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Abstract
Objective: Gingivobuccal cancer is a subtype of oral cancer, prevalent in
developing countries where the use of tobacco and Areca (betel) nut is
rampant. This study aims to search through the publically available NCBI data
to find comparisons between the normal and cancer-affected transcripts of
RNA, which are molecules that copied the genetic information from DNA and
that will be “read” as instructions to produce othermolecules in the body. Using
bioinformatic tools, we analyzed the variations in the transcripts and examined
how they were correlated with other molecular processes in the body. We
specifically investigated the role of “long noncoding RNAs (lncRNAs)” because
it is speculated that they play an active role in the causality of cancer. Our
analysis found a correlation of CTA-384D8.35 lncRNAwith gingivobuccal cancer
after analyzing the Hazard Ratio using the Cox Proportional-Hazard Model
and is expected to pave the way for future studies. Methods: In this study,
transcriptomic analysis was performed on a publicly available gingivobuccal
cancer dataset obtained from NCBI. We developed a novel method for
identification of annotated lncRNAs, which helped us select and correlate
the lncRNA transcripts with the gingivobuccal cancer disease. Furthermore,
the results were validated using the GEPIA2 tool for integrated analysis of
co-lncRNA and GEPIA databases. Findings: From 24 RNA-Seq samples (12
normal samples and 12 tumor samples), a total of 16,065 potential lncRNA
transcripts were recognized. From these 16,065 lncRNA transcripts, 1201
lncRNA transcripts were further filtered out based on a threshold adjusted
p value of <0.01. We were able to for the first time identify these 1201
lncRNA transcripts, which were not annotated for gingivobuccal squamous cell
carcinoma previously. Integrated analysis of co-lncRNA and GEPIA databases
revealed that a total of 11 lncRNAswere upregulated, whereas 29 lncRNAswere
downregulated. Furthermore, CTA-384D8.35 showed a significant correlation
with disease-free survival time in HNSC. CTA-384D8.35 which is downregulated
in gingivobuccal cancer has been correlated with tumor stage, metastasis,
cancer status, clinical stage, and grade. Novelty: In this report we are for
the first time correlating the CTA-384D8.35 lncRNA with the gingivobuccal
cancer disease with the help of statistical and survival analysis. Furthermore,
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1201 lncRNA transcripts, which have previously not been annotated for
gingivobuccal squamous cell carcinoma, were identified in this study based on
a threshold adjusted p value of <0.01. Finally we have also introduced a novel
method of identifying annotated lncRNAs in a disease aswell as improved upon
the NGS data analysis pipeline by determining the strandness of the raw RNA-
Seq data. Differential expression of lncRNAs could possibly play a significant
role in carcinogenesis. Therefore the identification of lncRNAs gains priority,
which are speculated to play a role in the mechanism and formation of various
forms of cancer. For identification and analysis of lncRNAs, a comparison
of their expression in normal and affected tissues is likely to confirm their
involvement in the disease or the lack thereof. The introduction of a novel
methodology along with the identification of CTA-384D8.35 lncRNA paves the
way for further analysis pertaining to lncRNAs as prognostic or diagnostic
biomarkers. Since CTA-384D8.35 lncRNA has previously been correlated with
a number of cancer hallmarks, it gains significant traction to be considered as
an important aspect in the biomarker identification pertaining to gingivobuccal
cancer. This study has reported for the first time the lncRNAs that are prevalent
in gingivobuccal squamous cell carcinoma.
Keywords: Gingivobuccal cancer; lncRNA; oral cancer; epigenetics; NGS data
analysis

