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Abstract
Objectives: To generate the best proximity point theorem for new types of
Ciric α −β− contraction.Methods: By using generalized α −β− proximal quasi
contraction and Ciric type G-contraction. Findings: We made new types of
Ciric α − β− contraction. Novelty/Improvement: we give new types of Ciric
α − β−contraction which is a generalization of generalized α − β− proximal
quasi contraction and Ciric type G-contraction.
Keywords: New types of Ciric α-β -contraction; Best proximity point; Ciric type
G-contraction; generalized α-β - proximal quasi contraction; Cauchy Sequence

1 Introduction
The Banach-contraction principal on complete metric spaces was introduced in 1922.
Every self mapping T on complete metric space (X ,d) satisfying d (T x,Ty)≤ kd (x,y) ,
for all x,y ∈ X , where k ∈ (0,1), has a unique fixed point in X. This result has been
extended and generalized bymany authors in different ways (1–3). Some other extensions
of Banach contraction principle have been presented by considering the concept of best
proximity point. A point x in A for which d(x,T x) = d(A,B) is called a best proximity
point of T, whenever a non-self mapping T has no fixed point. A best proximity point
represent optimal approximate solution to the equation T x = x.

The first result on cyclic contraction and best proximity point was reported by Kirk
et. al. (4). Their results are the generalization of the usual contraction and fixed point.
Eldered and Veeramani (5) proved the existence of a best proximity point for proximal
pointwise contraction maps. Anuradha and Veeramani (6) proved the existence of a
best proximity point for proximal pointwise contraction. Recently many authors have
studied and generalize various concept related to the best proximity points (7–14).

The main objective of this paper is to generalized the result of Mohammad Ladh.
Ayari (15) introduced new types of Ciric α −β−contractive mapping on metric spaces
involving β comparison function and Ciric type G-contraction.

In this paper to prove the existence of best proximity problem for new types of Ciric
α −β− contraction on metric spaces endowed with binary relations.
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Considering a pair (A,B) of non-empty subset of (X ,d), we will use the following notations in this paper:
(A,B) = in f {d (x,y) : x ∈ A, y ∈ B} ;

A0 = {x ∈ A : d (x,y) = d (A,B) f or some y ∈ B} ;

B0 = {y ∈ B : d (x,y) = d (A,B) f or some x ∈ A} .

Definition 1.1. (16) Let (A,B) be a pair of non-empty subsets of a metric space (X ,d) such that A0 is non-empty. Then the pair
(A,B) is said to have the P-property iff d (x1,y1) = d (x2,y2) = (A,B) ⇒ d (x1,x2) = d(y1,y2) for all x1,x2 ∈ A0 and y1,y2 ∈ B0.

Definition 1.2. (17) Let β ∈ (0,∞). A β -comparison function is a map ϕ : (0,+∞) → (0,+∞) fulfilling the following
properties:

(1) ϕ is non-decreasing;
(2) lim

n→∞
ϕ n

β (t) = 0 for all t > 0, where ϕ n
β denotes the nth iterate of ϕβ and ϕβ (t) = ϕ(β .t);

(3) there exist s ∈ (0,∞) such that ∑∞
n=1 ϕ n

β (s)< ∞.

The set of all β comparison functions ϕ satisfying (1)-(3) will be denoted by ϕβ .
Definition 1.3. (18) Let T : A → B and α : A×A → [0,+∞).We say that T is α− proximal admissible if α(x1,x2)≥ 1 and

d(u1,T x1) = d(u2,T x2) = d(A,B), then α(u1,u2)≥ 1, for all x1,x2,u1,u2 ∈ A.
Definition 1.4. (18) A non-self mapping T : A → B is said to be (α,d) regular, where α : A×A → [0,+∞), if for all (x,y)

such that 0 ≤ α(x,y)< 1, there exists u0 ∈ A0 such that α(x,u0)≥ 1 and α(y,u0)≥ 1.
In an arbitrary graph G, a link is an edge of G with distinct ends and a loop is an edge of G with identical ends. Two or more

links of G with the same pairs of ends are called parallel edges of G.
Let (X ,d) be a metric space and G be a directed graph with vertex set V (G) = X such that the edge set E(G) contains all

loops, that is (x,x) ∈ E(G) for all x ∈ X . Assume further that G has no parallel edges. Under these hypothesis, the graph G can
be easily denoted by the ordered pair (V (G),E(G)) and it is said that the metric space (X ,d) is endowed with the graph G.

