
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

 

 

OPEN ACCESS

Received: 12-01-2022
Accepted: 06-05-2022
Published: 01-07-2022

Citation: Geethanjali D, Priya R,
Bhavani R (2022) Smart Contract for
Digital Garment Design using
Blockchain and Digital Right
Management. Indian Journal of
Science and Technology 15(24):
1195-1212. https://doi.org/
10.17485/IJST/v15i24.84
∗
Corresponding author.

anjali.geetha81@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2022 Geethanjali et al.
This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

Smart Contract for Digital Garment
Design using Blockchain and Digital
Right Management

D Geethanjali1∗, R Priya2, R Bhavani2

1 Research Scholar, Department of Computer Science and Engineering, Annamalai
University, Chidambaram, Tamilnadu, India
2 Professor, Department of Computer Science and Engineering, Annamalai University,
Tamilnadu, Chidambaram, India

Abstract
Background: In the current advancement of communication, anyone can
create digital content. Emerging digital marketplaces provides an environment
to share digital data with customers who are interested in content, from other
digital sources. Digital marketplaces provide a location for both providers
and consumers to connect to meet the increased demand. All of this
leads to challenges in content protection, copyright protection, contract
creation and work trading. Objectives: To address these issues, this scheme
suggests a blockchain based approach for managing digital rights to garment
design works. This system uses the blockchain, digital copyright management
techniques and off-chain computation for garment design work. The visibility
of design effects, the secrecy of design details and compliance with applicable
regulations are all considered. The data delivery is also assured with the
help of the proof-of-delivery concept. Methods: The proposed system has
three steps. They are (i) Creating digital copyright documents using key
generation and verification of digital signature (ii) Smart contract creation
(iii) Certificate generation for confirmed smart contracts. A Smart contract is
defined as computerized transaction protocols that execute the terms of a
contract. Findings: Smart contracts are created between the designer and
customer using Ethereum which is a blockchain based software platform.
The interplanetary file system is used to store digital documents. Ethereum
blockchain is used to create the smart contract digitally. Ethereum smart
contract provides unchangeable, transparent, tamper-proof logs, traceability
and responsibility. Finally, E-certificate is generated by the designer for
the confirmed contracts and it is uploaded into the IPFS. Novelty and
applications: The trusted, decentralized and proof of delivery frameworks
are included for digital design work with the key features of IPFS, blockchain
and Ethereum smart contract. The proposed work is also compared with the
existing works based on several criteria such as blockchain, IPFS, PoD, etc.
Keywords: Blockchain; Design work; Copyright Protection; Digital Signature;
Ethereum

https://www.indjst.org/ 1195

https://doi.org/10.17485/IJST/v15i24.84
https://doi.org/10.17485/IJST/v15i24.84
https://doi.org/10.17485/IJST/v15i24.84
anjali.geetha81@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology
2022;15(24):1195–1212

1 Introduction
Currently, most of the data are stored in a traditional database system. But this solution
entails a central authority controlling a vast volume of data, the data’s confidentiality,
integrity and authenticity cannot be guaranteed. As a result, there are numerous issues
in centralized systems, such as Denial of Service(DoS) assaults and single points of
failure. This necessitates the use of a distributed system that provides data authenticity,
confidentiality and integrity.

At present blockchain is the most widely encouraged technology for securing digital
data. Blockchain is being used to tackle inefficiencies in a variety of industries, ranging
from identity protection to supply chainmanagement. Blockchain provides the solution
for copy-right protection. Several companies are using this technology for attempting
to leverage the technology as a tool for managing intellectual property, primarily
to register copyrighted works and make it easier for their owners to protect them.
It enables photographers to upload photographs and register their works with the
copyright office, after which they are time stamped on the blockchain. Creators can
then utilize the system to check for infringement on their photographs and use the time-
stamped Blockchain to prove ownership. Unfortunately, the copyright ownerwill still be
responsible for enforcing these rights. If the datamay bemisused by hackers the creators
can have the right to take action legally.

IPFS (Interplanetary File System) is a peer-to-peer hypermedia protocol and
distributed file system that identifies files through their content. To get file locations and
node connectivity information, it uses a Distributed Hash Table (DHT). It has a block
storage mechanism and hyperlinks to address the contents. A block denotes a single
unit of data, identified by its key or hash. IPFS has no single point of failure because it
is distributed.

Smart contracts are simple codes that run when certain criteria are satisfied and
are maintained on a blockchain. It is a digital contract or paperless contract which is
used to automate the execution of an agreement. It executes without the need of any
intermediaries and also saves time. They can also automate a workflow, starting the
following step when certain circumstances are satisfied. The smart contract necessity
is self-executing contracts in which the contents of the buyer-seller agreement are
inscribed directly into lines of code. The Smart contract also extends the transaction’s
traceability, transparency and irreversibility.