1 Introduction
Long noncoding RNAs (lncRNAs) play a significant role in cancer, as evidenced
by numerous reports over the years (1). They are essential transcriptional and post-
transcriptional regulators that mediate gene expression at multiple levels. Cancers
are caused by genetic alterations and often originate from aberrant gene expression.
Oral cancer, which is associated with tissues in the mouth and throat, is a subtype
of a larger group of cancers known as head and neck cancer. Although there are
various forms of oral cancer, approximately 90% of the oral cancers are classified as
squamous cell carcinomas because the mouth and throat are lined almost entirely with
squamous cells (2,3). Gingivobuccal complex cancer is a type of oral squamous cell cancer
and has been reported to be the most common form of oral cancer in India among
men and is quite predominant in countries where tobacco use is rampant. Only few
studies have been performed on lncRNA expression profiling related to gingivobuccal
cancer (4). Thus, there is a need to properly identify and validate the expression of
lncRNA in the gingivobuccal complex. Despite the presence of glaring evidence for
lncRNA playing a critical role in the biological processes of human diseases, very few
efforts have been made to identify their association with gingivobuccal cancer and
assess their prognostic (2,5). Furthermore the interest in the identification of lncRNA
signatures in Gingivobuccal Squamous Cell Carcinoma (GBSCC) stems from the idea
of identification of non-invasive biomarkers present in the saliva for early detection of
oral cancer (6,7).

Recently the research on the implication of lncRNAs on cancer epidemiology has
gained significant traction. This is due to the fact that lncRNAs, which were earlier
considered as junk data has now been proven to have epigenetic implications in the
mechanistic properties of cancer. There has been several research regarding coding
genes and their implications in the tissues and cell lines (8,9). However, studies pertaining
to lncRNAs specifically impacting gingivobuccal cancer has been extremely rare and
dated. A majority of the studies reporting the non-coding RNAs have used the dated
hg19 reference genome for their alignment. Whereas the stable latest version of
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the reference genome available to us is the hg38. As a result for this study we have used the hg38 reference genome as well as
the latest iteration of the annotated lncRNAs from various databases like NONCODE and LNCipedia were used to construct
the GTF file.

Cancer biomarker identification based on lncRNAs is a relatively new research area. The genesis of next generation
sequencing (NGS) data analysis coupled with the renewed interest of noncoding genes has bought forth the idea of narrowing
down and concentrating on specific noncoding signature genes for potential biomarker identification. Li et al (5) recently
identified 6 novel lncRNA biomarkers in oral cancer using statistical methodologies. TSPEAR-AS2 is another lncRNA which
was recently identified as a novel prognostic biomarker for OSCC. It was also reported to behave as a competing endogenous
RNA (ceRNA) by sponging the miR-487a-3p (10). Therefore, constant identification of lncRNAs via in silico methods are being
performed in a bid to reduce the amount of targets which requires attention and further studies.

In this study, we have for the first time identified and correlated the CTA-384D8.35 lncRNA with gingivobuccal oral
squamous cell carcinoma, which is a relatively novel lncRNA seen to be prevalent in only clear cell renal cell carcinoma (11).
We have also improved upon the existing data analysis pipeline with a more efficient approach for the detection of annotated
non-coding RNAs from raw FASTA data files. The methodology adopted is seen to reduce the time as well as increase the
accuracy of the data obtained when compared with other identification pipelines.

2 Methodology

Fig 1. Graphical representation of the computational pipeline performed here

2.1 Data Collection

For this study, as mentioned in the workflow diagram (Figure 1), the NCBI database for gingivobuccal cancer datasets was
scoured and those datasets that suited our criteria of having normal and tumor tissues were selected. The available dataset
GSE101547 in the GEO database, which consisted of 12 normal tissues and 12 patients samples of gingivobuccal cancer tissues
were used (12).

2.2 Data Processing

The FASTQ files were processed using standard transcriptomic bioinformatics analysis pipeline to obtain dysregulated genes
from the data.The dysregulated genes provided us with the opportunity to further understand the relational nature of the genes
with the disease. The raw sequence reads were initially checked for quality using FASTQC.

2.3 Alignment

The reads were then aligned with the help of a splice-aware aligner HISAT2 (13) using the hg38 reference genome. It is quite
pertinent to use the latest stable version of the reference genome because using an outdated reference genome runs the risk of
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missing out potential transcripts. Over 90% alignment rate was achieved for all the samples. Of the 53 million paired-end reads
per sample, approximately 50 million reads were aligned successfully with the hg38 reference genome. Low and inconsistent
reads were subsequently removed.

