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Abstract
Objectives: Introduction to new numerical techniques to solve differential,
difference, and integro-differential equations (IDEs) are always remaining
the thrust area of research for many scientists over the centuries. The
prime objective of this work is to contribute a new numerical technique
to solve IDEs. Method: To address non-linear integro-differential equations,
we computed an operational matrix of derivatives based on the Hosoya
polynomial of the path graph in this work. Findings: Using the derived
operational matrix, we have solved both Volterra and Fredholm integro-
differential equations. Taking suitable examples accuracy of the projected
method is demonstrated in this paper in terms of a graphical representation
of the absolute error. The results of the examples reveal that the projected
method is a suitable method to solve IDEs. Novelty: The application of the
Hosoya polynomial of path graph to solve integro-differential equations is a
novel approach in the field of numerical analysis.
Keywords: Volterra Integrodifferential equations; Fredhlom
Integrodifferential equations; Graph theorypolynomials

1 Introduction
In this paper, we have introduced a novel numerical technique to solve integro-
differential equations by computing an operationalmatrix using theHosoya polynomial
of the path graph. Integrals and derivatives are fundamental calculus methods that
have a wide range of uses in science and engineering. Many scholars are focusing
on designing computational schemes for discovering solutions to different problems
including derivatives and integrals. Many systems in science and engineering are
governed by differential, integral, and integro-differential equations. In the fields of
dispersive waves, ocean circulations, and electromagnetic theory, integro-differential
equations play a major role. Integro-differential equations also play a crucial role in
characterizing physical, biological, and social problems. Polymer rheology, a variety
of models of population growth, compartmental systems, mathematical modeling of
discrete particle diffusion in a turbulent fluid, aeroelastic phenomena, unsteady
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aerodynamics, and nuclear reactors are only a few of the applications. For example, Volterra looked at population development,
concentrating his studies on genetic influences, and as a result, the analysis of integro-differential equations that appear naturally
in the simulation of advanced scientific problems has gotten a lot of interest.

Integro-differential equations can be used in Ecology as well. Indeed, optimal search theory suggests that predators can
use long leaps to locate prey that is scattered and dispersed randomly, with Brownian motion being more effective only when
prey is abundant. Because of its numerous applications in domains like biochemistry, electrical engineering (Communications
networks and coding theory), computer science (algorithms and computations), and operations research, graph theory is
quickly becoming a mainstream topic in mathematics (scheduling). The adoption of the Hosoya polynomial method is the
most recent method which provides a mathematical formulation in the field of science and engineering. Jalilian (1) adopted the
exponential spline function to solve Fredholm integro-differential equations of the second kind. To acquire the approximate
solutions of a mixed Volterra-Fredholm integro-differential equation (2), Hamoud and colleagues discussed the Adomian
decomposition approach andmodified decompositionmethod. To determine the analytical solution to the linear and nonlinear
FIDE and VIDE, A. S. Khan (3) has used a variation of parameter techniques. Numerous academics have recently worked
on integro-differential equations and achieved superior results (4–11). The study of integral and IDEs, which contain two
different types of integral operators, was the main emphasis of Hamoud and Ghadle (12).They compared and contrasted various
approaches to numerically solve the integral and integro-differential equations of Volterra and Fredholm using various kernels.
As a result, none of the methods provide a solution with 100% accuracy. To resolve FIDEs, Hamoud et al. (13) suggest a modified
variational iteration method.This study offers an analytical approximation to ascertain how the solution will behave. To resolve
the fuzzy integro-differential equations,Hamoud andGhadle (14) used theAdomian decompositionmethod,modifiedAdomian
decomposition method, variational iteration approach, and Homotopy perturbation method. The Hosoya polynomial of a
graph was introduced in Hosoya’s seminal paperback in 1988 and received a lot of attention afterward. The polynomial was
later independently introduced and considered by Sagan et al. under the name Wiener polynomial of a graph. The Hosoya
polynomial’s key benefit is its depth of knowledge on distance-based graph invariants. For instance, it is simple to determine
the renowned Wiener index of a graph by knowing the Hosoya polynomial of the graph, which is the first derivative of the
polynomial at point 1. Benzenoid graphs (15), tori, armchair open-ended nanotubes, zigzag polyhexnanotorus, and Fibonacci
and Lucas cubes are some of the graphs theoretical concepts used by the researchers to solve differential, integral, and integro-
differential equations.

