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Abstract
Objectives: To propose a new class of bi-univalent function based on
Bazilevic Sakaguchi function using the trigonometric polynomials Tn

(
q,eiθ)and

to find the Taylor – Maclaurin coefficient inequalities and Fekete – Szego
inequality for upper bounds. Methods: The Chebychev’s polynomial has vast
applications in GFT. The powerful tool called convolution (Or Hadamard
product), subordination techniques are used in designing the new class.
In establishing the core results, derivative tests, triangle inequality and
appropriate results that are existing are used. Findings:The trigonometric
polynomials are applied and a class of Bi-univalent functions Pa,b,c

Σ (λ ,τ,q,θ)
involving Bazilevic Sakaguchi function is derived. More over, the maximum
bounds for initial coefficients and Fekete-Szego functional for the underlying
class are computed. This finding opens the door to young researchers to move
further with successive coefficient estimates and related research. Novelty:In
recent days, several studies on Chebyshev’s polynomial are revolving around
univalent function classes among researchers. But in this article a significant
amount of interplay between Chebyshev’s polynomial and Bazilevic Sakaguchi
function associated with Bi-univalent functions is clearly established.
Keywords: Bistarlike functions; Bi-Starlike Functions; Bi-Univalent Functions;
Sakaguchi Type Functions; Subordination; Trigonometric Polynomials

1 Introduction
Let A represent the family of functions f that are analytic in the open unit disk ∆ =
(z ∈C : (z|< 1} of the form:

f (z) = z+∑∞
k=2 ρkzk (1)

For h(z) ∈ A, given by

h(z) = z+∑∞
k=2 hkzk

Let S mean the subclass of A consisting of univalent functions in∆. It is well known
(refer (1,2)) that every function of f ∈ S virtually possesses an inverse of f, defined by
f−1[ f (z)] = z,(z ∈ ∆) and f [ f−1(w)] = w,((w|< r0( f );r0( f )≥ 1

4 ), where

f−1(w) = w−ρ2w2 +(2ρ2
2 −ρ3)w3 − (5ρ3

2 −5ρ2ρ3 +ρ4)w4 + ....... (2)
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When the function f ∈ A is bi-univalent, both f and f−1are univalent in∆. Let ∑ be the class of bi-univalent functions in ∆
given by (1). In fact, Feras Yousef et al. (2) have revived the study of analytic and bi-univalent functions in recent years. Many
researchers investigated and propounded various subclasses of bi-univalent functions and fixed the initial coefficients (ρ2|and
(ρ3| (3–6)

For analytic functions f and g, f is said to be subordinate to g, denoted f (z) ≺ g(z), if there is an analytic function w such
that w(0) = 0,(w(z)|< 1 and f (z) = g(w(z)).

A function f ∈ S is said to be Bazilevic function if it satisfies (see (7) ):
ℜ
(

z1−λ f ′(z)
( f (z))1−λ

)
> 0, (z ∈ ∆,λ ≥ 0)

This class of the function was denoted by Bλ . Consequently whenλ = 0, the class of starlike function is obtained.
In recently, P.Lokesh et al (8) investigated the inequalities of coefficient for certain classes of Sakaguchi type functions that

satisfy geometrical condition as

R

(
(s− t)z( f

′
(z)

f (sz)− f (tz)

)
> α (3)

for complex numbers s, t but s ̸= t and α (0≤ α < 1) .
The convolution or Hadamard product of two functions f ,g ∈ Ais defined by f ∗gand is defined by
( f ∗g)(z) = z+∑∞

n=2 ρnδnzn.
where f is given by (1) and g(z) = z+∑∞

n=2 δnzn.
Let R = (−∞,∞)be the set of real numbers.C be the complex numbers and

N := {1,2,3, ...}= N0/(0}

be the set of positive integers. Let ∆ = (z ∈C : (z|< 1} be open unit disc in C. A well known, the trigonometric polynomials
Tn
(
q,eiθ) are expressed by the generating function

ξq

(
eiθ ,z

)
=

1
(1− zeiθ )(1−qze−iθ )

= ∑∞
n=0 Tn

(
q,eiθ)zn,(q ∈ (−1,1) ,θ ∈ (−π,π] ,z ∈ ∆).

where

Tn

(
q,eiθ

)
=

ei(n+1)θ −qn+1e−i(n+1)θ

eiθ −qe−iθ (n ≥ 2)

with

T0

(
q,eiθ

)
= 1,T1

(
q,eiθ

)
= eiθ +qe−iθ ,T2

(
q,eiθ

)
= e2iθ +q2e−2iθ +q....