2.4 Count data generation

For the generation of count data, the HTSeq-count tool (14) was used, which provided the count data for the overlapping exons
of each gene. To sort the lncRNAs, an lncRNA GTF annotation file was used, which was prepared in-house with the help of the
GENCODEGTF file. LncRNA annotations were selected from various lncRNA databases, which helped us sort all the lncRNAs
present in the reads and obtain the count data.

2.5 Data Analysis
The data available in the dataset lacked information on the strandness of the reads; moreover, it was not considered in the study
by Singh et al.Hence, the strandness of the raw readswas determined in this study because it is an important aspectwhen looking
for count data.The Salmon quantification tool (15) was used to identify the dataset to be unstranded. Finally, for differential gene
expression data analysis, the DESeq2 tool (16) was used. For differential gene expression data analysis we compared the normal
with tumor tissues. A gene is considered as differentially expressed if the false discovery rate (FDR)<0.01 and log2 fold change
is >= 2 or <= -2. We also performed multidimensional scaling (MDS) based sample clustering (where every individual gene’s
expression is taken as an independent vector, distance metric: Euclidian). For identification and analysis of dysregulated genes,
comparison between the expression in normal and affected tissues (Figure 2 A) will confirm the involvement of those genes in
the disease or the lack thereof. Similarly, the dysregulated genes will help us understand their relevance in tumor growth and
maintenance.

Fig 2. (A) Sample to sample distance plot validating the quality of the samples with respect to each other. (B) PCA Plot with a PCI variance
of 35% and PC2 variance of 25% for the 24 samples.

The cluster analysis sheds light on the behavior of the normal and tumor samples. A major part of the tumor samples are
seen to be rigid in nature and are based around the PC2.

Principle component analysis can successfully separate the normal and the tumor tissues. As evidenced in Figure 2 (B), the
plot displays good separation between normal tissue and diseased tissue from the gingivobuccal cancer tissues.

The gingivobuccal cancer datasets yielded 16,065 differentially expressed lncRNA genes. Upon excluding the outliers and
low counts and setting an adjusted p-value threshold of <0.01, the lncRNAs were sorted based on the threshold value and 1201
significant dysregulated lncRNAs were obtained. Dysregulation of lncRNAs indicated the involvement of those genes in the
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disruption of normal pathways. The dysregulated genes provided us with an incentive to further explore the causality and their
involvement in the disease. A comparison of the methods was also performed to validate the authenticity of the method, and
it was found that sorting lncRNAs using a specific lncRNA GTF annotation file yielded better results. The standard lncRNA
identification protocol, which includes identification of transcript length and using a coding potential calculator to identify the
coding potential of the genes, was able to detect 988 lncRNA genes. Whereas our proposed method of using a single GTF file
to identify lncRNA transcripts within the raw alignment data yielded 1201 genes.

2.6 GEPIA2 Analysis

GEPIA2 (17) is an updated version of the GEPIA (Gene Expression Profiling Interactive Analysis) web server and is used
mainly for the comparative analysis of gene expression between cancerous and normal tissues fetched from the TCGA and
the GTEx databases. Here, the GEPIA2 database was used, and head and neck squamous cell carcinoma entries present in
it were thoroughly analyzed. The CTA-384D8.35 lncRNAs were specifically isolated owing to a combination of the results of
prevalence obtained from our NGS data analysis pertaining to Hazard Ratio analysis using Cox PHModel and literature review,
which highlighted their association with cancer hallmarks.

2.7 Disease-free survival analysis

The disease-free survival (DFS) of CTA-384D8.35 was analyzed with the help of GEPIA2 which is an online tool and database
for analysis, evaluation and download of cancer-related genomics data sets.Wewere able to generate a survival map of the CTA-
384D8.35 lncRNA to understand and filter the prognostic values in gingivobuccal oral cancer. We set a parameter of “0.05” as
the significance level, and the group cutoff was set as “Median”. The expression level of the CTA-384D8.35 was sorted by the
best cutoff and months of survival were selected as survival time units.

