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Abstract
Objectives: To propose suitable inventory system with advance payment in a
fuzzy situation by employing four types of fuzzy numbers that are triangular,
trapezoidal, pentagonal and Hexagonal.Methods:We use the same numerical
data as in Priyan et al. (1) to verify the results obtainedby this research. To obtain
the minimum total cost and the optimum solution, a comparison is made by
employing four types of fuzzy numbers. Two inventory models are proposed
here. Initially, crisp models are developed with fuzzy total inventory cost along
crisp optimal replenishment cycle. Next, the fuzzy model is also formulated
with fuzzy total inventory cost and fuzzy optimal replenishment cycle. Graded
mean integration method is employed to defuzzify the total inventory cost
and the extension of the Lagrangian method is used to determine the optimal
replenishment cycle. Findings: Our results indicate that the optimal solutions
of the fuzzy model slightly fluctuate from the solutions of the crisp model.
Numerical examples have been given in order to show the applicability of
the proposed model. We obtain minimum total cost when we defuzzify
the trapezoidal fuzzy parameters using graded mean integration method.
Novelty: In real-world circumstances, costs might be influenced by a foreign
currency inwhich the expenses are frequently unknown. Instead of a stochastic
environment, the decision-maker in this case is faced with a fuzzy one. This
study is unique in itself as it undertakes to study inventory models with
different fuzzy numbers. The research reveals that the fuzzy model, which has
been defuzzified with the graded mean integration method, shows a proof of
savings of 25% to 40% in the analytical solution compared to the previous
model. Our model helps the decision maker to tackle the uncertainties in
accounting flexibility in the input factors that always fit the real situation.
Keywords: Inventory costs; Advance payment; Fuzzy numbers; Graded mean
integration method; Lagrangian method
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1 Introduction
An advance payment, or simply an advance, is the part of a contractually due sum that is paid or received in advance for goods
or services, while the balance included in the invoice will only follow the delivery. Such payments may be structured into a
contract or offered to address a specific adversity situation. In some cases, the full amount due will be paid in advance, while in
others, part of the money will be offered in advance and the other part will be paid later.

In inventory system, the decision maker should adopt a better trade of judgement for accounting flexibility in the
characteristics of the model in order to tackle the uncertainty which fits to the real situations.Therefore, the practitioner should
be more careful in accounting flexibility in the cost components. In real world, transactions between firms seldom complete
instantaneously. When a seller is powerful and wants to control the risk of the cash flow, he would like the buyer to pay in a
fixed period before the date of delivery. When the payment is paid in advance, the vendor benefits from the cash deposit since
the advance payment from the customer can be taken as an interest-free loan. The buyer’s inventory policies under delayed
payment have been widely addressed. Priyan et al. (1) developed an EOQ inventory model with advance payment policy and
fuzziness in the cost and demand parameters.

Due to the imperfect production plan, products that are damaged can be reworked after the completion of one cycle.
The customers are then given the finest quality products. The enhanced goods entirely satisfy the shortages. Following a
product replenishment and sale under the inventory’s scarcity effect, the company looks at a finite horizon periodic combined
rework and inventory management model. The improved items totally fulfil and allow for shortage. To meet demand, a
multi-shipment policy is used. The researchers have often presumed that the demand is constant. The selling price, existing
population, deterioration, and frequency of advertising all have an impact on demand.Throughout the years, a few researchers
created inventory models that utilised into consideration things like deteriorating goods, items presently in short supply,
various demand patterns and costs, production of specific goods, and combinations of these. Rajeswari et al. (2) assimilated
a two-warehouse economic order quantity (EOQ) model with imperfect products under fuzzy environment. Pattnaik et al. (3)
discussed an inventory model for imperfect items under different fuzzy scenario. Kuppulakshmi et al. (4) proposed a fuzzy
inventory model for imperfect items with price discount and penalty maintenance cost.

Numerous researchers have used fuzzy concepts to address the issues with inventory control. Researchers in production and
inventory management lures substantial consideration to Chen et al.’s (5) graded mean integration representation of generalized
fuzzy numbers. Rahaman et al. (6) made an initiation to develop a fuzzy production inventory model with deterioration under
Marxian approach of socio-political economy. Alsaedi et al. (7) proposed a sustainable green supply chain model with carbon
emissions for defective items under learning in a fuzzy environment. Vasanthi et al. (8) developed an inventory model with
ordering and holding cost as triangular fuzzy number and an imprecise total cost value is estimated by defuzzifying it by
GMImethod. Hemalatha and Annadurai (9,10) developed an optimal inventory model under fuzzy environment by considering
fuzziness in the cost parameters. The article is designed as follows: Section 2 presents the methodology of the model. Results
and discussion are described in Section 3. Finally, the conclusion of the study is summarized in Section 4.

1.1 Research gap and contribution of this model

The key to success in a production-distribution network is making the right decision. Regarding the replenishment decisions
adopted under the advance payment, there have been many contributions. According to the aforementioned research results,
taking system uncertainty into account is essential for ensuring the industrial sector’s financial stability and advance payment.
Most of the researchers applied the signed distance method for defuzzification. The present study fills the research gap by
applying the Graded mean integration method for defuzzification.

The purpose of this problem is to accommodate the more practical aspects of real inventory systems and focuses on cost
minimization. The present study proposed an inventory model with advance payment within the fuzzy framework, thereby
adopting two methodologies in the fuzzy scenario. The Graded mean integration method is employed to defuzzify the total
inventory cost and the extension of the Lagrangian method is used to find the optimal replenishment cycle. The novelty of this
paper is proved by introducing various fuzzy numbers and demonstrating that the EOQ model achieves optimal value in the
fuzzy model. The results suggest that operators should treat the input parameter’s flexibility as a trapezoidal fuzzy number and
Graded mean integration method for defuzzification.