The obtained results for q = 1give the corresponding ones for Chebyshev polynomials of the second kind. The classical
Chebyshev polynomials which are used in this paper, have been in the late eighteenth century, when was defined using de
Moivre’s formula by Chebyshev(refer (9)). Such polynomials as (for example) the Fibonacci polynomials, the Lucas polynomials,
the Pell polynomials and the families of orthogonal polynomials and other special polynomials as well as their generalizations
are potentially important in the fields of probability, statistics, mechanics and number theory (10–14)

2 Methodology

In the present work, the convolution operator Ia,b,cdue to Hohlov (refer (15,16), which is special case of the Rajavadivelu
Themangani et al (refer (17)) is recalled.

For the complex parameters a,b & c(c ̸= 0,−1,−2, ....) the Gaussian hyper geometric function 2F1 (a,b,c : z) is defined as

2F1 (a,b,c : z) = ∑∞
n=0

(a)n(b)n
(c)n

zn

n!
= 1+∑∞

n=2

(a)n−1(b)n−1

(c)n−1

zn−1

(n−1)!
(z ∈ ∆) .
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where (a)nis the Pochhammer symbol (or the shifted factorial) given by

(a)n :=
Γ(a+ k)

Γ(a)
=

(
1,n = 0

a(a+1)(a+2) ...(a+n−1) ,n ∈ N := {1,2, ...}

Now, let us consider a linear operator introduced by Isra Al-shbeil et al (refer (18)) and

Ia,b,c : A → A.

defined by the Hadamard productIa,b,c f (z) = (z2F1 (a,b,c : z))∗ f (z).
It is observed that, for a function fof the form (1),

Ia,b,c f (z) = z+∑∞
n=2 Ψnρnzn,(z ∈ ∆) .

where Ψn =
(a)n−1(b)n−1
(c)n−1(n−1)! .

In this paper, a new class of bi-univalent function based onBazilevic Sakaguchi function using the trigonometric polynomials
Tn
(
q,eiθ) is established. Furthermore, the coefficient bounds and Fekete – Szego inequalities are also derived for this class.
Definition 1 : For 0 ≤ λ < 1,(τ| ≤ 1,τ ̸= 1,q ∈ (−1,1) ,θ ∈ (−π,π], a function f ∈ Σ given by (1) is said to be in the class

Pa,b,c
Σ (λ ,τ,q,θ)if it satisfies the following conditions,

((1− τ)z)1−λ (Ia,b,c f (z)
)′(

Ia,b,c f (z)− Ia,b,c f (τz)
)1−λ ≺ φq

(
eiθ ,z

)
,(z ∈ ∆) (4)

((1− τ)z)1−λ (Ia,b,cg(w)
)′(

Ia,b,cg(w)− Ia,b,cg(τw)
)1−λ ≺ φq

(
eiθ ,w

)
,(w ∈ ∆) (5)

where the function g = f−1.
By taking the parameters λ = 0 and τ = 0, which was introduced by Sahsene Altinkaya et al (refer (19)).

3 Result and Discussion
In this section, we obtain the extension of Chebyshev polynomial bounds(ρ2| and (ρ3|for the function of the
class Pa,b,c

Σ (λ ,τ,q,θ).
Theorem 1 Let the function f given by (1) be in the class Pa,b,c

Σ (λ ,τ,q,θ).
Then

|ρ2| ≤
∣∣eiθ +qe−iθ ∣∣√2 |eiθ +qe−iθ |√√√√√2

 e2i θ +q2e−2i θ +2q
)(

3− (1−λ )
(
1+ τ + τ2

))
Ψ3

−
( (

e2i θ +q2e−2i θ +2q
)
(1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))

+2
(
e2i θ +q2e−2i θ +q

)
(2− (1−λ )(1+ τ))2

)
Ψ2

2
|

(6)

and

(ρ3| ≤
(
eiθ +qe−iθ ∣∣

(3− (1−λ )(1+ τ + τ2))Ψ3
+

(
e2iθ +q2e−2iθ +2q

∣∣
(2− (1−λ )(1+ τ))2Ψ2

2

, (7)

Proof. Since f ∈ Pa,b,c
Σ (λ ,τ,q,θ), there is two analytic functions ϕ ,χsuch that

ϕ (0) = 0,(ϕ (z)|=
(
r1z+ r2z2 + r3z3 + ...

∣∣< 1,(z ∈ ∆)

χ (0) = 0,(χ (w)|=
(
s1w+ s2w2 + s3w3 + ...

