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Abstract
Objectives: The Recent COVID 19 Pandemic has capped the efficacy of the
mostly used existing touch-based fingerprint detection. Hence, the main
objective of this study is to develop a lightweight, robust and efficient touchless
fingerprint identification model. To cope up with touchless environment
demands, an emphasis is made on improvement in local conditions, feature
modalities as well as learning environment. Methods: Considering these
objectives, the focus of this study is on two different methods for classification
of contactless fingerprint. In the first method structural features like minutiae
details are extracted followed by classification by SSIM. In the second
method GLCM textural features were extracted followed by classification
using Random Forest algorithm. In the proposed method, performance
assessment is done by considering data samples of 1000 random users
that are collected from different benchmark databases like Hong Kong
Polytechnic University 3D-fngerprint images Database Version 2.0, Touchless
Fingerprint Database of IIT Bombay, IIT Kanpur, IIT Jodhpur. Findings:
Though, touchless fingerprint detection is considered as a viable alternative;
yet, the real-time data complexities like non-linear textural patterns, dusts,
non-uniform local conditions like illumination, contrast, orientation make it
complex for realization. Moreover, the likelihood of ridge discontinuity and
texture damages can majorly limit its efficacy. Novelty: The proposed model
mainly focusses on reducing Equal Error Rate and improving the accuracy of
contactless fingerprint classification by extracting textural features rather just
sticking to conventional structural feature-minutiae. The Proposed method
outperforms when compared with the existing state of the art methods by
achieving an accuracy of 94.72%, precision of 98.84%, recall of 97.716%, F-
Measure 0.9827 and a reduced EER of about 0.084. The key novelty of this
approach was that it doesn’t require any surface 3D reconstruction, rather it
employed different mathematical approaches to retrieve surface normal and
minutiae information.
Keywords: SSIM; GLCM; Contactless Fingerprint; Minutiae; EER; Confusion
Matrix
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1 Introduction
The last few decades have witnessed exponential rise in advanced technologies.
Despite significant innovation and technological horizon, personalized security often
remains a challenge under dynamic application environment. Unlike cryptographic
concepts, in the last few years biometric driven authentication systems have increased
significantly (1) having superior potential with high scalability, interoperability and
time-efficiency. Its efficacy can easily be visualized as Aadhar Card system by Unique
Identification Authority of India. Interestingly, more than a billion of population in
India possesses a fingerprint driven Aadhar card for its verification. Though, Aadhar
is a multi-modal system; however, evolved with fingerprint identification. In sync
with such significances, a large number of efforts have been made by academia-
industries; however, the recent pandemic of COVID-19 (2) has limited the scope of
the classical touch-based fingerprint authentication systems (3). COVID-19 pandemic
has almost limited the efficacy of the touch-based two-dimensional fingerprint driven
modalities (4), as this pandemicwas found exponentially spreading due to inter-personal
infection through such frequently touching devices (5).

Considering above stated issues and scopes (6) in this research two techniques have
been proposed first, extracting conventional structural feature sayminutiae followed by
classification by Structural Similarity IndexMatching. Second, to cope upwith touchless
fingerprint identification system demands (7), in this paper, the emphasis was made
on multi-dimensional optimization including pre-processing, feature extraction and
eventual learning model (8). Being touchless approach, we considered normal three-
dimensional RGB images as input, which is then processed for histogram equalization
followed by contrast improvement and filtering. Recalling, non-linear ridge value
patterns and local textural variations, we performed image normalization using Z-
score method. Here, we performed block-wise normalization to improve contrast
information. Subsequently, orientation image estimation was performed to improve
local feature distribution (9). Moreover, it enabled frequency image estimation to make
further feature learning better. As post frequency image estimation, we performed
ridge mask generation and Gabor filtering to ensure optimal local spatial-temporal
textural feature (STTF) distribution for furtherminutiae detection (10). Finally, cropping
the improved ridge mapping information, we performed STTF feature extraction by
applying Gray-level Co-occurrence Matrix (GLCM). where his method helped in
obtainingmulti-dimensional textural features later applied random forest algorithm for
fingerprint classification. The key novelty of this approach was that it is not depended
only on conventional minutiae feature extraction rather shifted to improved multi-
dimensional textural features and it doesn’t require any surface reconstruction where
many of the authors in literature survey have opted 3D reconstruction, rather it
employed different mathematical approaches to retrieve surface normal and minutiae
information.