2 Methodology
The methodology of the model includes the preliminary concepts for model building purposes, notations and assumptions
that are used for the formulations of both models. In this research, an EOQ inventory model with advance payment policy
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is described by establishing fuzziness in the cost parameters. The fuzziness in the cost components are represented by
the triangular, trapezoidal, pentagonal and Hexagonal fuzzy numbers. Our main objective is to study the impact of the
impreciseness of cost components in the decision variables and the total cost. Two fuzzy models are developed. In the first
one, crisp models are developed with fuzzy total inventory cost along crisp optimal replenishment cycle T. In the second one,
the fuzzymodel is formulatedwith fuzzy total inventory cost and fuzzy optimal replenishment cycle T. Gradedmean integration
method is employed to defuzzify the total inventory cost and the extension of the Lagrangianmethod is used to find the optimal
replenishment cycle T. Numerical example is carried out to investigate the behaviour of our proposed models, and the results
are compared with those obtained from the crisp model.

2.1 Preliminaries

Let us now describe the pertinent definitions of fuzzy sets as follows.
Definition 1: A fuzzy set Ã on the given universal set X is a set of ordered pairs on the real line R, Ã = {(x,µÃ(x)) : x ∈ X}

is called a membership function. The membership function is also called as degree of compatibility or a degree of truth of X in
Ã which is defined asµÃ : X → [0,1].

Definition 2: Triangular Fuzzy Numbers: Let Ã = (a1,a2,a3),a1 < a2 < a3 be a fuzzy set on R = (−∞,∞). It is called a
triangular fuzzy number, if its membership function is

µã(x) =

 x−a1
a2−a1

, a1 ≤ x ≤ a2
a3−x

a3−a2
, a2 ≤ x ≤ a3

0, otherwise

Definition 3: Trapezoidal Fuzzy Numbers: Let Ã = (a,b,c,d),a < b < c < d, be a fuzzy set on R = (−∞,∞). It is called a
trapezoidal fuzzy number, if its membership function is

µã(x) =


x−a
b−a , a ≤ x ≤ b
1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d
0, otherwise

Definition 4: Pentagonal Fuzzy Numbers: Let Ã = (a,b,c,d,e),a < b < c < d < e, be a fuzzy set on R = (−∞,∞). It is called a
pentagonal fuzzy number, if its membership function is

µã(x) =



x−a
b−a , a ≤ x ≤ b
x−b
c−b , b ≤ x ≤ c
1, x = c

d−x
d−c , c ≤ x ≤ d
d−x
d−c , d ≤ x ≤ e
0, otherwise

Definition 5: Hexagonal Fuzzy Numbers: Let Ã = (a,b,c,d,e, f ),a < b < c < d < e < f , be a fuzzy set on R = (−∞,∞). It is
called a hexagonal fuzzy number, if its membership function is

µã(x) =


x−a

2(b−a) , a ≤ x ≤ b
1
2 +

x−b
c−b , b ≤ x ≤ c

1, c ≤ x ≤ d
1− x−d

2(e−d) , d ≤ x ≤ e
f−x

2( f−c) , e ≤ x ≤ f

2.2 Graded mean integration representation method

Chen and Hsieh (5) introduced Graded mean integration representation method based on the integral value of graded mean h-
level of generalized fuzzy number for defuzzifying generalized fuzzy number. Here, we first describe generalized fuzzy number
as follows:
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Any fuzzy subset of the real lineR, whose membership function satisfies the following conditions, is a generalized fuzzy
number.

1. µÃ(x) is a continuous mapping from R to the closed interval [0,1].
2. µÃ(x) = 0,−∞ ≤ x ≤ a1 .
3. µÃ(x) = L(x) is strictly increasing on [a1,a2].
4. µÃ(x) = wA,a2 ≤ x ≤ a3.
5. µÃ(x)=R(x)is strictly decreasing on[a3,a4].
6. µÃ(x) = 0,a4 ≤ x ≤ ∞ .
where 0 < wA ≤ 1 and a1,a2,a3 and a4 are real numbers. Also, this type of generalized fuzzy number should be denoted

as Ã = (a1,a2,a3,a4;wA)LR When wA = 1, it can be simplified as Ã = (a1,a2,a3,a4)LRSecondly, by Graded mean integration
representation method L−1 and R−1are the inverse functions of Land R respectively, and the graded mean h - level value of
generalized fuzzy number Ã = (a1,a2,a3,a4;wA)LR is h

2 (L
−1(h)+R−1(h)). Then the Graded mean integration representation

of P(Ã) with grade wA is P(Ã) =
∫WA

0
h
2 (L−1(h)+R−1(h))dh∫WA

0 hdh
, where 0 < h ≤ wAand 0 < wA ≤ 1 . In our proposed fuzzy inventory

models, we use four types of fuzzy number as the type of all fuzzy parameters. The Graded mean integration representation of
all the four types of fuzzy numbers for defuzzifying is as follows.

(i)TheGradedmean integration representation of a triangular fuzzy numbers Ã = (a1,a2,a3) is defined as dF Ã = a1+4a2+a3
6

.
(ii) The Graded mean integration representation of a trapezoidal fuzzy numbers Ã = (a,b,c,d) is defined as dF Ã =

a1+2a2+2a3+a4
6 .

(iii) The Graded mean integration representation of a pentagonal fuzzy numbers Ã = (a,b,c,d,e) is defined as dF Ã =
a1+3a2+4a3+3a4+a5

12 .
(iv) The Graded mean integration representation of a hexagonal fuzzy numbers Ã = (a,b,c,d,e, f ) is defined as dF Ã =

a1+3a2+2a3+2a4+3a5+a6
12 .

2.3 Extension of the Lagrangian Method

Taha (11) discussed to solve the optimum solution of nonlinear programming problem with equality constraints by using
Lagrangian Method, and showed the Lagrangian method may be extended to solve inequality constraints. The general idea
of extending the Lagrangian procedure is that if the unconstrained optimum the problem does not satisfy all constraints; the
constrained optimum must occur at a boundary point of the solution space. Suppose that the problem is given by Minimize
y = f (x), subject to gi(x) ≥ 0, i = 1,2,3, .....m. The non-negativity constraints x ≥ 0 if any are included in the m constraints.
Then, the procedure of Extension of the Lagrangian method involves the following steps.