∣∣< 1,(w ∈ ∆)
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We can express as

((1− τ)z)1−λ (Ia,b,c f (z)
)′(

Ia,b,c f (z)− Ia,b,c f (τz)
)1−λ = 1+T1

(
q,eiθ

)
ϕ (z)+T2

(
q,eiθ

)
ϕ 2 (z)+ ...

and

((1− τ)w)1−λ (Ia,b,cg(w)
)′(

Ia,b,cg(w)− Ia,b,cg(τw)
)1−λ = 1+T1

(
q,eiθ

)
χ (w)+T2

(
q,eiθ

)
χ2 (w)+ ...

or, equivalently,

((1− τ)z)1−λ (ℑa,b,c f (z)
)′(

ℑa,b,c f (z)−Ia,b,c f (τz)
)1−λ = 1+T1

(
q,eiθ

)
r1z+

(
T1

(
q,eiθ

)
r2 +T2

(
q,eiθ

)
r2

1

)
z2 + . . . (8)

and

((1− τ)w)1−λ (Ia,b,cg(w)
)′(

Ia,b,cg(w)− Ia,b,cg(τw)
)1−λ = 1+T1

(
q,eiθ

)
s1w+

(
T1

(
q,eiθ

)
s2 +T2

(
q,eiθ

)
s2

1

)
w2 + ... (9)

It is well known that

|ri| ≤ 1 and |si| ≤ 1,(∀i ∈ N) (10)

From the equations (8) and (9), we obtain

(2− (1−λ )(1+ τ))Ψ2ρ2 = T1
(
q,eiθ)r1 (11)

(
3− (1−λ )

(
1+ τ + τ2))Ψ3ρ3 −

(1−λ )(1+ τ)
2

(2(1− τ)+λ (1+ τ))Ψ2
2ρ2

2

= T1

(
q,eiθ

)
r2 +T2

(
q,eiθ

)
r2

1

(12)

−(2− (1−λ )(1+ τ))Ψ2ρ2 = T1
(
q,eiθ)s1 (13) 2

(
3− (1−λ )

(
1+ τ + τ2

))
Ψ3

− (1−λ )(1+ τ)
2

(2(1− τ)+λ (1+ τ))Ψ2
2

ρ2
2 −
(
3− (1−λ )

(
1+ τ + τ2))Ψ3ρ3

= T1

(
q,eiθ

)
s2 +T2

(
q,eiθ

)
s2

1

(14)

From the equations (11) and (13), we easily find

r1 =−s1 (15)

2(2− (1−λ )(1+ τ))2Ψ2
2ρ2

2 = T 2
1
(
q,eiθ)(r2

1 + s2
1
)
, (16)

Summing the equations (12) and (14), we get

(
2
(
3− (1−λ )

(
1+ τ + τ2))Ψ3 − (1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))Ψ2

2
)

ρ2
2

= T1

(
q,eiθ

)
(r2 + s2)+T2

(
q,eiθ

)(
r2

1 + s2
1
) (17)
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By substituting the values of
(
r2

1 + s2
1
)
from (16) in the right side of (17), we get 2

(
3− (1−λ )

(
1+ τ + τ2

))
Ψ3 − (1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))Ψ2

2

− 2(2−(1−λ )(1+τ))2Ψ2
2T2(q,eiθ )

T 2
1 (q,eiθ )

= T1
(
q,eiθ)(r2 + s2) ,

ρ2
2

which yields

ρ2
2 =

T 3
1
(
q,eiθ)(r2 + s2) T 2

1
(
q,eiθ)( 2

(
3− (1−λ )

(
1+ τ + τ2

))
Ψ3

−(1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))Ψ2
2

)
−2(2− (1−λ )(1+ τ))2Ψ2

2T2
(
q,eiθ)

 (18)

By subtracting the equation (14) from equation (12), we find

2
(
3− (1−λ )

(
1+ τ + τ2))Ψ3ρ3 −2

(
3− (1−λ )

(
1+ τ + τ2))Ψ3ρ2

2

= T1

(
q,eiθ

)
(r2 − s2)

(19)

In view of equation (16), the equation (19) becomes

ρ3 =
T1
(
q,eiθ)(r2 − s2)

2(3− (1−λ )(1+ τ + τ2))Ψ3
+

T 2
1
(
q,eiθ)(r2

1 + s2
1
)

2(2− (1−λ )(1+ τ))2Ψ2
2

By applying equation (10), we can easily obtain the desired inequalities in Theorem 1.
Taking the parameters λ = 0and τ = 0in the Theorem 1, we get the following remark.
Remark 1 If f ∈ Pa,b,c

Σ (q,θ), then

(ρ2| ≤
(eiθ+qe−iθ |

√
(eiθ+qe−iθ |√

(2(e2iθ+q2e−2iθ+2q)Ψ3−(2e2iθ+2q2e−2iθ+3q)Ψ2
2|
,

and

(ρ3| ≤
(
eiθ +qe−iθ ∣∣

2Ψ3
+

(
e2iθ +q2e−2iθ +2q

∣∣
Ψ2

2
.

which was investigated by Sahsene Altinkaya et al (19).
Fekete – Szego inequality for the function classPa,b,c

Σ (λ ,τ,q,θ)
In this section, we provide Fekete – Szego inequalities for function in the class Pa,b,c

Σ (λ ,τ,q,θ). This inequality is given in
the following theorem.