1.1 Properties of Hosoya Polynomial
A simple graph is a pair G = (υ ,E), where υ is a set of element s called vertices, and E is a set of elements called edges. Let
u,ν ∈ υ . The verticesU and ν are said to be adjacent if there is an edge betweenU and ν ,i.e.,(U,ν) ∈ E . A subset x of vertices
is called independent if the vertices in X are pairwise non-adjacent. Let υ be the vertices of G. The path pn is a graph with n
vertices where υi is adjacent to υi+1, i = 1,2, . . . ,n−1. The length of a path is the number of edges in it. A graph G is said to be
connected if every pair of points of G is joined by some path. The distance between the vertices υi and υ j in G is equal to the
length of the shortest path joining them and is denoted by d(υi,υ j). For more details about the graph theory one can refer the
book (16). The Hosoya Polynomial of a graph G is given by

H(G,x) = ∑k≥0 d(G,xk),

where d(G,xk) is the number of pairs of vertices in the graph G that are distance k apart.
The Hosoya polynomial of a path graph Pn is:
H(Pn,x) = n+(n−1)x+(n−2)x2 + · · ·+[n− (n−2)]xn−2 +[n− (n−1)]xn−1.
In particular

H(P1,x) = 1,
H(P2,x) = x+2,
H(P3,x) = x2 +2x+3.

The prime objective of this paper is strategy to use the Hosoya polynomial method for the numerical solution of non-linear
IDEs with Volterra and Fredholm type equations of the form

∑n
i=0 piu(i) (x) = f (x)+λ

∫ ι(x)
φ(x) k (x, t)g((u(t)])dtu(p) (a) = up, p = 0,1,2, . . . ,(n−1) , (1)

where λ is constant, g([u(t)]), p(x) and K(x, t) are given functions, whereas u(x) is to be determined.

2 Function Approximation
If u(x) is a square integrable function in R, then w(x)may be approximated in terms of Hosoya polynomial graph as
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u(x) = ∑∞
j=0 e jH(K j j;x)

. If we use only first (m+1) terms of the Hosoya polynomial of path graph, then we have
u(x) = ∑m

j=0 e jH(K j j;x) = ET ψ(x)
where the Hosoya polynomial co-efficient vector E and Hosoya polynomial vector ψ(x) are given by

ET = [e0,e1, ...,em]

ψ (x) = (H(K00;x),H(K11;x), . . .H(Kmm;x)]T (2)

3 Hosoya polynomial method for IDEs
We Know that

H(Pn,x) = (x+1)n−1 +1,
H(P1,x) = 1,
H(P2,x) = x+2,
x =−2+H(P2,x),
x =−2H(P1,x)+H(P2,x),
H(P3,x) = x2 +2x+3,
x2 = H(P3,x)−2x−3,
x2 = H(P1,x)−2H(P2,x)+H(P3,x),
H(P4,x) = x3 +2x2 +3x+4,
x3 = H(P4,x)− (2x2 +3x+4),
x3 = H(P2,x)−2H(P3,x)+H(P4,x).

Similarly,
x4 = H(P3,x)−2H(P4,x)+H(P5,x),
x5 = H(P4,x)−2H(P5,x)+H(P6,x),
x6 = H(P5,x)−2H(P6,x)+H(P7,x).

In general

xn = H(Pn−1,x)−2H(Pn,x)+H(Pn+1,x), n = 2,3,4, . . . (3)

The derivative of Hosoya polynomial of path graph is
D(H(P1,x)) = 0,

D(H(P2,x)) = 1,

= H (P1,x) ,

= (1,0,0, . . .0]ψ (x) ,
D(H(P3,x)) = 2x+2,

= 2(H (P1,x)−2)+2,

=−2(H(P1,x))+2(H(P2,x)),

= [−2,2,0, . . . ,0]ψ(x),

D(H(P4,x)) = 3x2 +4x+3,

=−2H(P1,x)−2H(P2,x)+3H(P3,x),
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= [−2,−2,3,0, . . . ,0]ψ(x).

Similarly,
D(H(Pn.n,x)) = 2n(1+ x)n−1,
= [n,0,0, . . . . . .n,0]ψ(x).