Step 1. Solve the unconstrained problem Minimize y = f (x). If the resulting optimum satisfies all the constraints, stop
because all constraints are redundant. Otherwise, set k = 1 and go to Step 2.

Step 2. Activate any k constraints (i.e., convert them into equality) and optimize f (x) subject to the k active constraints by
the Lagrangianmethod. If the resulting solution is feasible with respect to the remaining constraints, stop; it is a local optimum.
Otherwise, activate another set of k constraint and repeat the step. If all sets of active constraints taken k at a time are considered
without encountering a feasible solution, go to Step 3.

Step 3. If k = m, stop; no feasible solution exists. Otherwise, set k = k+1 and go to Step 2.

2.4 Notations and Assumptions

We adopt the following notations and assumptions which are almost used in Priyan’s (1) model to develop the mathematical
model of the proposed inventory system.

2.4.1 Notations
T time interval between successive orders (decision variable)

D demand rate
AC ordering cost per order
HC unit stock-holding cost per item per unit time excluding interest charges
pC unit purchase cost in $
βd price discount factor for advance payment
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t length of advance payment
Ic interest charges per $ investment in stocks per year
ETC Expected total cost

2.4.2 Assumptions
1. The vendor offers price discount for the buyer if all the payment is paid in advance.

2. Replenishments are instantaneous and the shortages are not allowed
3. Time horizon is infinite

2.5 Crisp EOQ model with advance payment

In this paper the payment term paid by the vendor in advance payment is similar to Priyan et al. (1). In the proposed scenario, the
buyer’s purchasing cost isDT pCβd and incurs an ordering costA at time zero.The inventory level before arrival of a procurement
is zero. The purchase cost has to be financed at interest rate Ic, and the loan interest cost equals DT pCIcβd t

T = DpCIcβdt during
this period. During the stock period, that is, from time t to t +T , the buyer makes payment to the interest- bearing account
immediately after the selling of the goods. As the loan is being paid back, the interest payable is decreasing. On the last day
of stock period, the buyer pays the remaining balance. Hence, the average outstanding amount of the loan is DT pCβd , and
the interest cost is DT 2 pCIcβd

2 from time t to t +T in one cycle. The physical holding cost is the same as that of the traditional
economic order quantity inventory model and is not influenced by the payment terms. The behaviour of inventory for this
model is depicted in Figure 1. Based on the assumptions described above with Figure 1, the buyer’s expected total cost per unit
time can be obtained as Priyan et al. (1) is

ETC =
AC

T
+

DT HC

2
+DpCβdIct +

DpCβdIcT
2

(1)

where AC
T is the ordering cost, DT HC

2 is the holding cost(excluding interest charge), DpCβdIct is the cost of interest charges at
the time of advance payment and DpCβd IcT

2 is the cost of interest charges when the goods are kept in stock.

Fig 1. Time-weighted inventory when all the payment paid inadvance

2.5.1 Solution procedure
We proved the convexity of the buyer’s expected total cost ETC in proposition 1 based on classical differential calculus
optimization technique.

Proposition 1:The expected total cost ETC is a convex function of cycle time T .
The unique optimal replenishment cycle T (denoted by T ∗) can be obtained by setting the first order partial derivatives of

ETC with respect to T to zero, and simplifying, we get

T ∗ =

√
2AC

D(HC + pCβdIC)
(2)
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2.6 Fuzzy EOQ model with advance payment

There are two types of fuzzy models that explored in this section. In the first one, crisp models are developed with fuzzy total
inventory cost along crisp optimal replenishment cycle T . In the second one, the fuzzy model is formulated with fuzzy total
inventory cost and fuzzy optimal replenishment cycle T .

2.7 Fuzzy EOQ model for crisp optimal replenishment cycle T

We consider the crisp model in fuzzy environment. Considering that the cost components, ordering cost AC , holding cost HC
and purchase cost pC are all fuzzy.

2.7.1 Triangular fuzzy number
We represent cost components, AC, HC, and pC by triangular fuzzy number as given below ÃC = (AC1,AC2,AC3), H̃C =
(HC1,HC2,HC3) and p̃C = (pC1, pC2, pC3). Accordingly, when the costs AC, HC, and pCare fuzzified, we can obtain the total
cost function in the fuzzy sense is given by

ET̃C = (ÃC ⊘T )+((D⊗T ⊗ H̃C)⊘2)+(D⊗ p̃C ⊗βd ⊗ Ic ⊗ t)+((D⊗ p̃C ⊗βd ⊗ Ic ⊗T )⊘2) (3)

where ⊕,⊗,⊘ and ⊖ are the fuzzy arithmetical operations under the Function Principle, according to Chen (12). Then we get
the fuzzy total cost by using the Eq. (3) as

ET̃C =

⌈(
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1 βdIcT
2

)
(

AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2 βdIcT
2

)
,

(
AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3 βdIcT
2

)] (4)

Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. The result is

d(ET̃C) =

1
6

[(
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
+4

(
AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)
+

(
AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)]
.

(5)

Then a unique minimum of optimal replenishment cycle T ∗ is obtained by equating the first order partial derivates of d(ET̃C)
with respect to T to zero, and simplifying further, we obtain

T ∗ =

√
2(AC1 +4AC2 +AC3)

D((HC1 +4HC2 +HC3)+((pC1 +4pC2 + pC3)βdIC)
(6)

2.7.2 Trapezoidal fuzzy number
We represent cost components, AC, HC, and pC by trapezoidal fuzzy number as given below ÃC = (AC1,AC2,AC3,AC4),
H̃C = (HC1,HC2,HC3,HC4) and p̃C = (pC1, pC2, pC3, pC4). Accordingly, when the costs AC, HC, and pC are fuzzified, we can
obtain the total cost function in the fuzzy sense is given by

ET̃C =

((
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
,

(
AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)
,

((
AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)
,

(
AC4

T
+

DT HC4

2
+DpC4βdIct +

DpC4βdIcT
2

)]
. (7)
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Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. The result is

d(ET̃C) =
1
6

((
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
+2

(
AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)

+2
((

AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)
+

(
AC4

T
+

DT HC4

2
+DpC4βdIct +

DpC4βdIcT
2

)]
. (8)

Then a unique minimum of optimal replenishment cycle T ∗ is obtained by equating the first order partial derivates of d(ET̃C)
with respect to T to zero.