Definition 1.5. (19) A non self mapping T : A → B is G-proximal if T satisfies (y1,y2) ∈ E(G)
d(x1,Ty1) = d(A,B)
d(x2,Ty2) = d(A,B)

⇒ (x1,x2) ∈ E(G),

for all x1,x2,y1,y2 ∈ A.
Definition 1.6. (20) A non-self mapping T : A → B is a Ciric type G-contraction, if there exists α ∈ [0,1) such that

d (T x,Ty)≤ α .QT (x,y) , for all x,y ∈ A with (x,y) ∈ E(G), where
QT (x,y) = max

{
d(x,y),d(x,T x)−d(A,B),d(y,Ty)−d(A,B), d(x,Ty)+d(y,T x)

2 −d(A,B)
}
.

Definition 1.7. (15) A non-self mapping T : A → B is said to be a generalized α −β− proximal quasi-contractive, where
α : A×A → [0,+∞) iff there exist φ ∈ φβ and positive numbers α0, ...,α4 such that

α(x,y)d(T x,Ty)≤ φ(MT (x,y)), ∀x,y ∈ A,
Where

MT (x,y) = max{α0d(x,y),α1[d(x,T x)−d(A,B)],α2[d(y,Ty)−d(A,B)],α3[d(y,T x)−d(A,B)],
α4[d(x,Ty)−d(A,B)]}.
To prove our main results, we need the following lemma:
Lemma 1.8. (15) Let T : A → B be a non-self-mapping and α : A×A → [0,+∞), satisfying the following conditions:
(1) T (A0)⊂ B0;
(2) T is α− proximal admissible;
(3) There exist elements x0,x1 ∈ A0 such that d(x1,T x0) = d(A,B) and α(x0,x1)≥ 1.
Then there exists a sequence {xn} ⊂ A0 such that d(xn+1,T xn) = d(A,B) and α(xn,xn+1) ≥ 1, such a sequence {xn} is a

Cauchy sequence.

2 Results and Discussion
Definition 2.1. We introduced a new type of Ciric α −β−contraction. A non-self mapping T : A → B is a new type of Ciric
α −β−contraction where α : A×A → [0,+∞) if there exist φ ∈ φβ and positive numbers α0,α1,α2,α3 such that,
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α(x,y).d(T x,Ty)≤ φ(MT (x,y)), ∀x,y ∈ A,
where

MT (x,y) = max{α0d(x,y),α1d(x,T x)−d(A,B),α2d(y,Ty)−d(A,B),
α3[

d(x,Ty)+d(y,T x)
2 −d(A,B)]}.

Example : Let X = R2 with metric
d((x1,y1),(x2,y2)) =

√
(x1 − x2)2 +(y1 − y2)2

and put A = {(x,1) : x ∈ [0,1]} and B = {(y,0) : y ∈ [0,1]}, and T : A → B is defined by

T (x,1) =
(

(0,0), i f 0 ≤ x < 1( 1
3 ,0

)
, i f x = 1.

Then it is easy to see that d(A,B) = 1 and A0 = A and B0 = B. So that T is a new types of Ciric α −β− contraction with
φ(t) = t, α ∈ [0,1] and αi =

1
3i+1 for i = 0,1,2,3.

Theorem 2.2. Let A and B be non-empty closed subsets of a complete metric space (X ,d) such that A0 is non-empty. Let
α : A×A → [0,+∞) and φ ∈ φβ . Assume that non-self mapping T : A → B satisfying the following conditions:

(1) T (A0)⊂ B0 and the pair (A,B) satisfies the P-property;
(2) T is α proximal admissible;
(3) There exist elements x0,x1 ∈ A0 such that d(x1,T x0) = d(A,B) and α(x0,x1)≥ 1;
(4) T is continuous on new types of Ciric α −β contraction;
(5) if {xn} be a sequence in A such that α(xn,xn+1)≥ 1 and

{
xn(k)

}
of {xn} such that α(xn(k),x∗)≥ 1 for all k;

(6) there exist α −β contraction;
(7) φ is continuous, β > max{α2,α3}.
Then T has a best proximity point x∗ ∈ A such that d(x∗,T x∗) = d(A,B).
Proof. Fromgiven to condition (3), there exist x0,x1 ∈A such that, d(x1,T x0)= d(A,B) andα(x0,x1)≥ 1. SinceT (A0)⊂B0,

there exist x2 ∈ A0 such that d(x2,T x1) = d(A,B). Since T is α proximal admissible and using α(x0,x1) ≥ 1,d(x1,T x0) =
d(x2,T x1) = d(A,B). This implies that α(x1,x2)≥ 1.

