Continued on next page
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Table 5 continued
GSM396315 1 1 1 1 1 1 1 1 1 1 1
GSM396316 1 1 1 1 1 1 1 1 1 1 1
GSM396317 1 1 1 1 1 1 1 1 1 1 1
GSM396318 1 1 1 1 1 1 1 1 1 1 1
GSM396319 1 1 1 1 1 1 3 1 1 1 1
GSM396320 1 1 1 1 1 1 3 1 1 1 1
GSM396321 1 1 1 1 1 1 1 1 1 1 1
GSM396322 0 4 2 6 4 4 4 6 4 6 5
GSM396323 0 4 2 2 4 4 2 6 2 4 5
GSM396324 0 4 2 6 4 4 4 2 4 6 5
GSM396325 0 4 2 6 4 4 4 6 4 4 5
GSM396326 0 4 2 6 4 2 4 6 4 6 5
GSM396327 0 2 2 6 4 2 4 5 4 6 2
GSM396328 0 4 2 6 4 4 4 6 2 6 3
GSM396329 0 4 2 6 4 4 4 6 4 6 3
GSM396330 0 4 2 4 2 2 4 4 2 2 3
GSM396331 0 4 2 6 4 4 4 6 4 6 5

In the associative classification phase, the discretized candidate gene sets are applied for associative classification. Beforemining
the generated rules, the transaction table was partitioned based on the class labels. TheMACM algorithm produces the desired
number of maximal frequent itemsets with the highest support value from each target class label. These maximal frequent
itemsets are applied to generate maximal class association rules using the minimum confidence. Table 6 shows the generated
maximal class association rules of the proposed method.

Table 6. Maximal Class Association Rules
Rule No. LHS RHS

1. PCSK1N[ lower = 0.445, upper = Inf], C9orf100[ lower = -0.125, upper = Inf], Class=ControlSPIB[ lower = -0.255, upper = 0.43], AKR1B10[ lower = 0.195, upper = Inf]

2.
PCSK1N[ lower = 0.445, upper = Inf], C9orf100[ lower = -0.125, upper = Inf],

Class=ControlAKR1B10[ lower = 0.195, upper = Inf],HSD17B2[ lower = -0.21, upper = 0.22],
KRT20[ lower = 0.22, upper = 0.48]

3.
PCSK1N[ lower = 0.445, upper = Inf], C9orf100[ lower = -0.125, upper = Inf],

Class=ControlPDGFD[ lower = 0.24, upper = Inf], SPIB[ lower = 0.455, upper = Inf],
INSL5[ lower = 0.425, upper = Inf], HSD17B2[ lower = -0.21, upper = 0.22]

4.

PCSK1N[ lower = 0.445, upper = Inf], C9orf100[ lower = -0.125, upper = Inf],

Class=ControlPDGFD[ lower = 0.24, upper = Inf], SPIB[ lower = 0.455, upper = Inf],
INSL5[ lower = 0.425, upper = Inf], SLC4A4[ lower = 0.095, upper = 0.445],
KRT20[ lower = 0.71, upper = Inf]

5.

C9orf100[ lower = -0.125, upper = Inf], LGALS4[ lower = 0.455, upper = Inf],

Class=ControlPDGFD[ lower = 0.24, upper = Inf], SPIB[ lower = -0.255, upper = 0.43],
AKR1B10[ lower = 0.195, upper = Inf], HSD17B2[ lower = 0.405, upper = Inf],
SLC4A4[ lower = 0.5, upper = Inf]

6.

PCSK1N[ lower = 0.445, upper = Inf], C9orf100[ lower = -0.125, upper = Inf],

Class=Control
LGALS4[ lower = 0.455, upper = Inf], PDGFD[ lower = 0.24, upper = Inf],
SPIB[ lower = 0.455, upper = Inf], AKR1B10[ lower = 0.195, upper = Inf],
INSL5[ lower = 0.425, upper = Inf], SLC4A4[ lower = 0.5, upper = Inf],
KRT20[ lower = 0.22, upper = 0.48]

7.