We obtain

T ∗ =

√
2(AC1 +2AC2 +2AC3 +AC4)

D((HC1 +2HC2 +2HC3 +HC4)+((pC1 +2pC2 +2pC3 + pC4)βdIC)
(9)

2.7.3 Pentagonal fuzzy number
We represent cost components AC, HC, and pC by pentagonal fuzzy number as given belowÃC = (AC1,AC2,AC3,AC4,AC5),
H̃C = (HC1,HC2,HC3,HC4,HC5) and p̃C = (pC1, pC2, pC3, pC4, pC5). Accordingly, when the costs AC, HC, and pC are fuzzified,
we can obtain the total cost function in the fuzzy sense is given by

ET̃C =[(
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
,(

AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)
,(

AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)
,(

AC4

T
+

DT HC4

2
+DpC4βdIct +

DpC4βdIcT
2

)
(

AC5

T
+

DT HC5

2
+DpC5βdIct +

DpC5βdIcT
2

)]
.

(10)

Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. The result is

d(ET̃C) =

1
12

[(
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
+3

(
AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)
+4

(
AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)
+3

(
AC4

T
+

DT HC4

2
+DpC4βdIct +

DpC4βdIcT
2

)
+

(
AC5

T
+

DT HC5

2
+DpC5βdIct +

DpC5βdIcT
2

)]
.

(11)

Then a unique minimum of optimal replenishment cycle T ∗ is obtained by equating the first order partial derivates of d(ET̃C)
with respect to T to zero.

We obtain

T ∗ =

√
2(AC1 +3AC2 +4AC3 +3AC4 +AC5)

D((HC1 +3HC2 +4HC3 +3HC4 +HC5)+((pC1 +3pC2 +4pC3 +3pC4 + pC5)βdIC)
(12)
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2.7.4 Hexagonal fuzzy number
We represent cost components, AC, HC, and pC by hexagonal fuzzy number as given below. Ã = (A1,A2,A3,A4,A5,A6) ,
h̃ = (h1,h2,h3,h4,h5,h6) and p̃ = (p1, p2, p3, p4, p5, p6). Accordingly, when the costs AC, HC, and pC are fuzzified, we can
obtain the total cost function in the fuzzy sense is given by

ET̃C =

((
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
,

(
AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)
,

(
AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)
,

(
AC4

T
+

DT HC4

2
+DpC4βdIct +

DpC4βdIcT
2

)
((

AC5

T
+

DT HC5

2
+DpC5βdIct +

DpC5βdIcT
2

)
,

(
AC6

T
+

DT HC6

2
+DpC6βdIct +

DpC6βdIcT
2

)]
. (13)

Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. The result is

d(ET̃C) =

1
12

[(
AC1

T
+

DT HC1

2
+DpC1βdIct +

DpC1βdIcT
2

)
+3

(
AC2

T
+

DT HC2

2
+DpC2βdIct +

DpC2βdIcT
2

)
+2

(
AC3

T
+

DT HC3

2
+DpC3βdIct +

DpC3βdIcT
2

)
+2

(
AC4

T
+

DT HC4

2
+DpC4βdIct +

DpC4βdIcT
2

)
+3

(
AC5

T
+

DT HC5

2
+DpC5βdIct +

DpC5βdIcT
2

)
+

(
AC6

T
+

DT HC6

2
+DpC6βdIct +

DpC6βdIcT
2

)]
.

(14)

Then a unique minimum of optimal replenishment cycle T ∗ is obtained by equating the first order partial derivates of d(ET̃C)
with respect to T to zero. We obtain

T ∗ =

√
2(AC1 +3AC2 +2AC3 +2AC4 +3AC5 +AC6)

D((HC1 +3HC2 +2HC3 +2HC4 +3HC5 +HC6)+((pC1 +3pC2 +2pC3 +2pC4 +3pC5 + pC6)βdIc)
. (15)

2.8 Fuzzy EOQ model for fuzzy optimal replenishment cycle T

In this case we consider that the fuzzy EOQmodel by changing the crisp replenishment cycle T into fuzzy replenishment cycle
T . We represent the cost components AC, HC, and pC and the replenishment cycle T by the triangular, trapezoidal, pentagonal
and Hexagonal fuzzy numbers.

2.8.1 Case 1: Triangular fuzzy number
We represent cost components AC, HC, and pC and the replenishment cycle T by the triangular fuzzy number given below.

ÃC = (AC1,AC2,AC3), H̃C = (HC1,HC2,HC3) and p̃C = (pC1, pC2, pC3) and T̃ = (T1,T2,T3). Accordingly, when the costs
AC, HC, pC and Tare fuzzified, we obtain the total cost function in the fuzzy sense given by

ET̃C =

((
AC1

T3
+

DT1HC1

2
+DpC1βdIct +

DpC1βdIcT1

2

)
,

(
AC2

T2
+

DT2HC2

2
+DpC2βdIct +

DpC2βdIcT2

2

)
,(

AC3

T1
+

DT3HC3

2
+DpC3βdIct +

DpC3βdIcT3

2

)
(16)
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Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. Then we have

d(ET̃C) =
1
6

((
AC1

T3
+

DT1HC1

2
+DpC1βdIct +

DpC1βdIcT1

2

)
+4

(
AC2

T2
+

DT2HC2

2
+DpC2βdIct +

DpC2βdIcT2

2

)

+

((
AC3

T1
+

DT3HC3

2
+DpC3βdIct +

DpC3βdIcT3

2

)]
(17)

with 0 ≤ T1 ≤ T2 ≤ T3. It will not change the meaning of the Eq. (17), if we replace inequality conditions 0 ≤ T1 ≤ T2 ≤ T3 into
the inequality constraints T3 −T2 ≥ 0, T2 −T1 ≥ 0 and T1 > 0. In the following steps, extension of the Lagrangian method is
used to find the solutions of T1,T2and T3 to minimize the defuzzified fuzzy total cost d(ET̃C) subject to T3−T2 ≥ 0, T2−T1 ≥ 0
and T1 ≥ 0 in Eq. (17).