The first derivative of the vector ψ(x) for m = 6 can be written as:

d
dx ψ(x) =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
−2 2 0 0 0 0 0
−2 −2 3 0 0 0 0
−2 −2 −2 4 0 0 0
−2 −2 −2 −2 5 0 0
−2 −2 −2 −2 −2 6 0


ψ(x)

In general, we may write first derivative of the vector ψ(x) as

d
dx

ψ(x) = D(1)ψ(x), (4)

where D(1) = (di j) is the Hosoya polynomial operational matrix of derivatives of order
(m+1)× (m+1) and

di j =

 0, f or 1 ≤ j ≤ i−2,
0, f or i ≤ 2,
−2, f or i ≤ n− j.

By using relation (7) it is clear that dnψ(x)
dxn = (D(1))nψ (x) .Where n ∈ N.

4 Use of Hosoya polynomial method for handling IDEs
Consider the non-linear IDEs (1) subject to the suitable initial conditions.We approximate u(x) as in the section (4). Also, from
the initial condition we get

ET D(p)Ψ(x0) = up. (5)

Therefore, the residual R(x) of equation (1) is given by:
R(x) = ∑ piET D(i)ψ(x)− f (x)−λ

∫ b
a k(x, t)g(ET ψ(t))dt.

The application of the Hosoya polynomial method requires that R(x) must vanish at certain collocation points. We select
the collocation points as: 2i

m+1 , i = 1,2, ..m−n. Therefore

R(
2i

m+1
) = 0, i = 1,2, ...,m−n. (6)

Equations (6) with Equation (5) generate a system of linear or nonlinear equations in the unknown expansion coefficients ei of
dimension (m+1). Applying Newton’s iterative method, we can solve this system of equations.

5 Results and Discussions
The analysis of the Hosoya polynomial technique is demonstrated in this part by using the method to solve the non-linear
integro-differential problems.

Example 1 First we consider the integro-differential equation

u
′
(x) =−u(x)+

1
2
(e−2 −1)+

∫ 1

0
[u(t)]2dt,, u(0) = 0. (7)

The exact solution is u(x) = e−x.
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Solution: Using the proposed method on equation (1), we get

ET Dψ(x) =−ET ψ(x)+
1
2
(e−2 −1)+

∫ 1

0
[ET ψ (t)]

2
dt, (8)

with ET ψ(0) = 1. For m = 3, collocating the points 2i
m+1 , for i = 1,2,3 we obtain the system of equations as

−
(

a1 +
11a2

5
+

86a3

25
+

586a4

125

)2

+a1 +
16a2

5
+

36a3

25
+

1626a4

125
+

11
5
(2a3 −2a4)+

1
2

(
1− 1

e2

)
,

−
(

a1 +
12a2

5
+

99a3

25
+

698a4

125

)2

+a1 +
17a2

5
+

49a3

25
+

1933a4

125
+

12
5
(2a3 −2a4)+

1
2

(
1− 1

e2

)
,

−
(

a1 +
13a2

5
+

114a3

25
+

842a4

125

)2

+a1 +
18a2

5
+

64a3

25
+

2302a4

125
+

13
5
(2a3 −2a4)+

1
2

(
1− 1

e2

)
.

and from initial condition

a1 +2a2 +3a3 +4a4 = 1. (9)

Solving the above system of equations and equation (9), we get
a0 = 3.46135,
a1 =−2.05187,
a2 = 0.697457,
a3 =−0.112493.

This yields the numerical solution as
u1(x) =−0.112493x3 +0.472471x2 −0.994439x+1.

For m = 6, we get the solution

u2 (x) = 0.000847432x6 −0.00762689x5 +0.041161x4 −0.16646x3 +0.499953x2 −0.999994x+1 .

The results of the proposed method for Example (1) are exhibited in Table 1 with 2 choices of m.The authors of (14) computed
the solutions to Example 1 and found absolute errors of 8.12× 10−4and 2.11× 10−4for m = 5 and m = 9 respectively. The
current technique, however, yields a maximum absolute error of 3.2×10−7 for m = 6 (Figure 1). This shows that the current
strategy is effective for solving IDEs.