PCSK1N[ lower = 0.445, upper = Inf], C9orf100[ lower = -0.125, upper = Inf],

Class=Control
LGALS4[ lower = 0.455, upper = Inf], PDGFD[ lower = 0.24, upper = Inf],
SPIB[ lower = 0.455, upper = Inf], AKR1B10[ lower = 0.195, upper = Inf],
INSL5[ lower = 0.425, upper = Inf], HSD17B2[ lower = 0.405, upper = Inf],
SLC4A4[ lower = 0.5, upper = Inf], KRT20[ lower = 0.71, upper = Inf]

8. C9orf100[ lower = -Inf, upper = -0.125],PDGFD[ lower = -Inf, upper = 0.05], Class=Cancer
Continued on next page
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Table 6 continued
AKR1B10[ lower = -0.17, upper = 0.195]

9.

PCSK1N[ lower = -Inf, upper = 0.095],C9orf100[ lower = -Inf, upper = -0.125],

Class=Cancer
LGALS4[ lower = -Inf, upper = -0.295],PDGFD[ lower = -Inf, upper = 0.05],
SPIB[ lower = -Inf, upper = -0.255],AKR1B10[ lower = -Inf, upper = -0.31],
INSL5[ lower = -Inf, upper = -0.405],HSD17B2[ lower = -Inf, upper = -0.21],
SLC4A4[ lower = -Inf, upper = -0.555], SLC4A4 [ lower = -Inf, upper = -0.15]

It is observed from the Table 6 that the genes PCSK1N, C9orf100, PDGFD, AKR1B10, INSL5, SPIB, HSD17B2, SLC4A4
andSLC4A4are used in determining the disease of being colon cancer. In this study, the proposed maximal associative
classification performs better in identifying the genes for the cause of cancer. The biomarker prediction phase uses the Poisson
probability distribution to evaluate the test gene samples. Table 7 compares the proposed method MACM, conventional CBA
and other frequent itemset types.The performance of the proposedmethod is measured based on support, confidence, training
time, number of class association rules and classification accuracy. Table 7 shows that the maximal frequent itemset generates
less number of rules than the frequent itemset and closed frequent itemset for the dataset GSE15781, GSE87211, GSE25070,
GSE43580. Table 7 also shows that the Z-score normalization works better than min-max normalization and produces less
number of class association rules. It is observed from Table 7 that the proposed maximal frequent itemset method consumes
less time than the CBA and other frequent itemset types.

Table 7. Comparative Results of Proposed Method with Other Frequent Types and CBA
ClassificationNormalization/