Step 1: Solve the unconstraint problem. Then a unique minimum of d(ET̃C) is obtained by equating the first order partial
derivatives of d(ET̃C) with respect to T1,T2and T3 to zero. We obtain T1 =

√
2AC3

D(HC1+pC1βd Ic)
,T2 =

√
2(4AC2)

D(4HC2+4pC2βd Ic)
and

T3 =
√

2AC1
D(HC3+pC3βd Ic)

.
The above results show that T1 > T2 > T3and it does not satisfy the constraint 0 ≤ T1 ≤ T2 ≤ T3.
Therefore, set k = 1 and go to step 2.
Step 2: Convert the inequality constraint T2 −T1 ≥ 0 into equality constraint T2 −T1 = 0. We optimize d(ET̃C) subject to

T2 −T1 = 0 by the Lagrangian method. The Lagrangian function is L(T1,T2,T3,λ ) = d(ET̃C)−λ (T2 −T1).
Then a unique minimum of L(T1,T2,T3,λ ) is obtained by equating the first order partial derivatives of L(T1,T2,T3,λ ) with

respect to T1,T2, T3 and λ to zero. We obtain
T1 = T2 =

√
2(AC3+4AC2)

D((HC1+4HC2)+(pC1βd Ic+4pC2βd Ic))
and T3 =

√
2AC1

D(HC3+pC3βd Ic)
.

Thus, the results show that T1 > T3 does not satisfy the constraint 0 ≤ T1 ≤ T2 ≤ T3 . Therefore, set k = 2 and go to step 3.
Step 3: Convert the inequality constraint T2 − T1 ≥ 0 and T3 − T2 ≥ 0 into equality constraint T2 − T1 = 0, T3 − T2 =

0. We optimize d(ET̃C) subject to T2 − T1 = 0 and T3 − T2 = 0by the Lagrangian method. The Lagrangian function is
L(T1,T2,T3,λ1,λ2) = d(ET̃C)−λ1(T2 −T1)−λ2(T3 −T2).

Then a unique minimum of L(T1,T2,T3,λ1,λ2) is obtained by equating the first order partial derivatives of
L(T1,T2,T3,λ1,λ2) with respect to T1,T2,T3,λ1 and λ2 to zero.

We obtain T ∗ = T1 = T2 = T3 =
√

2(AC1+4AC2+AC3)
D((HC1+4HC2+HC3)+(pC1+4pC2+pC3)βd Ic)

.

Case 2: Trapezoidal fuzzy number
We represent cost components AC, HC, and pC and the replenishment cycle T by the trapezoidal fuzzy number as given below

ÃC = (AC1,AC2,AC3,AC4), H̃C = (HC1,HC2,HC3,HC4), p̃C = (pC1, pC2, pC3, pC4) and T̃ = (T1,T2,T3,T4). Accordingly,
when the costs AC, HC, and pC and Tare fuzzified, we obtain the total cost function in the fuzzy sense given by

ET̃C =

[(
AC1

T4
+

DT1HC1

2
+DpC1βdIct +

DpC1 βdICT1

2

)
,

(
AC2

T3
+

DT2HC2

2
+DpC2 βdIct +

DpC2 βdIcT2

2

)
,(

AC3

T2
+

DT3HC3

2
+DpC3βdIct +

Dp3βdICT3

2

)
,

(
AC4

T1
+

DT4HC4

2
+DpC4βdIct +

DpC4 βdIcT4

2

)]
.

(18)

Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. Then, we have

d(ET̃C) =
1
6

[(
AC1

T4
+

DT1HC1

2
+DpC1βdIct +

DpC1 βdIcT1

2

)
+2

(
AC2

T3
+

DT2HC2

2
+DpC2 βdIct +

DpC2 βdICT2

2

)
+2

(
AC3

T2
+

DT3HC3

2
+DpC3 βdIct +

DpC3 βdIcT3

2

)
+

(
AC4

T1
+

DT4HC4

2
+DpC4 βdIct +

DpC4 βdICT4

2

)] (19)

with 0 ≤ T1 ≤ T2 ≤ T3 ≤ T4. It will not change the meaning of the Eq. (19), if we replace inequality conditions 0 ≤ T1 ≤ T2 ≤
T3 ≤ T4 into the inequality constraints T4−T3 ≥ 0, T3−T2 ≥ 0, T2−T1 ≥ 0 and T1 > 0.The extension of the Lagrangianmethod
is used to find the solutions of T1,T2,T3and T4. By adopting the Lagrangian method to find the solutions of T1,T2,T3and T4as
in the case 1. We have

T ∗ = T1 = T2 = T3 = T4 =
√

2(AC1+2AC2+2AC3+AC4)
D((HC1+2HC2+2HC3+HC4)+(pC1+2pC2+2pC3+pC4)βd Ic)
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2.8.3 Case 3: Pentagonal fuzzy number
We represent cost components, AC, HC, pC and the replenishment cycle T by the pentagonal fuzzy number as given below.