In a similar condition, by induction sequence {xn} ⊂ A0 such that

d(xn+1,T xn) = d(A,B), (1)

and α(xn,xn+1)≥ 1 for all n ∈ N ∪{0}.
Using the P-property we deduce that

d (xn,xn+1) = d (T xn−1,T xn) ,∀n ∈ N (2)

Since T is new types of Ciric α −β contractive, there exist a function φ ∈ φβ such that

α (xn−1,xn) ·d (T xn−1,T xn)≤ φ (MT (xn−1,xn)) , ∀n ∈ N (3)

Where

MT (xn−1,xn) = max{α0d(xn−1,xn),α1[d(xn−1,T xn−1)−d(A,B)],α2[d(xn,T xn)−d(A,B)]

α3[
d(xn−1,T xn)+d(xn,T xn−1)

2
−d(A,B)]}

= max{α0d(xn−1,xn),α1[d(xn−1,T xn−1)−d(A,B)],α2[d(xn,T xn)−d(A,B)],

α3[
d(xn−1,T xn)−d(A,B)

2
+α3

d(xn,T xn−1)−d(A,B)
2

]}

= max{α0d(xn−1,xn),α1[d(xn−1,T xn−1)−d(A,B)],α2[d(xn,T xn)−d(A,B)],

α3[
d(xn−1,T xn)−d(A,B)

2
]}

≤ max{α0d(xn−1,xn),α1d(xn−1,xn),α2d(xn,xn+1),α3[
d(xn−1,xn)d(xn,xn+1)

2
]}
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MT (xn−1,xn)≤ βmax{d(xn−1,xn),d(xn,xn+1)}, (4)

where φ is non-decreasing, then we get that

d(xn+1,xn)≤ φ(βmax{d(xn−1,xn),d(xn,xn+1)})

= φβ (max{d(xn−1,xn),d(xn,xn+1)}),
Suppose that, for some n, we have

d(xn−1,xn)≤ d(xn,xn+1),

then we get

d(xn,xn+1)≤ φβ d(xn,xn+1)

< d(xn,xn+1),
which is contradiction.
Therefore, for all n ≥ 0,

d(xn,xn+1)≤ φβ d(xn−1,xn), ∀n ∈ N. (5)

Now, by induction, we find

d(xn,xn+1)≤ φn
β (d(x0,x1)), ∀n ∈ N ∪ (0} . (6)

Now we will show that {xn} is a Cauchy sequence.
Consider m,n ∈ N with m > n, using the triangle inequality and the above inequality (6), we get

d(xn,xm)≤ ∑m−1
k=n d(xk,xk+1)

≤ ∑m−1
k=n φk

β d(x0,x1)→ 0 as n,m →+∞.

Hence {xn} is a Cauchy sequence in A0 ⊂ A and Since (X,d) is complete, there exist x∗ ∈ A (depending on x0 and x1) such
that xn → x∗ ∈ A.

We next to show that x∗ is best proximity point for T.
Using hypothesis (5) of the theorem, ∃ a subsequence {xn(k)} to {xn} such that α(xn(k),x∗)≥ 1 ∀k.
Since T is new types of Ciric α −β contractive, then we have

d(T xn(k),T x∗)≤ α(xn(k),x∗)d(T xn(k),T x∗)

≤ φ(MT (xn(k),x∗)), ∀k (7)

where

MT (xn(k),x
∗) = max{α0d(xn(k),x

∗),α1d(xn(k),T xn(k))−d(A,B),α2[d(x∗,T x∗)−d(A,B)],

α3[
d(xn(k),T x∗)+d(x∗,T xn(k))

2
]−d(A,B)}. (8)

Using triangular inequality, We have

d (x∗,T x∗)≤ d
(
x∗,xn(k)+1

)
+d

(
xn(k)+1,T xn(k)

)
+d

(
T xn(k),T x∗

)
= d

(
x∗,xn(k)+1

)
+d(A,B)+d

(
T xn(k),T x∗

) (9)

d(x∗,T x∗)−d(x∗,xn(k)+1)−d(A,B)≤ d(T xn(k),T x∗), ∀k.
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Using (7) and (9), we get

d (x∗,T x∗)−d
(
x∗,xn(k)+1

)
−d(A,B)≤ φ

(
MT

(
xn(k),x∗

))
(10)

≤ φ(max{α0d(xn(k),x∗),α1[d(xn(k),T xn(k))−d(A,B)],

α2[d(x∗,T x∗)−d(A,B)],α3[
d(xn(k),T x∗)+d(x∗,T xn(k))

2
]−d(A,B)}).