Standardization
Dataset Target

Type
Support
in %

Confidence
in %

Number
of CARs

Accuracy Error
Rate

Training
Time in
Seconds

MACM Min-Max GSE15781 Frequent 20 80 2256 100 0 3.36
MACM Min-Max GSE15781 Closed 20 80 102 100 0 0.27
MACM Min-Max GSE15781 Maximal 20 80 19 100 0 0.12
MACM Min-Max GSE15781 Frequent 40 80 1292 100 0 3.4
MACM Min-Max GSE15781 Closed 40 80 66 100 0 0.21
MACM Min-Max GSE15781 Maximal 40 80 18 100 0 0.14
MACM Min-Max GSE15781 Frequent 80 80 266 100 0 16.78
MACM Min-Max GSE15781 Closed 80 80 9 100 0 0.15
MACM Min-Max GSE15781 Maximal 80 80 6 100 0 25.04
MACM Z-Score GSE15781 Frequent 20 80 2482 100 0 70.8
MACM Z-Score GSE15781 Closed 20 80 57 100 0 67.8
MACM Z-Score GSE15781 Maximal 20 80 9 100 0 0.16
MACM Z-Score GSE15781 Frequent 40 80 1766 100 0 15.33
MACM Z-Score GSE15781 Closed 40 80 42 100 0 0.18
MACM Z-Score GSE15781 Maximal 40 80 9 100 0 0.15
MACM Z-Score GSE15781 Frequent 80 80 532 100 0 4.66
MACM Z-Score GSE15781 Closed 80 80 11 100 0 0.15
MACM Z-Score GSE15781 Frequent 80 80 4 100 0 0.15
CBA Z-Score GSE15781 Frequent 20 80 770 100 0 0.25
CBA Z-Score GSE15781 Frequent 40 80 640 100 0 0.25
CBA Z-Score GSE15781 Frequent 50 80 19 100 0 0.19
CBA Z-Score GSE15781 Frequent 20 80 770 100 0 0.25
CBA Min Max GSE15781 Frequent 40 80 547 100 0 0.26
CBA Min Max GSE15781 Frequent 50 80 30 100 0 0.21
MACM Min Max GSE87211 Frequent 20 80 528 97.79 2.21 3.96
MACM Min Max GSE87211 Closed 20 80 342 97.79 2.21 2.57
MACM MinMax GSE87211 Maximal 20 80 33 97.79 2.21 0.33
MACM Min Max GSE87211 Frequent 40 80 277 96.69 3.31 1.47
MACM Min Max GSE87211 Closed 40 80 241 96.69 3.31 1.18
MACM MinMax GSE87211 Maximal 40 80 18 96.69 3.31 0.28
MACM Min Max GSE87211 Frequent 80 80 4 91.73 8.27 0.17
MACM Min Max GSE87211 Closed 80 80 4 91.73 8.27 0.14
MACM Min Max GSE87211 Maximal 80 80 2 91.73 8.27 0.14
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Table 7 continued
MACM Z-Score GSE87211 Frequent 20 80 541 99.17 0.83 3.82
MACM Z-Score GSE87211 Closed 20 80 526 99.17 0.83 3.74
MACM Z-Score GSE87211 Maximal 20 80 102 99.17 0.83 0.79
MACM Z-Score GSE87211 Frequent 40 80 77 98.62 1.38 0.62
MACM Z-Score GSE87211 Closed 40 80 77 98.62 1.38 0.64
MACM Z-Score GSE87211 Maximal 40 80 29 98.62 1.38 0.31
MACM Z-Score GSE87211 Frequent 80 80 1 55.92 44.08 0.14
MACM Z-Score GSE87211 Closed 80 80 1 55.92 44.08 0.14
MACM Z-Score GSE87211 Maximal 80 80 1 55.92 44.08 0.14
CBA Z-Score GSE87211 Frequent 20 80 770 98.34 1.66 0.44
CBA Z-Score GSE87211 Frequent 40 80 615 98.34 1.66 0.3
CBA Z-Score GSE87211 Frequent 80 80 115 98.34 1.66 0.3
CBA Min – Max GSE87211 Frequent 20 80 770 98.89 1.11 0.37
CBA Min – Max GSE87211 Frequent 40 80 320 98.34 1.66 0.42
CBA Min – Max GSE87211 Frequent 50 80 14 98.07 1.93 0.27
MACM Min – Max GSE25070 Frequent 20 80 2510 100 0 6.02
MACM Min – Max GSE25070 Closed 20 80 202 100 0 0.58
MACM Min – Max GSE25070 Maximal 20 80 13 100 0 0.16
MACM Min – Max GSE25070 Frequent 40 80 1578 100 0 3.85
MACM Min – Max GSE25070 Closed 40 80 140 100 0 0.78
MACM Min – Max GSE25070 Maximal 40 80 23 100 0 0.17
MACM Min – Max GSE25070 Frequent 80 80 1022 100 0 2.68
MACM Min – Max GSE25070 Closed 80 80 45 100 0 0.25
MACM Min – Max GSE25070 Maximal 80 80 11 100 0 0.17
MACM Z-Score GSE25070 Frequent 20 80 2510 100 0 6.36
MACM Z-Score GSE25070 Closed 20 80 202 100 0 0.72
MACM Z-Score GSE25070 Maximal 20 80 13 100 0 0.17
MACM Z-Score GSE25070 Frequent 40 80 1578 100 0 3.79
MACM Z-Score GSE25070 Closed 40 80 140 100 0 0.42
MACM Z-Score GSE25070 Maximal 40 80 23 100 0 0.19
MACM Z-Score GSE25070 Frequent 80 80 1022 100 0 2.54
MACM Z-Score GSE25070 Closed 80 80 45 100 0 0.23
MACM Z-Score GSE25070 Maximal 80 80 11 100 0 0.14
CBA Z-Score GSE25070 Frequent 20 80 770 100 0 0.21
CBA Z-Score GSE25070 Frequent 40 80 770 100 0 0.23
CBA Z-Score GSE25070 Frequent 50 80 262 100 0 0.23
CBA Min – Max GSE25070 Frequent 20 80 770 100 0 0.28
CBA Min – Max GSE25070 Frequent 40 80 770 100 0 0.29
CBA Min – Max GSE25070 Frequent 50 80 262 100 0 0.24
MACM Min – Max GSE43580 Frequent 20 80 121 94 6 0.62
MACM Min – Max GSE43580 Closed 20 80 108 94 6 0.48
MACM Min – Max GSE43580 Maximal 20 80 35 94 6 0.23
MACM Min – Max GSE43580 Frequent 40 80 42 77.33 22.67 0.24
MACM Min – Max GSE43580 Closed 40 80 42 77.33 22.67 0.24
MACM Min – Max GSE43580 Maximal 40 80 21 77.33 22.67 0.19
MACM Min – Max GSE43580 Frequent 80 80 13 48.67 51.33 0.23
MACM Min – Max GSE43580 Closed 80 80 13 48.67 51.33 0.17
MACM Min – Max GSE43580 Maximal 80 80 7 48.67 51.33 0.15
MACM Z-Score GSE43580 Frequent 20 80 282 84 16 1.23
MACM Z-Score GSE43580 Closed 20 80 238 84 16 1.13
MACM Z-Score GSE43580 Maximal 20 80 40 84 16 0.26
MACM Z-Score GSE43580 Frequent 40 80 86 78.67 21.33 0.59
MACM Z-Score GSE43580 Closed 40 80 82 78.67 21.33 0.4
MACM Z-Score GSE43580 Maximal 40 80 25 78.67 21.33 0.21
MACM Z-Score GSE43580 Frequent 80 80 18 48.67 51.33 0.35
MACM Z-Score GSE43580 Closed 80 80 18 48.67 51.33 0.2
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Table 7 continued
MACM Z-Score GSE43580 Maximal 80 80 12 48.67 51.33 0.15
CBA Z-Score GSE43580 Frequent 20 80 769 91.33 8.67 0.49
CBA Z-Score GSE43580 Frequent 40 80 343 89.33 10.67 0.31
CBA Z-Score GSE43580 Frequent 50 80 1 - - 0.14
CBA Min – Max GSE43580 Frequent 20 80 672 92.67 7.33 0.44
CBA Min – Max GSE43580 Frequent 40 80 246 90.67 9.33 0.32
CBA Min – Max GSE43580 Frequent 50 80 - - - 0.17