3 Results and Discussion
The dysregulated genes which were obtained after comparing the normal dataset with the tumor dataset yielded data that was
used to further identify and explore the relational nature of the genes to the disease.

The dysregulated genes (Figure 3) serve as an indication of the disruption of the normal genomic process.This disruption can
be traced back to the source of the disease at hand and thus can be further analyzed and be used as a biomarker or subsequent
target for drug identification.

For the identification of lncRNAs expressed in gingivobuccal cancer, we assembled the transcripts for each of the 24 RNA-
Seq samples. We were able to report a total of 16065 potential transcripts. Setting a threshold p-value of < 0.01, we were able to
sort and consider 4558 potential dysregulated genes as statistically significant. Further we set a series of stringent parameters
on these 4558 genes for identification of known lncRNAs from our analysis and we were for the first time able to identify 1201
lncRNA transcripts based on a threshold p-value of < 0.01 which were not previously annotated for gingivobuccal squamous
cell carcinoma. Additionally our novel methodology of identifying lncRNAs based on the GTF file significantly reduced the
time and resources to identify the dysreglated lncRNAs. There have been studies (18) pertaining to lncRNA-mRNA network
identification in head and neck cancer based on TCGA data, however lncRNA identification specifically for gingivobuccal
cancer from patient data obtained from the Indian subcontinent is severely lacking.

The lncRNA transcripts that were obtained from our data analysis were then annotated and identified. For validation
purposes, we employed the usage of the GEPIA2 database since it also gave our study the validation of survival analysis. The
GEPIA2 database was thoroughly analyzed, for head and neck squamous carcinoma entries. From a total of 2077HNSC entries,
we compared the co-lncRNA data with our findings of lncRNAs and we can report that 40 lncRNA transcripts were shown
to be highly prevalent in GBSC. The results along with information pertaining to their chromosomal location are provided
in Supplementary Table 1. Integrated analysis of Co-lncRNA and GEPIA2 databases revealed a total of 11 lncRNAs to be
upregulated, while 29 lncRNAs were found to be downregulated.

The 40 dysregulated lncRNAs were analyzed in the lncSEA database (19) for disease association and functional annotation.
Out of the 40 novel transcripts, 6 lncRNAs returned positive disease associations as mentioned in Table 1.

Next we went for a disease-free survival analysis which showed that correlation was obtained in downregulated lncRNAs
which reported a longer disease-free survival time in HNSC as evidenced from the graph in Figure 4. The GEPIA2 dataset was
explored to find a correlation between the lncRNA expression and survival time. We were able to analyze that CTA-384D8.35
among all the 40 lncRNAs showed a significant correlation to disease-free survival time in HNSC.
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Fig 3. MA Plot representing DE genes (red dots denoting upregulated genes and blue dots denoting downregulated genes) against mean
expression levels with a False Discovery Rate (FDR) < 0.01.

Table 1. LncSEA analysis results on the 40 dysregulated lncRNAs
Set Class Count LncRNA P-value FDR Bonferroni
Non_small_cell_lung_cancer Disease 4 DUXAP8 SNHG1

AGAP2-AS1 PART1
3.27E-06 0.000494 0.000494

Glioma Disease 3 LINC01116 SNHG1
AGAP2-AS1

2.44E-05 0.00184 0.00368

Glioblastoma Disease 3 LINC01116 AGAP2-
AS1 PART1

4.06E-05 0.0156 0.0156

Prostate_cancer Disease 3 LINC01116 SNHG1
PART1

4.18E-05 0.0021 0.00631

Esophageal_cancer Disease 2 DUXAP8 SNHG1, 0.000136 0.00513 0.0205

In this report, we have used a novelmethodology of identifying annotated lncRNAs by creating a separate GTF file whichwas
made in-house consisting of all the annotated lncRNAs from lncRNA data repositories like NONCODE and matching them
with the alignment file generated from the experiment. The proposed model significantly reduces the time taken to identify
the dysregulated lncRNAs in the disease. Plus the addition of the strandness determination in the pipeline also increases the
accuracy of the data obtained. Previous studies pertaining to the data analysis of dysregulated genes often skip the step which
can lead to biasness setting in the datasets.