Finally, assessment of both the proposed methods is carried out by obtaining
Confusion Matrix for both the methods and concluded that textural features help in
improving the efficacy of the classification of contactless 3D fingerprint classification.
Also, the proposed method has reduced Equal Error Rate when compared with existing
state of the art methods.

2 Methodology
This section primarily discusses the overall proposed contactless fingerprint detection
and classification system. Unlike classical fingerprint detection models, in this research
the focus is made on improving input data environment as well as feature vectors to
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ensure highly accurate and reliable fingerprint detection and classification. Moreover, we intend to guarantee textural feature
driven optimal feature extraction without depending on the classical minutiae detection and segmentation. To achieve it, the
proposed work encompasses few tasks as depicted in Figure 1.

2.1 Data Acquisition

In sync with the targeted contactless environment for fingerprint detection system, in this work we collected contactless
three-dimensional sensor driven images to prepare datasets. The 3D contactless fingerprint datasets were collected in such
a manner that it could enable effective learning under data heterogeneity and diversity to make it more efficient under realistic
environment. We considered the 3D Fingerprint dataset comprising a large contactless fingerprint sample. Noticeably, for our
case study we considered a total of 50 subjects and the samples collected were from the subjects aged in between 28 to 55
years. The subjects comprised a total of 40 man and 10 women that eventually contributed 160 and 40 fingerprint samples,
correspondingly. The data considered had been collected under natural light conditions with standard illumination. Here,
no specific light or illumination control measure was applied. Also, for comparison with the state-of-the-art methods, In
the proposed method, data samples from 1000 random users are collected from different benchmark databases (Hong Kong
Polytechnic University 3D-fngerprint images Database Version 2.0, IIT Bombay, IIT Kanpur, Touchless Fingerprint Database,
UNFIT database from Image Analysis and Biometrics Lab. IIT Jodhpur) are considered.

Fig 1. Proposed contactless fingerprint detection and classification model

2.2 Structural feature driven fingerprint classification

As already stated, realizing practical Touchless input acquisition and allied complexities, we processed each input sample for
pre-processing. To achieve it, at first the input images were processed for image resizing. In this method, firstly the centroid of
the fingerprint image was spotted using region –property function.With spotted centroid as a reference a radius of 120 pixels is
marked and a circular ROIwas estimated for each image.Once getting theROI, it was handled forRGB toGRAY transformation.
Over Gray output, histogram equalization was performed that alleviates major key problem of intensity variation over the
retrieved images andmakes it suitable for further processing. Later we have performed normalization followed by binarization.
After obtaining the binary image of the fingerprint, we have performed thinning function that enabled skeleton formation of
the image.
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Above mentioned pre-processing tasks helps in extracting most of the ridge and structural information to achieve better
accuracy.This process also helps in redundant data elimination that results in improvement in efficiency.Thedetailed discussion
of the proposed minutiae estimation model is given in the sub-sequent section.

2.2.1 Minutiae Extraction
Typically, a justifiable illustration of a fingerprint can be provided in terms of its corresponding minutiae details. Among the
all-possible minutiae details the ridge endings and bifurcations are the dominant one. Usually, ridge endings signify the points
where the ridge curve stops or terminates, while bifurcations signify the specific location where a ridge splits from a single path
into two paths at certain Y-type junction. To extract minutiae, we applied a simple Crossing-Number concept. In our applied
crossing number concept, the binary image where the ridge flow pattern is eight-connected is considered. Now, performing
scanning of the local neighborhood of each detected ridge pixel in the binary image with a 3× 3 window, we extracted the
minutiae in each fingerprint image. It has been followed by the estimation of crossing number value estimation, which is defined
as half the sum of the differences between pairs of adjacent pixels in the eight neighborhoods. Subsequently, the ridge pixel has
been classified as a ridge ending, bifurcation or non-minutiae pointwith the help of crossing-number properties. In thismethod,
we have examined the local neighborhood of each ridge pixel with the help of a 3x3window that eventually yield extracted ridge
endings and bifurcations from the skeleton image. To obtain the crossing number of a pixel P can be depicted as (1).