Table 8 compares the proposed method MACM and conventional CBA for the multi label datasets. The performance of the
proposedmethod is measured based on support, confidence, training time and number of class association rules generated and
classification accuracy.

Table 8. Results on Multi-Classification data set
Classification Standardization Target

Type
Support
in %

Confidence
in %

No. of
Rules

Accuracy Error
Rate

Time
Taken in
training
data (in
seconds)

Time
Taken
in Test
data (in
seconds)

MACM Z-Score Frequent 10 80 5105 88.89 11.11 105.6 227.4
MACM Z-Score Frequent 20 80 5105 33.33 66.67 13.19 27.3
MACM Z-Score Frequent 40 80 2046 33.33 66.67 3.66 7.43
MACM Z-Score Closed 10 80 94 88.89 11.11 0.65 0.51
MACM Z-Score Closed 20 80 94 33.33 66.67 0.49 0.18
MACM Z-Score Closed 40 80 17 33.33 66.67 0.37 0.06
MACM Z-Score Maximal 10 80 60 88.89 11.11 0.81 0.41
MACM Z-Score Maximal 40 80 8 33.33 66.67 0.46 0.051

3.1 Performance Metrics

The proposed MACM model was analyzed using the AUC curve and accuracy. Table 9 depicts the four outcomes of binary
classification. The accuracy measure is computed using the Equation (9).