ÃC =(AC1,AC2,AC3,AC4,AC5), H̃C =(HC1,HC2,HC3,HC4,HC5), p̃C =(pC1, pC2, pC3, pC4, pC5) and T̃ =(T1,T2,T3,T4,T5).
Accordingly, when the costs AC, HC, pC and Tare fuzzified, we obtain the total cost function in the fuzzy sense given by

ET̃C =[(
AC1

Ts
+

DT1HC1

2
+DpC1βdIct +

DpC1βdIcT1

2

)
,

(
AC2

T4
+

DT2HC2

2
+DpC2βdIct +

DpC2βdIcT2

2

)
,(

AC3

T3
+

DT3HC3

2
+DpC3βdIct +

DpC3βdIcT3

2

)
,

(
AC4

T2
+

DT4HC4

2
+DpC4βdIct +

DpC4βdIcT4

2

)
(

ACS

T1
+

DTsHCS

2
+DpCSβdIct +

DpCSβdIcTs

2

)]
(20)

Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. Then we have

d(E ˜TC) =
1
12

[(
Ac

T3
+

DT1HC

2
+DpaβdIct +

DpCβdIcT1

2

)
+3

(
Ac

T4
+

DT2HC2

2
+Dpc2βdIct +

DpC2βdIcT2

2

)
+4

(
AC

T3
+

DT3HC3

2
+DpC3βdIct +

DpC3βdIcT3

2

)
+3

(
Ac4

T2
+

DT4HC4

2
+DpC4βdIct +

DpC4βdiIcT4

2

)
+

(
AS

T1
+

DTsHC

2
+DpCSβdIct +

DpCSβiIcTs

2

)] (21)

with 0 ≤ T1 ≤ T2 ≤ T3 ≤ T4 ≤ T5. It will not change the meaning of the Eq. (21), if we replace inequality conditions
0 ≤ T1 ≤ T2 ≤ T3 ≤ T4 ≤ T5 into the inequality constraints T5 − T4 ≥ 0, T4 − T3 ≥ 0, T3 − T2 ≥ 0, T2 − T1 ≥ 0 and T1 > 0.
The extension of the Lagrangian method is used to find the solutions of T1,T2,T3,T4 and T5as in the case 1. we obtain

T ∗ = T1 = T2 = T3 = T4 = T5 =
√

2(AC5+3AC4+4AC3+3AC2+AC1)
D((HC1+3HC2+4HC3+3HC4+HC5)+(pC1+3pC2+4pC3+3pC4+pC5)βd Ic)

.

2.8.4 Case 4: Hexagonal fuzzy number
We represent cost components, AC, HC, pC and the replenishment cycle T by the hexagonal fuzzy number as given below:

ÃC = (AC1,AC2,AC3,AC4,AC5,AC6), H̃C = (HC1,HC2,HC3,HC4,HC5,HC6), p̃C = (pC1, pC2, pC3, pC4, pC5, pC6) and T̃ =
(T1,T2,T3,T4,T5,T6). Accordingly, when the costs AC, HC, pC and Tare fuzzified, we obtain the total cost function in the fuzzy
sense given by

ET̃C =[(
AC1

T6
+

DT1HC1

2
+DpC1βdIct +

DpC1βdIcT1

2

)
,

(
AC2

Ts
+

DT2HC2

2
+DpC2βdIct +

DpC2βdIcT2

2

)
(

AC3

T4
+

DT3HC3

2
+DpC3βdIct +

DpC3βdIcT3

2

)
,

(
Ac4

T3
+

DT4HC4

2
+DpC4βdIct +

DpC4βdIcT4

2

)
(

AC3

T2
+

DTsHCS

2
+DpCSβdIct +

DpCSβdIcT3

2

)
,

(
AC6

T1
+

DT6HC6

2
+DpC6βdIct +

DpC6βdIcT6

2

)]
(22)

Next, we defuzzify the fuzzy total cost by Graded mean integration representation method. Then we have

d(ET̃C) =
1

12

[(
AC1

T6
+

DT1HC1

2
+DpC1βdIct +

DpC1 βdIcT1

2

)
+3

(
AC2

T5
+

DT2HC2

2
+DpC2 βdIct +

DpC2 βdIcT2

2

)
+2

(
AC3

T4
+

DT3HC3

2
+DpC3 βdICt +

DpC3βdIcT3

2

)
+2

(
AC4

T3
+

DT4HC4

2
+DpC4βdIct +

DpC4 βdIcT4

2

)
+3

(
AC5

T2
+

DT5HC5

2
+DpC5 βdIct +

DpC5 βdIcT5

2

)
+

(
AC6

T1
+

DT6HC6

2
+DpC6 βdIct +

DpC6 βdIcT6

2

)] (23)
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with 0 ≤ T1 ≤ T2 ≤ T3 ≤ T4 ≤ T5 ≤ T6. It will not change the meaning of the Eq. (23), if we replace inequality conditions
0 ≤ T1 ≤ T2 ≤ T3 ≤ T4 ≤ T5 ≤ T6 into the inequality constraints T6 −T5 ≥ 0, T5 −T4 ≥ 0, T4 −T3 ≥ 0, T3 −T2 ≥ 0, T2 −T1 ≥ 0
and T1 > 0. The extension of the Lagrangian method is used to find the solutions of T1,T2,T3,T4,T5and T6 as in the case 1.Then
we have

T ∗ = T1 = T2 = T3 = T4 = T5 = T6 =
√

2(AC6+3AC5+2AC4+2AC3+3AC2+AC1)
D((HC1+3HC2+2HC3+2HC4+3HC5+HC6)+(pC1+3pC2+2pC3+2pC4+3pC5+pC6)βd Ic)

.

3 Results and Discussion

3.1 Numerical analysis

Numerical analysis is given to illustrate the above solution procedure for both crisp and fuzzymodel.We use the same numerical
data as in Priyan et al. (1) to verify the results obtained by this paper. AC=30, D=400, t=0.1, HC=20, pC=25, βd=0.9, and
IC =0.2. Based on these values the the optimal replenishment cycle T ∗ and the expected total cost ETC for the crisp model are
summarized in Table 1 .We set some triangular, trapezoidal, pentagonal and Hexagonal fuzzy numbers of the input parameters
(AC,HC, and pC) in Tables 2, 3, 4 and 5, to represent the components of fuzzymodels. For each of these parameters, the variations
in the values are arranged arbitrary and their defuzzified values are determined by applying the Graded mean integration
method. Based on these values the the optimal replenishment cycle T ∗ and the expected total cost ET̃C for the fuzzy model
along with crisp model are summarized in Table 6. The corresponding curves of the minimum expected total cost against T ∗

are plotted in Figure 2 as well.