NCross =
1
2

8

∑
i=1

(Pi −Pi+1| (1)

In above equation, the variable Pi states the binary pixel value in the neighborhood of P where Pi = (0 or 1) and P9 = P1. In
this case for a pixel P, eight neighbouring pixels are scanned in anti-clockwise direction. Now with the corresponding values
of the pixels and its crossing number values each pixel is categorized. Obtaining the thinned ridge map, we identified the ridge
pixels with three ridge pixel neighbors, also called the ridge bifurcations.Thus, with one ridge pixel neighbor are stated to be the
ridge endings. The absolute location (x,y) and the orientation (θ ) are stored for each extracted minutia and thus the location
of the minutiae is represented in terms of the distance from the core, while the core signifies coordinate (0,0) on an x,y-axis.
At the ridge-termination, the orientation or angle formed in between the horizontal line and core gives ridge angle.Thus, these
obtained minutiae details can be used for comparison for fingerprint identification. Once obtaining the minutiae details, it has
been processed for template matching using SSIM.

2.2.2 SSIM Based Minutiae Template Matching
SSIM is one of the most used image analysis tools used for quality assessment and image-matching purposes. It exhibits the
similarity of the two distinct images based on certain features such as structural distortions, textural features, luminance etc.
It performs image comparison not based on the pixel values rather the image elements identified by human. SSIM embodies
varied distortions, including contrast, luminance and texture to compare fingerprint images. Noticeably, in our case, we applied
minutiae details as the feature in SSIM to match fingerprint images of the users to make identification decision. The suitable
values of SSIM can be in the range of -1 (maximum difference) to 1 (no difference). For our considered fingerprint minutiae
picture, SSIM at coordinate (x,y) has been obtained using following mathematical model.

SSIM (x,y) = (l (x,y)]α • (c(x,y)]β • (s(x,y)]γ (2)

l (x,y) =
2µxµy +C1

µ2
x +µ2

y +C′
1

(3)

c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C′
2

(4)

s(x,y) =
σxy +Cs

σxσy +C′
s

(5)

Cs =
c2

2
(6)
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and when α = β = γ = 1 then

SSIM (x,y) =
(2µxµy +C1)(2σx +C2)(

µ2
x +µ2

y +C1
)(

σ2
x +σ2

y +C2
) (7)

SSIMi j =WY •SSIMY
i j +Wcb •SSIMcb

i j +Wcr •SSIMcr
i j (8)

The definitions of the different parameters applied in above equation are given as follows:
α , β , γ – Significance coefficients
µx – Average of the luminance sample for input minutiae signal x
µy- Average of the luminance sample for test signal y
σx - Deviation of the luminance sample for input minutiae signal x
σy - Deviation of the luminance sample for test signal y
σxy - Covariance of the luminance samples of two images x and y
C1,C2 – stabilizing factors or constants
WY – the weight value of Y
Wcb- the weight value of Cb
Wcr - the weight value of Cr
Thus, obtaining the value of (8), the two images can be same only when it has the SSIM value of 1. On contrary, low SSIM

value signifies the disparity between fingerprint images or unmatched fingerprint.

2.3 GLCM Textural Features driven Fingerprint Classification

Let, I be the input fingerprint image with N×N dimensional matrix, with I (i, j) as the pixel intensity for the ith row and the jth
column. In sync with touchless input, we hypothesize that the input images possess minimum resolution of 600 dots per inch,
which is not difficult in contemporary high-definition camera.Thus, for the input images with aforesaid specification, the mean
and the variance of the fingerprint image I in its gray-level form are derived as equation (9) and (10) respectively.