Table 9. Binary classification output description
Classifier Outcome Descriptions
A Number of affected tissues that are correctly diagnosed
B Number of healthy tissues that are wrongly identified as a tissue
C Number of healthy tissues that are correctly diagnosed
D Number of affected tissues that are wrongly identified as a healthy

A+B
A+B+C+D

=
tissues diagnosed correctly

total tissues
(9)

Figure 2 depicts the AUC curve of the proposed methods on the colon and lung cancer data sets. The results obtained are
comparedwith the traditional CBA algorithm.TheproposedMACMmodel provides 100%, classification accuracy for the colon
cancer datasets GSE15781 and GSE25070; and 99.17% for the colon cancer data set GSE87211. 94% classification accuracy is
obtained for the lung cancer dataset GSE43580. Interpretation of the generated rule is simpler and easier for the bio markers
as it is with only significant genes and less in numbers. Another feature of the proposed work is rules are generated with gene
expression level; it is not available in the existing methods. This gene expression level is used to find whether the gene is over
expressed or under expressed.

The proposed method uses the supervised discretization to generate rules with gene expression intervals. The supervised
discretization method uses class information to split data into set of discrete intervals and without loss of information.
Compared with frequent itemset and closed frequent itemset types, the class association rule mining algorithm using maximal
frequent itemsets. The proposed method does not generate numerous frequent itemsets so that the generation of redundant
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Fig 2.The Area Under the Curve

rules decreases and mining rules becomes faster. The proposed algorithm improves the space and time utilization for the gene
expression data and helps to identify the relationship among the gene expression profiles. The proposed method helps to find
the functions of the genes and enrichment analysis for group of genes. The Table 10 compares the generated class association
rules of the proposed work with the existing methods.

Table 10. Compare the class association rules with the existing methods
Existing Methods Generated Class Association Rules Discussions
Ong et al (14) gene1, gene2, gene3 ,…..genen→ class1gene2,

gene3…..genen→class2
Method extracts the association rules with
gene name

Yuan, et al (15) If (TSC2 ≤ 124.073) and (GLTP ≥ 2042.765)
Then→Lung SCC

Extracts the association rules using IF–
THEN relationship (e.g., IF gene1 ≥ 6.4
AND gene2≥ 4.8 THEN lung AC )

Proposed MACMMethod g1[interval], g2[interval], … gn[interval]→
class1g5[interval], g6[interval],… gn[interval]
→ class2g1[interval], g2[interval],…
gn[interval] → classn Example :
PCSK1N[0.445-Inf], SPIB[ -0.255- 0.43],
AKR1B10[0.195-Inf]→ normal

Proposed method is applied to extract the
association rules with gene expression inter-
valsIt is used to find correlation among genes
expression data profiling and to identify the
positive and negative regulators of the genes

4 Conclusion
The proposed method diagnoses diseases from microarray gene expression data using maximal frequent itemsets and
probability-based distribution prediction method. Experimental results show that the maximal frequent itemsets quickly
generate the rules and consume less memory space for storing the maximal frequent itemsets. Existing methods use only
frequent itemsets but the proposedmethod uses frequent itemsets, closed frequent itemsets andmaximal frequent itemsets.The
experiments are carried out for the binary class datasets colon cancer and lung cancer; and for the multi class data set National
Cancer Institute-60 (NCI-60) cancer cell line gene expression data. The proposed MACM model provides 100% accuracy for
the binary class datasets but provides 88.89 % accuracy for the multi-class dataset. In the existing methods, when the generated
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rules are not matched with the test pattern then they assign the most class frequent in the training data. But as the proposed
method uses the probability distribution, it assigns the predicted class for the test pattern based on the probability of the rules
covered for a class. Also, the proposedmethod uses onlymaximal frequent itemsets which leads to avoid rule pruning. Proposed
method works the best only for binary class dataset is its limitation. Future work can be concentrated on multi class data sets
and an ensemble soft weighted gene selection-based approach and cancer classification using modified meta-heuristic learning
can be proposed for enhancing the current work.
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