Table 1. The input parameter for the Crisp model
AC D t HC pC βd Ic

52.5 700 0.1 35 43.75 0.9 0.2
45 600 0.1 30 37.5 0.9 0.2
37.5 500 0.1 25 31.25 0.9 0.2
30 400 0.1 20 25 0.9 0.2
22.5 300 0.1 15 18.75 0.9 0.2
15 200 0.1 10 12.5 0.9 0.2
7.5 100 0.1 5 6.25 0.9 0.2

Table 2. Fuzzy triangular values for the input parameter AC , HC and pC

ÃC dF ÃC H̃C dF H̃C p̃C dF p̃C

(47.5, 52.5, 57.5) 52.5 (30,35, 40) 35 (38.75, 43.75, 48.75) 43.75
(40, 45, 50) 45 (25, 30, 35) 30 (32.5, 37.5, 42.5) 37.5
(32.5, 37.5, 42.5) 37.5 (20, 25, 30) 25 (26.25, 31.25, 36.25) 31.25
(25, 30, 35) 30 (15, 20, 25) 20 (20, 25, 30) 25
(17.5, 22.5, 27.5) 22.5 (10, 15, 20) 15 (13.75, 18.75, 23.75) 18.75
(10, 15, 20) 15 (5, 10, 15) 10 (7.5, 12.5, 17.5) 12.5
(2.5, 7.5, 12.5) 7.5 (1, 5, 9) 5 (1.25, 6.25, 11.25) 6.25

Table 3. Fuzzy trapezoidal values for the input parameter AC , HC and pC

ÃC dF ÃC H̃C dF H̃C p̃C dF p̃C

(50.5, 52.5, 52.5, 54.5) 52.5 (30, 35, 35, 40) 35 (41.75, 43.75, 43.75, 45.75) 43.75
(40, 45, 45, 50) 45 (25, 30, 30,35) 30 (35.5, 37.5, 37.5, 39.5) 37.5
(35.5, 37.5, 37.5, 39.5) 37.5 (20, 25, 25, 30) 25 (30.25, 31.25, 31.25, 32.25) 31.25
(25, 30, 30, 35) 30 (15, 20, 20, 25) 20 (20, 25, 25, 30) 25
(20.5, 22.5, 22.5, 24.5) 22.5 (10, 15, 15, 20) 15 (15.75, 18.75, 18.75, 21.75) 18.75
(10, 15, 15, 20) 15 (5, 10, 10, 15) 10 (10.5, 12.5, 12.5, 14.5) 12.5
(5.5, 7.5, 7.5, 9.5) 7.5 (2, 5, 5, 8) 5 (4.25, 6.25, 6.25, 8.25) 6.25
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Table 4. Fuzzy pentagonal values for the input parameter AC , HC and pC

ÃC dF ÃC H̃C dF H̃C p̃C dF p̃C

(42.5, 47.5, 52.5, 57.5,
62.5)

52.5 (25, 30, 35, 40, 45) 35 (33.75, 38.75, 43.75, 48.75,
53.75)

43.75

(35, 40, 45, 50, 55) 45 (20, 25, 30, 35, 40) 30 (27.5, 32.5, 37.5, 42.5, 47.5) 37.5
(27.5, 32.5, 37,.5, 42.5,
47.5)

37.5 (15, 20, 25, 30, 35) 25 (21.25, 26.25, 31.25, 36.25,
41.25)

31.25

(20, 25, 30, 35, 40) 30 (10, 15, 20,25, 30) 20 (15, 20, 25, 30, 35) 25
(12.5, 17.5, 22.5, 27.5,
32.5)

22.5 (5, 10, 15, 20, 25) 15 (8.75, 13.75, 18.75, 23.75,
28.75)

18.75

(5, 10, 15, 20, 25) 15 (4, 7, 10, 13, 16) 10 (2.5, 7.5, 12.5, 17.5, 22.5) 12.5
(3.5, 5.5, 7.5, 9.5, 11.5) 7.5 (1, 3, 5, 7, 9) 5 (2.25, 4.25, 6.25, 8.25, 10.25) 6.25

Table 5. Fuzzy Hexagonal values for the input parameter AC , HC and pC

ÃC dF ÃC H̃C dF H̃C p̃C dF p̃C

(27.5, 42.5, 52.5, 57.5,
62.5, 67.5)

52.5 (10, 25, 35, 40, 45, 50) 35 (18.75, 33.75, 43.75, 48.75,
53.75, 58.75)

43.75

(20, 35, 45, 50, 55, 60) 45 (5, 20, 30, 35, 40, 45) 30 (12.5, 27.5, 37.5, 42.5, 47.5,
52.5)

37.5

(12.5, 27.5, 37.5, 42.5,
47.5, 52.5)

37.5 (2, 15, 25, 30, 35, 38) 25 (6.25, 21.25, 31.25, 36.25,
41.25, 46.25)

31.25

(5, 20, 30, 35, 40, 45) 30 (6, 10, 20, 24, 28, 32) 20 (6, 13, 25, 30, 35, 40) 25
(2.5, 12.5, 22.5, 27.5, 31.5,
35.5)

22.5 (3, 8, 15, 18, 21, 24) 15 (3.75, 10.75, 18.75, 21.75,
25.75, 30.75)

18.75

(2, 5, 15, 18, 23, 28) 15 (1, 7, 10, 12, 13, 15) 10 (2.5, 4.5, 12.5, 16.5, 18.5, 20.5) 12.5
(1.5, 3.5, 7.5, 9.5, 10.5,
12.5)