In blockchain, cryptocurrency has been transferred from source to destination. A
blockchain transaction is defined as, a state transfer in the blockchain that transforms
data from one value to another. A bitcoin transaction, a smart contract, a record, or
data storage can all be part of a blockchain transaction. This transaction process is
performed, based on following any one of the transaction methods.

On-chain transaction: The public ledger is used to record all the valid transactions
performed and it is visible to all the participants on the network. For an on-chain
transaction to be complete, there has to be an agreed number of confirmations by
miners. The time it takes for an on-chain transaction to complete also depends on
network congestion. Therefore, sometimes transactions are delayed if there is a large
volume of transactions that need to be confirmed.

Off-chain transaction: It occurs outside of the main blockchain and is not published
on the network. The parties concer ned have the option of reaching an agreement
outside of the blockchain. It may also include a guarantor, who is responsible for
confirming the transaction’s completion and certifying that the agreement was followed.
The real transaction is then completed on the blockchain after the involved entities,
outside the network agree. Different approaches, such as multi-signature technology
and credit-based solutions, can be used to carry out these transactions. In comparison

https://www.indjst.org/ 1196

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

to on-chain transactions, off-chain transactions are completed instantly.
Themajor focus of the proposed system is to exclude the necessity of a third party and also overcome the faith issues between

the seller and buyer.
The primary contribution of this paper can be summarized as follows:
•Derive the trusted, decentralized andproof of delivery frameworks are included for digital designworkwith the key features

of IPFS, blockchain and Ethereum smart contract.
• For authentication, the electronic certificate is generated and stored into IPFS for confirmed smart contracts.The designer

can download from IPFS whenever they are required.
• Presents smart contract implementation and testing results based on the solidity code.
This paper is organized as follows. Section 2 describes the related works. Section 3 exhibits the key components of the

proposed system. Section 4 explains the proposed system. Section 5 provides the implementation and experimental results
of the design work. Section 6 presents the comparison between the existing and proposed systems. Section 7 describes the
conclusion and future work of the system.

2 Related Work

Josep-Lluis Ferrer-Gomila, et al. (1), presented a multiparty contract signing protocol based on blockchain. Nizamuddina, et
al. (2), proposed a digital smart contract based on Ethereumblockchain and IPFS for document version control in the distributed
fashion. It automates interactions between various participants, such as developers and approvers. NisharaNizamuddin, et. al (3),
proposed an electronic book sales and purchases. It was implemented using a blockchain framework for the protection of digital
resources with the author’s royalty. Muqaddas Naz, et.al (4), present the secure sharing of digital data using a blockchain and
Interplanetary File System. Keng-Pei Lin, et al. (5), proposed a multi-signature smart contract and blockchain-based mobile
ticketing system that protects the tickets’ authenticity and security.The system’s implementation ensures efficiency at a low cost.
Zihao Lu, et al. (6), proposed a new proof of delivery method using smart contracts and digital right management based on
blockchain for digital garment design work. It also safeguards trade fairness.

AhmedW.A.H., et.al (7), proposed a blockchain-enabled supply chain traceability in the textile and apparel sector. Juan José
Bullón Pérez,et.al (8), proposed, a transparent supply chain and traceability in the clothing industrywhich has been implemented
using hash codes and digital signatures. Khan, S.N., et.al (9), addressed the analysis of blockchain smart contract applications,
current trends and challenges of the corresponding domain. Elva Leka, et.al (10), provides the literature review about the
blockchain smart contract and it also analyses the technical challenges of blockchain such as scalability and security. Weidong
Fang, et.al (11), proposed an effective digital signature scheme to achieve nonrepudiation. It also investigated and compared in
terms of application fields, methods, security, and performance. Omar S. Saleh, et.al (12), proposed a blockchain technology
that enhanced certificate verification in the education domain. Amna Qureshi, et.al (13), proposed, reviewed comments and
open challenges of blockchain-basedmultimedia content protection applications. Robert Alexandru Dobre, et.al (14), proposed,
blockchain-enabled Image copyright protection using JPEG resistant digital signature. Here the signature should be stored
on the blockchain along the identification data of the copyright owner. D.Geethanjali et.al (15), Proposed a blockchain and IPFS
based protected copyright data sharing for digital garment designworkwith digital watermarking anddigital rightmanagement.

3 Key Components of the proposed system

3.1 Smart Contract

A smart contract is a self-executing, self-enforcing procedure that is directed by its specified terms and conditions and that
records and executes contractual agreements using blockchain technology. A Smart contract is usually a self-automated code.
Smart contracts have the following benefits. They are speed, efficient and accurate. As a result, no paperwork is required,
and no time is lost fixing errors that may occur when filling out documentation by hand. It also ensures that confidence and
transparency aremaintained.There’s no need to worry about information being tampered with for personal gain because there’s
no third party engaged and encrypted transaction logs are exchanged among participants. (Figure 1) shows the general process
flow of the smart contract.