Assume ρ = d(x∗,T x∗)−d(A,B)> 0. Let us we consider two separate cases as follows. If φ is continuous, as k → ∞, we get
ρ ≤ φ(max{α0d(xn(k),x∗),α1[d(xn(k),xn(k)+1)+d(xn(k)+1,T xn(k))]−d(A,B),

α2[d(x∗,T x∗)−d(A,B)],α3[
d(xn(k),T x∗)−d(A,B)

2 +
d(x∗,T xn(k))−d(A,B)

2 ]})
ρ ≤ φ(max{α2,α3}ρ)≤ φ(βρ)< ρ,
which is contradiction.
If β > max{α2,α3} and we claim also that ρ = 0. Suppose by contradiction that ρ > 0, letting k → ∞ in (8), we get

MT (xn(k),x∗)→ max(α2,α3}ρ.
If there existε > 0 and N > 0, such that for all n > N, we have

MT (xn(k),x∗)< (max{α2,α3}+ ε)ρ (11)

and
β > (max{α2,α3}+ ε),

therefore in equation (10) and (11)
d(x∗,T x∗)−d(x∗,xn(k)+1)−d(A,B)≤ φ(MT (xn(k),x∗))
< φ((max{α2,α3}+ ε)ρ)
< φβ (

max{α2,α3}+ε
β ρ)

< max{α2,α3}+ε
β ρ

< ρ.
Consequently, by letting k → ∞, we get

ρ < max{α2,α3}+ε
β ρ < ρ,

which is contradiction as well.
Hence our claim holds.
Thus, we proved that x∗ is a best proximity point of T, that is d(x∗,T x∗) = d(A,B).

3 Application
Best proximity point for metric spaces endowed with a binary relation.

Before apply our results, we need some preliminaries. Let (X ,d) be a metric space and R be a binary relation over X.
The symmetric relation attached to R.
x,y in X , xRy ⇔ xRy or yRx, Where S = R∪R−1.
Definition 3.1. (6) Let X be a non-empty set. A non-self mapping T : A → B is called β -quasi-contractive if there exist β > 0

and φ ∈ φβ such that
x,y ∈ A : xRy ⇒ d(T x,Ty)≤ φ(MT (x,y))

where MT (x,y) = max
{

α0d(x,y),α1d(x,T x)−d(A,B),α2d(y,Ty)−d(A,B),α3[
d(x,Ty)+d(y,T x)

2 −d(A,B)]
}
,

with αk ≥ 0 for k = 0,1,2,3.
Definition 3.2. (14) A non-self mapping T : A → B is a proximal comparative mapping if xRy and d(u1,T x) = d(u2,Ty) =

d(A,B), ∀x,y,u1,u2 ∈ A then u1Ru2.
Theorem 3.3. Let A and B be non-empty closed subsets of a complete metric space (X ,d) such that A0 is non-empty. Let R

be a binary relation over X. Assume that non-self mapping T : A → B satisfying the following conditions:
(1) T (A0)⊂ B0 and the pair (A,B) satisfies the P-property;
(2) T is a proximal comparative mapping;
(3) There exist elements x0,x1 ∈ A0 such that d(x1,T x0) = d(A,B) and α(x0,x1)≥ 1;
(4) T is continuous on new types of Ciric α −β contraction;
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(5) if {xn} be a sequence in A such that α(xn,xn+1) ≥ 1 and
{

xn(k)
}
of {xn} such that α(xn,xn+1) ≥ 1 for all k(A,d,R) is

regular;
(6) there exist α −β contractive;
(7) φ is continuous, β > max{α2,α3},
then T has a best proximity point x∗ ∈ A such that d(x∗,T x∗) = d(A,B).
Proof. define the α : A×A → [0,∞) by:

α(x,y) =
{

1 i f xRy
0 otherwise

then T is α -admissible.
Assume that α(x,y) ≥ 1, and d(u1,T x) = d(u2,T x) = d(A,B) for some x,y,u1,u2 ∈ A. By the definition of α , we get xSy,

d(u1,T x) = d(u2,Ty) = d(A,B).
Assertion (2) of the theorem implies that u1Ru2, which gives us α(u1,u2)≥ 1.
Assertion (3) if T is α -admissible and d(x1,T x0) = d(A,B).
Assertion (4) T is β -quasi-contractive means that T is new types of Ciric α −β−contractive.
Also the condition (5) hold.
Next in condition (6) A is R-directed implies that the non-self mapping T : A → B is (α,d) is regular.
Now all the condition of theorem 2.2 are satisfied, which implies the existence of best proximity point for the non-self

mapping T.

4 Conclusion

This study adds an improvement to the best proximity point theorems (15,20), for Ciric type G-contraction and generalized
α − β− proximal quasi contractive mappings. This improvement is obtained by introducing new types of Ciric α − β
contraction involving Ciric type G-contraction by the generalization of the generalized α − β−proximal-quasi-contractive
mappings on metric space. We have established application of best proximity point result for the case of non-self mappings on
metric spaces endowed with binary operation.
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