M (I) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

I (i, j) (9)

Var (I) =
1

N2

N−1

∑
i=0

N−1

∑
j=0

(I (i, j)−M (I))2 (10)

Consider that the orientation image be O, with the dimension N ×N. Moreover, O(i, j) be the local ridge representation at
the pixel instant (i, j). Noticeably, over touchless multi-dimensional image, the local ridge orientation can be characterized
for a block in comparison to each pixel-based analysis. In this reference, an input fingerprint image can be split into multiple
non-overlapping blocks (w×w ), where each local ridge orientation is obtained for each block. Noticeably, in case of a typical
fingerprint image the local ridge orientation at 900 and 2700 remains to be the same and can’t be distinguished. This is mainly
because the ridge oriented at both 900 and 2700 remains the same. Similarly, over a frequency image (F), which is defined with
N ×N dimensional image, let F (i, j) be the local ridge frequency. Here, local ridge frequency refers the frequency of the ridge
and furrow structure in adjacency, especially in orthogonal to the local ridge orientation. To be noted, the ridge and furrow
structure in adjacency often shows a feature where minutiae doesn’t constitute any specific and well-structured sinusoidal-
shaped wave. In this case, the frequency is characterized as the mean frequency of its neighbors. Similar to the orientation
image, frequency image is also characterized in block-wise manner. The proposed model also applies region-masking concept,
which is also performed over each block sequentially to improve intrinsic features per image so as to improve better feature
extraction and learning over touchless fingerprint images. Here, we define region masking, R as a N ×N image, possessing
R(i, j) signifying the type of the pixel. Thus, each pixel can be classified into two broad categories; first, non-recoverable ridge-
and-furrow pixel and second, recoverable ridge-and-furrow pixels, which are labelled as 0 and 1, respectively.

In this proposed work, GLCM functions as a descriptive statistical feature distribution model assessing the probability
of the pixel’s gray scale values over an input fingerprint image. Functionally, it extracts high-dimensional statistical features.
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In this work, we assume that after preprocessing, the varied textural features are distributed uniformly throughout the pre-
processed input image. In this reference, over each input fingerprint image we extracted the different textural features, which
were later combined together to yield a composite feature vector for classification. In this method, the retrieved textural features
were derived in the form of a matrix representing pixel intensities I(x,y), centered on the pixels (x,y). In this manner, we
extracted different textural features for each input touchless pre-processed images, with distinct probability matrix Pi, j. Here,
the above stated probability matrix signifies the differences of the intensity between the pixel elements i and j that later helps in
detecting motion patterns. In GLCM gray-scale refers the pair association along a direction, and therefore retrieving the gray-
scale values can yield a matrix representing the association matrix among the pixels towards the target direction. We obtained
symmetric matrix S by amalgamating the gray-scale information along with the allied transpose values. It enables estimation
of the cumulative relationship among the pixels in one direction. We normalized the association matrix S using (11) to obtain
the probability matrix Pi, j.

Pi, j =
Si, j

∑N−1
i, j=0 Si, j

(11)

With the extracted values of Pi, j, the different textural features including the following were obtained.

• Contrast,
• Energy,
• Homogeneity,
• Correlation,
• Mean,
• Standard deviation,
• Variance,
• Kurtosis, and
• Skewness.

As stated, a total of nine STTF features were obtained for further feature learning. Here, our predominant goal was to retain
maximum possible and significant features for learning and classification so as to achieve higher accuracy. The brief of GLCM
features extracted is discussed below:

2.3.1 Contrast
In GLCM, contrast is defined as the variation in gray scale parameter values over the input image. With the derived probability
matrix (11), the pixel pairs representing the diagonal element represents vital difference in contrast values. Here, the texture
contrast represents the cumulative variations in the local pixel intensities across the input fingerprint image. Generally, the non-
linearity existing across the input image is examined by performing statistical estimation and corresponding textural continuity
assessment. We measured the contrast information for each input fingerprint image using equation (16).

2.3.2 Energy
To examine energy distribution across the image, the proposed model measured angular second moment (ASM) value that
measures the rotational acceleration over the input feature space. Here, the model defined in (12) was applied to estimate the
ASM value. Typically, the value of ASM increases linearly throughout the gray-level values over input image.