The dysregulated lncRNAs were then implemented in the GEPIA2 database. Upon further inspection, we were able to
correlate our findings with the GEPIA2 database yielding 40 dysregulated lncRNAs out of which 29 were downregulated and
11 were upregulated.

CTA-384D8.35 was found among the downregulated lncRNAs to be the most significantly dysregulated and also upon
survival analysis it was correlated to show a shorter disease-free survival rate. This is an important perspective since the idea of
a potential non-invasive biomarker for cancer diagnosis has been seen and discussed in previous studies (5,10,20) in oral cancer
patients. In the present study, we are able to report a relatively novel lncRNA CTA-384D8.35 which was seen to be prevalent
in GBSCC and also showed that the regulation of the lncRNA is related to the survival of the patients. Furthermore, we can
also infer from this finding that downregulation of the CTA-384D8.35 gene is correlated to the occurrence of gingivobuccal
carcinoma. Further analysis has also revealed the CTA-384D8.35 is prevalent in various cancers like clear cell Renal Cell
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Fig 4.Disease free survival of CTA-384D8.35 lncRNA generated with the help of GEPIA2

Carcinoma (ccRCC) and it is related to tumor stage, metastasis, cancer status, clinical stage, and grade (11). Our data analysis
was also able to report about numerous oncogenes as well as tumor suppressor genes that are seen present in the 8p and 8q
arm of the chromosome in oral cancers. Significant non-coding RNAs such as PCAT1 which were found to be highly altered
in chromosome 8 led us to believe that a high number of genes were altered in the chromosome 8 region (21). It has been earlier
reported in numerous articles about gains and losses in chromosome 8 (22,23) among various other cancers like breast, colorectal,
and prostate cancer.

4 Conclusion
Different noncoding RNAs that negatively regulate gene expressions, such as the microRNAs and the lncRNAs, have been
associated with cell invasiveness and cell dissemination, tumor recurrence, and metastasis. Thus a comparison between the
expression of lncRNAs in normal and affected tissues will confirm the involvement of lncRNAs in the disease or the lack thereof.
Increasing evidence points towards the need explore the possibilities of genome-scale expression of lncRNAs in cancer. It would
also be beneficial to gain knowledge about their potential biological functions as information is severely lacking in these sectors.

Furthermore, we have introduced a novel methodology pertaining to identification of annotated lncRNAs using the GTF file
which consisted of all the annotated lncRNAs from data repositories like NONCODE and matching them with the alignment
file generated from the experiment. The method adopted significantly reduced the time required to obtain the dysregulated
lncRNAs seen to be implicated in the disease.

Additionally we have also improved upon the accuracy rate for the identification of dysregulated genes with the
implementation of strandness determination step in the data analysis pipeline.The strandness of the raw reads was determined
in this study because it is an important aspect due to the fear of biasness setting in the count data.

Finally the identification of the CTA-384D8.35 was found among the downregulated lncRNAs to be the most significantly
dysregulated and also upon survival analysis it was correlated to show a shorter disease-free survival rate. Further analysis also
revealed that the CTA-384D8.35 is prevalent in various cancers like clear cell Renal Cell Carcinoma (ccRCC) and it is related
to tumor stage, metastasis, cancer status, clinical stage, and grade.

A detailed analysis regarding the lncRNA might lead us to the identification of prognostic biomarkers related to the
recurrence, which gains significance of paramount proportions. Our next step of action is to functionally annotate the lncRNA
as a majority of their functions are still unknown and understand its mechanistic properties. The results obtained in this report
certainly points to the fact that the CTA-384D8.35 lncRNA is a target of interest which shows its potential as a prominent aspect
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of research in the disease pertaining to non-invasive biomarker identification.
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