7.5 (2, 2, 5, 6, 7, 9) 5 (1.25, 4.25, 6.25, 7.25, 8.25,
9.25)

6.25

Table 6. Comparison of crisp and fuzzy model
Crisp Triangular Trapezoidal Pentagonal Hexagonal
T ∗ ETC T ∗ ET̃C T ∗ ET̃C T ∗ ET̃C T ∗ ET̃C
0.0591 2326.44 0.0591 2322.42 0.0591 2053.58 0.0591 2312.26 0.0591 2260.55
0.0639 1813.72 0.0639 1809.37 0.0639 1595.81 0.0639 1798.34 0.0639 1738.69
0.0700 1352.90 0.0700 1348.12 0.0700 1188.83 0.0700 1335.93 0.0700 1270.05
0.0782 946.81 0.0782 941.44 0.0782 826.61 0.0782 927.59 0.0782 875.41
0.0904 599.31 0.0904 593.05 0.0904 522.49 0.0904 576.39 0.0904 542.48
0.1107 316.11 0.1107 308.21 0.1107 270.04 0.1107 297.79 0.1107 277.45
0.1565 107.10 0.1565 96.75 0.1565 91.36 0.1565 100.50 0.1565 95.92

Table 7. Comparison study on trapezoidal fuzzy parameters
Trapezoidal input parameters Priyan et al. (1) model Our model
dF ÃC dF H̃C dF p̃C T ∗ ET̃C T ∗ ET̃C % savings
18 12 16 0.0778 578.1 0.0786 347.55 40
24 16 21 0.0779 767.5 0.0779 517.21 33
36 24 29 0.0785 1126.2 0.0797 842.22 25
42 28 34 0.0785 1315.5 0.0781 939.73 29
60 40 45 0.0790 1843.5 0.0788 1329.40 28

https://www.indjst.org/ 2087

https://www.indjst.org/


Hemalatha & Annadurai / Indian Journal of Science and Technology 2023;16(27):2076–2089

Fig 2. Summary of optimal solution

3.2 Comparison

A comparative study of the proposed model with that of optimal replenishment cycle T ∗ and the expected total cost ET̃C for
the fuzzy model are shown in Table 6. Our results indicate that the optimal solutions of the fuzzy model slightly fluctuate from
the solutions of the crisp model (see Table 6). Hence, the research reveals that in all the models, the decision variables and the
expected total cost are sensitive to the level of fuzziness in the cost components. From the Table 6 we observe that out of all the
fuzzy numbers, trapezoidal fuzzy number (case 2) gives the optimum solution.

The procedures followed in the fuzzy inventory model (case 2) for trapezoidal fuzzy numbers by taking the same data as
in Priyan et al. (1)model for the input parameters is considered. Also, compared with the previous model and the results are
tabulated in Table 7. In Priyan et al. (1)model, they found the optimal replenishment cycle by classical differential calculus
optimization technique and total cost by using signed distance method for defuzzification. In the proposed fuzzy model (by
case 2), we use Graded mean integration method to defuzzify the fuzzy total cost and obtain an estimate of the total cost in the
fuzzy sense. Extension of the Lagrangian method is used to find the optimal replenishment cycle T of the model. From this an
efficient result for the proposed fuzzy model is attained.

The results in the numerical examples indicate that savings of the total cost are realized through trapezoidal fuzzy number.
Furthermore, we optimize replenishment cycle T of the model by adopting Extension of the Lagrangian method and Graded
mean integrationmethod to defuzzify the fuzzy total cost and obtain an estimate of theminimum total cost in the fuzzy sense. It
is observed that uncertain cost parameters give 25% to 40% of the savings in the total cost respectively. One of the repercussions
of this convergence is that if the fuzziness in the cost components is trapezoidal fuzzy number, then the total relevant cost could
be automatically improved. Among the four cases, trapezoidal fuzzy number is more matched to real life supply chains that
could be seen bymade a comparison with the previous model. By computing the proposedmodels, specifically, from the results
of numerical examples, we observe that a significant amount of savings can be easily achieved. Also, it shows that Graded mean
integration method to defuzzify the fuzzy total cost when there is an option of improving the system, it is advisable to apply the
method for defuzzification.

4 Conclusion
InChina’s steel industry, large steel factories request advance payments, specifically from small clients. In real world applications,
the input cost and other parameters in the EOQ inventory problem may not be known precisely or it may be uncertain due
to some uncontrollable factors. Hence, approximate solution methodologies have been illustrated for the solution of a class
of realistic inventory problems. The selection decisions are complex, as decision making is more challenging nowadays. If the
uncertainty is insignificant, it may be possible to use some classical inventory formula. Fuzzy methodologies provide a useful
way to model vagueness in human recognition and judgment. Moreover, fuzzy numbers are largely applied on data analysis,
artificial intelligence, and decision making.
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This work approaches the Graded mean integration method for defuzzification with various fuzzy numbers. To the best of
our knowledge, none of the previous researchers considered inventorymodelwith advance payment and various fuzzy numbers.
An overarching theme of the proposed model is to enable the estimation of the minimum total cost in the fuzzy sense.

The purpose of this model is to provide an EOQ inventory model with advance payment to achieve minimum total cost
under fuzzy environment. The fuzziness in the cost components are represented by the triangular, trapezoidal, pentagonal and
Hexagonal fuzzy numbers. we use Graded mean integration method to defuzzify the fuzzy total cost and obtain an estimate
of the total cost in the fuzzy sense. Extension of the Lagrangian method is used to find the optimal replenishment cycle of the
model. Numerical example is provided to ascertain the sensitiveness of fuzziness in the components. The analytical solution of
the fuzzy model that has been defuzzified with the graded mean integration method shows a proof of savings 25% to 40% in
the analytical solution compared to the solution of the Priyan et al. (1) model.

There are several extensions of this work that could constitute future research related to this field. One immediate probable
extension could be to discuss the effect of shortage. Another possible extension of this work may be conducted by considering
the supplier’s provision of a permissible delay in payments in this integrated inventory model.
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