ASM = ∑N−1
i, j=0 Pi, j

2 (12)

Once calculating the ASM values (12), we estimated the energy parameter using (13).

ENR =
√

ASMi, j (13)

2.3.3 Entropy
Entropy, which is also referred as the pixel-disturbances within an input image. In other words, it also signifies how non-linear
the gray-level values are distributed throughput the input fingerprint image. Typically, the entropy value increases with rise in
pixel’s non-linear distribution. We applied (14) to estimate the entropy value.

ENT = ∑N−1
i, j=0 Pi, j (−lnPi, j) (14)
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2.3.4 Homogeneity
Typically, homogeneity refers the Inverse Different Moment (IDM) signifying higher homogeneity with reference to the lower
contrast. In other words, an input image would have lower homogeneity with higher contrast. In this work, we used equation
(15) to measure homogeneity distribution throughput the input fingerprint image.

HOM = ∑N−1
i, j=0

Pi, j

1+(i− j)2 (15)

In reference to the linear magnitude distribution over input fingerprint image, smaller value of contrast would give rise to the
higher homogeneity. In this work, we employed equation (16) to measure contrast over the input image.

CONT = ∑N−1
i, j=0 Pi, j(i− j)2 (16)

2.3.5 Correlation
Correlation signifies the statistical feature representing descriptive statistics throughout the input image. In this work, in
addition to the correlation information (16), we extracted three other spatial-temporal statistical features encompassing mean,
standard deviation, and variance. In order to estimate the mean value, we employed the symmetric features of the probability
matrix Pi, j (11). Mathematically, we applied equations (17) and (18) to estimate the mean values for the different pixel instants.

µi = ∑N−1
i, j i(Pi, j) (17)

µ j = ∑N−1
i, j j (Pi, j) (18)

Further, we applied mean values (17-18), variance and standard deviation values were obtained by applying equations (19) and
(20), respectively.

σ2
i = ∑N−1

i, j Pi, j(i−µi)
2 (19)

σi =
√

σ2
i

σ j =
√

σ2
j (20)

Thus, estimating the mean and variance values, we estimated correlation information using (21).

CORR = ∑N−1
i, j Pi, j

 (i−µi)( j−µ j)√(
σ2

i

)(
σ2

j

)
 (21)

2.3.5 Skewness
With the above stated statistical features, we extracted directional or orientational features, including skewness and Kurtosis.
These features are also called as the symmetrical statistical features. With the estimated probability matrix (11), skewness
parameter refers the lack of symmetry. In case of at image processing tasks, skewness is defined in the form of shade feature
where the high cluster-shade signifies asymmetrical nature. We applied equation (22) to estimate the skewness values per input
fingerprint image.

SKEW = ∑N−1
i, j Pi, j(i−µi + j−µ j)

4 (22)
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2.3.7 Kurtosis
Kurtosis signifies strength of the input gray-level values distributed throughput the input fingerprint image. Here, higher
Kurtosis confirms or indicates that the amount of the feature-distribution is mainly strenuous along tail than the mean value.
The lower value of Kurtosis indicates that the amount of feature-distribution remains strenuous in the direction of the spike
which is closer to the mean value. In this work, Kurtosis was obtained over the entire input image as there is no specific target
area and throughout image serves as an input textural feature tomake learning and further classification. Once extracting above
stated nine different GLCM features, we performed horizontal concatenation to estimate a composite feature vector for further
learning. The composite GLCM feature obtained is given in equation (23).

GLCMFeat =Conc(CONT, ENE,HOM,CORR,Mean, Var,ST D,Kur,Skw) (23)

Now, once estimating the composite feature vector (i.e., GLCMFeat), we projected it for feature learning and classification by
Random Forest algorithm.