Fig 1.The absolute error for Example 1 for m = 6

Example 2 Consider the non-linear Fredhlom integro-differential equation, as follows
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u
′
(x) = 1− 1

3 x3 +
∫ 1

0 x3(u(t))2dt, u(0) = 0.
The exact solution is u(x) = x.
The numerical solution is given as

u1(x) =−1.324206093356754x3 ×10−15 +1.3600418403042467x2 ×10−15 + x

+6.719955987530877×10−17.
For m = 6, we get the solution

u2(x) =−1.0609361884974525x6 ×10−14 +4.248372556965464x5 ×10−14

−6.029568457781779x4 ×10−14 +3.92990039050865x3 ×10−14

−1.2034181439836931x2 ×10−14 + x−1.2553598836768822×10−16.
To measure the accuracy of the studied approach, the absolute errors are presented Figure 1 for m=6.
In (14), the authors have computed the solution of Example 2 and obtained absolute error 3.26× 10−6 and 2.44×10−4 for

m=5 and m=9 respectively. Whereas the present method gives maximum absolute error as 3×10−16 for m=6 (Figure 2). This
indicates that present method is reliable to solve IDE.

Fig 2.The absolute error for Example 2 for m = 6

Example 3 Consider the nonlinear Volterra integro-differential equation∫ x
0 (x− t)u2(t)dt +

∫ x
0 (x− t)u

′′
(t)dt = 3

4 x2 + 1
2 cos2x− 1

32 cos4x− 15
32 u(0) = 2, u

′
(0) = 0.

The exact solution is
u(x) = 1+ cos2x.
For m = 3, The numerical solution is given as

u1(x) = 0.388509x3 −2.05098x2 +2.
For m = 6, we get the solution

u2 (x) = 2−1.33227×10−15x−1.99991x2−0.00141409x3+0.674391x4− 0.0184099x5−0.0715553x6.
The results in Table 1 shows the numerical solutions are in a very good agreement with the exact solution. It is obvious that

in order to get the same accuracy, our method is easy implementation.

Table 1. Approximate and exact solutions for Example 3
x Exact HPM with m=3 HPM with m=6
0 2 2 2
0.1 1.9800 1.9798 1.9800
0.2 1.9210 1.9210 1.9210
0.3 1.8253 1.8259 1.8253
0.4 1.6967 1.6967 1.6967
0.5 1.5403 1.5358 1.5403
0.6 1.3623 1.3455 1.3623
0.7 1.1699 1.1282 1.1699

Continued on next page
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Table 1 continued
0.8 0.9708 0.8862 0.9707
0.9 0.7727 0.6219 0.7726
1 0.5838 0.3375 0.5831

Example 4 Consider the non-linear Volterra integro-differential equation, as follows∫ x
0 (x− t)u2(t)dt +

∫ x
0 e(x−t)u

′
(t)dt =− 9

4 −
5
2 x+ 1

2 x2 +2ex + 1
4 e2x + xex, u(0) = 2.

The exact solution is u(x) = 1+ ex.
The numerical solution for m = 3 is given as

u1(x) = 0.225321x3 +0.477784x2 +1.00237x+2.

For m = 6, we get the solution

u2(x) = 0.00213916x6 +0.00737859x5 +0.0422561x4 +0.166478x3 +0.500029x2 +0.999998x+2.

To measure the accuracy of the studied approach, the absolute errors are presented in Figure 3 for m = 6.

Fig 3.The absolute error for Example 4 for m = 6

Example 5 Consider the nonlinear Volterra integro-differential equation

u
′
(x)−u(x)+2

∫ x

0
sinx(u(t))2dt = cosx+(1− x)sinx+ cosx sin2x, u(0) = 0.

The exact solution is u(x) = sinx.
The numerical solution is given as

u1(x) = 2.22045×10−16 +1.00211x−0.00950606x2 −0.153177x3.
For m = 6, we get the solution

u2(x) = 2.77556×10−17 +1.00001x−0.0000646591x2 −0.166385x3 −0.000677485x4

+0.00925267x5 −0.000660979x6.
From Figure 4 it is observed that Hosoya polynomial method gives satisfactory accuracy even for lower value of m(m = 6).
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Fig 4.The absolute error for Example 5 for m = 6

6 Conclusion
Using the Hosoya polynomial of the path graph an operational matrix of the derivative has been derived in this paper. This
technique is a novel way to deal with IDEs. Applying the operational matrix, we have obtained the numerical solution of IDEs
in both Volterra and Fredhlom sense by considering five examples. The results obtained for the solutions of these examples are
presented either in tabular form or with graphical representation. The projected absolute errors reveal that the current method
gives higher accuracy even for smaller values of m as compared to the available literature. Solutions obtained in this paper
suggest that Hosoya polynomial-based operational matrix method is easy to implement and can be used as an efficient method
to solve IDEs. As a future direction of study, we can consider other graph theory polynomials to solve IDEs.
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