Theorem 2 For µ ∈ Rthe function f ∈ Pa,b,c
Σ (λ ,τ,µ ,q,θ).

∣∣ρ3 −µρ2
2
∣∣≤


|eiθ+qe−iθ |
(3−(1−λ )(1+τ+τ2))Ψ3

, |µ −1| ≤ γ
2|1−µ||e2i θ+q2e−2i θ+2q∥eiθ+qe−iθ |

2(e2i θ+q2e−2i θ+2q)(3−(1−λ )(1+τ+τ2)Ψ3

−
( (

e2i θ +q2e−2i θ +2q
)
(1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))

+2
(
e2i θ +q2e−2i θ +q

)
(2− (1−λ )(1+ τ))2

)
Ψ2

2

|, |µ −1 |≥ γ

whereγ =


2
(
e2i θ +q2e−2i θ +2q

)(
3− (1−λ )

(
1+ τ + τ2

))
Ψ3

−
( (

e2i θ +q2e−2i θ +2q
)
(1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))

+2
(
e2i θ +q2e−2i θ +q

)
(2− (1−λ )(1+ τ))2

)
Ψ2

2


2(e2i θ +q2e−2i θ +2q)(3− (1−λ )(1+ τ + τ2))Ψ3

.

Proof. From the equation (18) and the equation (19), we observe that

ρ3 −µρ2
2 =

T1
(
q,eiθ)(r2 − s2)

2(3− (1−λ )(1+ τ + τ2))Ψ3
+

(1−µ)T 3
1
(
q,eiθ)(r2 + s2) T 2

1
(
q,eiθ)( 2

(
3− (1−λ )

(
1+ τ + τ2

))
Ψ3

−(1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))Ψ2
2

)
−2(2− (1−λ )(1+ τ))2Ψ2

2T2
(
q,eiθ)


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= T1

(
q,eiθ

)
(

ζ (µ)+ 1
2(3−(1−λ )(1+τ+τ2))Ψ3

)
r2

+

(
ζ (µ)− 1

2(3−(1−λ )(1+τ+τ2))Ψ3

)
s2


whereζ (µ) =

(1−µ)T 2
1
(
q,eiθ) T 2

1
(
q,eiθ)( 2

(
3− (1−λ )

(
1+ τ + τ2

))
Ψ3

−(1−λ )(1+ τ)(2(1− τ)+λ (1+ τ))Ψ2
2

)
−2(2− (1−λ )(1+ τ))2Ψ2

2T2
(
q,eiθ)


Then, in view of equation (10), we get

∣∣ρ3 −µρ2
2
∣∣≤


|T1(q,eiθ )|
(3−(1−λ )(1+τ+τ2))Ψ3

,0 ≤ |ζ (µ)| ≤ 1
(3−(1−λ )(1+τ+τ2))Ψ3

2|ζ (µ)|
∣∣T1
(
q,eiθ)∣∣ , |ζ (µ)| ≥ 1

(3−(1−λ )(1+τ+τ2))Ψ3

This evidently completes the proof of Theorem 2.
Taking the parameters λ = 0and τ = 0, in Theorem 2,
Remark 2 For µ ∈ R, let the function f ∈ Pa,b,c

Σ (µ,q,θ). Then∣∣ρ3 −µρ2
2
∣∣

≤


|eiθ+qe−iθ |

2Ψ3
, |µ −1| ≤ 2(e2i θ+q2e−2i θ+2q)Ψ3−(2e2i θ+2q2e−2i θ+3q)Ψ2

2
2(e2i θ+q2e−2i θ+2q)Ψ3

|1−µ||e2i θ+q2e−2i θ+2q∥eiθ+qe−iθ |
|2(e2i θ+q2e−2i θ+2q)Ψ3−(2e2i θ+2q2e−2i θ+3q)Ψ2

2|
,

|µ −1| ≥ 2(e2i θ+q2e−2i θ+2q)Ψ3−(2e2i θ+2q2e−2i θ+3q)Ψ2
2

2(e2i θ+q2e−2i θ+2q)Ψ3

4 Conclusion
In the present investigation, a new class of bi univalent function based on Bazilevic Sakaguchi function using the trigonometric
polynomials Tn

(
q,eiθ) is obtained in the open unit disc. Furthermore, belonging to this class, the Taylor –Maclaurin coefficient

inequalities and the well knownFekete – Szego inequalities are also derived. These findings can further be improved by finding
sharpness.Moreover, HankelDeterminants andToeplitz determinants for various integral orders can be computed in the future.
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