2.3.8 Random Forest Algorithm
Random Forest is one of the most successful learning algorithms that structurally encompasses multiple tree-based classifiers,
behaving as an ensemble learning model. In the proposed tree-model, each tree provides its corresponding vote for the most
probable class for each input fingerprint image. Let the total training samples be N, then a sample encompassing N cases are
randomly selected from the original data. These selected samples are further employed as training set to form a new tree. Now,
in case there are M input variables, then the best split on these M is applied to split the node. Here, we maintained the value
of M as constant during forest development, also called as the growing phase. In this manner, each tree is developed to the
largest extent. Unlike classical machine learning methods, Random Forest algorithm needs smaller number of parameters to
be estimated during classification. It makes overall computation more efficient and suitable for the real-time uses. A complete
Random Forest algorithm can be eventually defined as the combination of the different tree-structures, as presented in (24).

(h(x,θk) , (k = 1,2, . . . i . . .} (24)

In (24), the parameter h signifies the classifier function, while (θk} presents the random vector distributed identical. Here, each
tree contains a vote for the most probable class for a specific SQL query as input x. The dimensionality of θ primarily depends
on its use in the tree formation. In fact, the key reason behind random forest success is its ability towards the formation of
each decision tree which forms the forest. In the proposed method, we used a bootstrapped subset of training samples to train
each tree throughout the constructed forest that enables almost 70% of the training data usages, while the remaining dataset
is labelled as the out-of-bag samples that is later used to perform inner cross-validation to examine the classification results
and enhance it. Thus, applying this ensemble learning method, we performed fingerprint classification for the different input
samples.

3 Results and Discussion
Considering the significance of a touchless 3D fingerprint identification and classification system, in this research as a first
method aminutiae-basedmeasure was proposed where we focused on at first setting up an optimal data environment, followed
by feature extraction mechanism and pattern matching followed by classification. Understanding the way that the touchless
data acquisitionmight undergo different local environmental changes such as change in brightness, contrast and skin defects an
efficient pre-processing was carried out and the results of preprocessing are shown in Figure 2. Realizing the fact that inmajority
of the 2D as well as 3D fingerprint identificationmethods, authors have appliedMinutiae features and template matching, we at
first applied crossing number-basedminutiae extraction andmatching to label input fingerprint as 1 and 0, signifying Identified
and Unidentified correspondingly. To examine the performance of the proposed model, we have obtained confusion matrix.
Eventually to characterize performance we have obtained different statistical components like Accuracy, Precision, F-Measure,
and Recall. Results are listed and compared in Figure 4.

Now, we mainly focus on assessing efficacy of the proposed textural feature driven contactless fingerprint detection and
classification model, qualitatively as well as quantitatively. In other words, here we examine whether the use of local pre-
conditioned image improvement yields superior performance. Before discussing the simulation results quantitatively, a snippet
of pre-conditioned and enhanced results is shown in Figure 3. Figure 3 (a) presents a random input 3D touchless fingerprint
image. Here, it can easily be visualized that the illumination at the image center and bottom is relatively higher in comparison
to the top corners. Moreover, the ridge structures in lower right bottom are unclear with high level of ambiguity. Furthermore,
the straight division lines on the left side (bottom to top) can easily be visualized in this sample image, which can disrupt the
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Fig 2. Preprocessed results and extracted structural feature

Fig 3. Locally improvedfingerprint images for textural feature extraction

ridge continuity to make further cue-segmentation or allied feature learning. Noticeably, there are numerous use environment
where due to local conditions such as low temperature, salty water contact etc. the ridge values get changed temporarily.Though,
with touch-based classical methods while pressing finger over the sensor such local deformations get suppressed; however, in
touchless fingerprint detection it can have decisive impact on feature learning and hence classification. To alleviate such issues,
we performed local pre-conditioning driven pre-processing to improve the image quality for further feature extraction. As
repeatedly stated in the previous sections, we intended to guarantee ridge continuity over the different local conditions while
ensuring that the ridges contain sufficient intrinsic features. To achieve it, we applied the different pre-processing steps like
image normalization, ridge orientation estimation, frequency estimation, ridge mapping and filtering. Figure 3 (b) presents the
normalized image output obtained from the original input image. Here, the impact of normalization can easily be visualized.
Now, recalling themethodological intendwherewe intended to improve ridge structure continuity even over non-linear textural
fingerprint surfaces, we performed ridge orientation estimation Figure 3 (c). The ridge frequency obtained over each grid is
given in Figure 3 (d). Figure 3 (e) presents the ridgemasking results where the high frequent ridges aremasked as 1, while the less
frequent ridges are labelled as 0. Here, the key motive was to retain the ridge information carrying densely distributed features.
Here, observing the results it can easily be understood that the improved 3D touchless fingerprint image caries more uniform
ridge’s distribution with precisely perceptible structure, which can provide more efficient feature vectors for further learning
and classification. To characterize performance, we have obtained different statistical components like Accuracy, Precision,
F-Measure, and Recall as listed and compared in Figure 4.

This is the matter of fact that a large number of studies have been done towards touch-based fingerprint detection systems;
however, the efforts made towards touchless fingerprint detection are countable and very rare. Our depth literature assessment
revealed that merely countable a dozen of efforts is made so far to introduce 3D touchless data for fingerprint detection. To
assess relative performance, we have selected the couple of recent methods listed in Table 1.The comparison of Equal Error rate
of existing methods and the proposed method is shown in Table 1. The key novelty and advantage of this approach is that it
don’t require any surface reconstruction, rather it employed different mathematical approaches to retrieve surface normal and
minutiae information. Which was later used for learning and classification. Thus, observing performance outcomes and allied
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Fig 4. Performance comparison of structural and textural features driven classification

Table 1. Comparison of Equal error rate of the proposed method with the existing state of the art methods
Paper Method

Implemented
Database
used

Features
extracted

Assessment of EER
in %

X. Yin, Y. Zhu, and J. Hu (11) 3D
Reconstruction

3D Stereo
images

TTP features 0.66

J. Galbally. L. Beslay G. Böstrom (12) Deep CNN 3D-FLARE
DB

HOG+LBP 1.04

Bakheet, S, Alsubai, S, Alqahtani, A, Binbusayyis (13) SIFT FVC2004 Minutiae 2.01
Priesnitz, J, Huesmann, R, Rathgeb C, Buchmann
N, Busch (14)

VeriFinger PolyU Minutiae 3.17

Attrish A, Bharat N, Anand V, Kanhangad V (15) Deep CNN IITI-CFD Minutiae 2.19
Birajadar P, Haria M, Kulkarni P (16) VeriFinger IITB Minutiae 1.18
Proposed Method GLCM + RF PolyU+ IITB Textural

Features
0.084

inferences, it can be stated that the proposed touchless fingerprint detection model outperforms other state-of-art methods by
achieving a reduced EER of 0.084.

4 Conclusion
The fingerprint detection models have always been considered as a vital alternative of the classical cryptosystems. Undeniably,
being fast in execution fingerprint-based systems turn out to be more efficient solution for personalized security. This efficacy
makes fingerprint-based authentication system as one of the most used approaches. Despite robustness, being touch-based
paradigm, its optimality has challenges under different operating environment, especially in reference to the health and hygiene.
During the recent pandemic of COVID-19, touch-based fingerprintmodels were found vulnerable due to touch-based infection
probability. To alleviate such issues, contactless fingerprint detection method can be a viable solution; however, being touchless
in nature such approaches might undergo different complexities like the impact of viewing angle, textural non-linearity, non-
uniform illumination and contrast, ridge and furrow ambiguity, ridge discontinuity etc. Extracting conventional structural
features like minutiae over aforesaid local adversaries can impact overall efficacy. On the other hand, to cope up with touchless
environment demands, an improvement in local conditions and feature modalities followed by training over textural features
improves accuracy and alsominimizes EER.Quantitatively the Proposedmethod outperformswhen comparedwith the existing
state of the art methods on the benchmark database by achieving an accuracy of 94.72%, precision of 98.84%, recall of 97.716%,
F-Measure 0.9827 and a reduced EER of about 0.084. The key novelty of this approach was that it didn’t require any surface
reconstruction, rather it employed different mathematical approaches to retrieve surface normal and minutiae information.
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As a future work we can experiment with the different feature extraction methods like CNN or hybrid techniques also we can
experiment with ensemble learning algorithms to still improve the accuracy of classification.
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