The smart contract is created based on the following steps. Initially, the contract’s terms should be determined by the
contractual parties. The contractual conditions are then translated into programming code when they have been finalized.
Essentially, the code is a collection of conditional statements that explain several circumstances for a future transaction. In
the second step, the generated code is stored in blockchain network, where it is replicated among the blockchain members. At
last, the code is then run on all machines in the network. When the appropriate condition is met, the contract is immediately

https://www.indjst.org/ 1197

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Fig 1.Diagrammatic representation of Smart Contract

executed and the contract created digitally and it is verified by all participants in the blockchain network. So the smart contract
is created without the third party.

3.2 Digital Signature

Modern cryptography system has the key, which is used to encrypt the data that can be made public as well as the key that
is used to decrypt the data that can be kept private. This cryptography signature provides proof of ownership, tamper-proof,
validity and integrity for digital documents. Digital signatures have a vital part in the blockchain. The (Figure 2) shows the
process of a typical digital signature.

Like a handwritten signature, each signer’s digital signature is unique. Digital signatures use a typical, accepted format,
called Public Key Infrastructure (PKI). It also provides the highest level of security and universal acceptance. PKI requires the
provider to use a mathematical algorithm to generate two long numbers, called keys. One is a public key and another one is
a private key. When a sender electronically signs a document, the signature is created using the sender’s private key, which is
always securely kept by the sender.

Fig 2. Pictorial representation of Digital Signature creation and verification

Themathematical algorithm acts as a cipher, creating data matching the signed document, called a hash, and encrypting that
data. The resulting encrypted data is the digital signature. Both digital data and a copy of the sender’s public key are sent to the
receiver. After receiving the data, the receiver enters the sender’s public key and signature into the algorithm which decrypts
digital data. At the time of document signing, the signature is also marked with the time. If the document changes after signing,
the digital signature is invalidated.

3.3 Digital Certificate

The registration certificate or electronic certificate is typically used to determine ownership. Blockchain might help with digital
rights management by solving the problem of traceable ownership. A claimant must prove ownership of the alleged right as well
as its improper appropriation to establish an infringement claim. When the owner is not listed on the registration certificate,

https://www.indjst.org/ 1198

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

however, a claimant must provide a chain of title establishing ownership or exclusive licensee rights. As a result, an author or
artist can register a creative work on the time-stamped, immutable blockchain to verify ownership and existence at a specific
point in time.

3.4 Elliptic Curve Digital Signature Algorithm (ECDSA

Basically, it is a signature algorithm.Usually, EthereumandBitcoin use the Elliptic CurveDigital SignatureAlgorithm (ECDSA).
The major benefit of this algorithm is as follows: Using elliptic curve point manipulation, the user can derive a value from the
private key. This key is not reversible, so it is safe and tamperproof. Also, prove the ownership of an address without exposing
its private key. It uses less computation power than RSA. It provides robust and efficient encryption.This algorithm ensures that
the data or funds can be received by the rightful owner.

3.5 Off-Chain Transaction Process

This smart contract uses the off-chain transaction process. The digital documents are not warehoused on the chain, because
it would be prohibitively expensive. But off- chain communication is necessary between the customer and the file server. As a
result, an off-chain transaction provides a secure download.The garment designer and the customer are the two key participants
in the smart contract. Each entity has an Ethereum address and can participate by invoking smart contract functionalities at
specific moments. A straight function call by an entity is not permitted; instead, modifiers are used. The modifiers limit the
functions that can be invoked by a few individuals.

3.6 IPFS (Interplanetary File System

IPFS is a distributed file system that aims to connect all computing devices through a single file system. It offers the storing
of documents, digital assets, music, videos, photos, and social network information. It also provides the secure storing and
retrieval of data with the help of hash values.The IPFS is used to store and retrieved the smart contract documents by using the
hash value whenever the user required.

3.7 Fileserver

A file server is a simple computer system with the ability to deliver and receive all file requests over a computer network. The
major role of the file is as follows in the proposed system: If all parties agree, the transaction begins, and the agreed-upon
collateral is settled from the file server and sent to the customer.

4 Proposed System
The proposed system involves the combination of blockchain technology, Ethereum smart contract and distributed peer-to-
peer file system in IPFS.This system provides a decentralized system.This solution also affords the secure distribution of digital
data, traceability and reliability. One of the existing smart contract system’s shortcomings is using the same work, multiple
copyright registrations can be accomplished. To solve this problem, the following two solutions may be used (a) Provide one
smart contract per document. (b) The ownership number and document version number are included and uploaded on the
chain. It is done based on the designer’s request and approval of grant authorities.

The proposed system has the following consecutive steps. They are (i) Copyrighted design documents created using digital
signature creation and verification, (ii) smart contract creation (iii) electronic certificate generation for confirmed created
contracts. (Figure 3) shows the block diagram of the proposed system.

The proposed system has member participants and they implement the smart contract using the required functionalities.

4.1 Participant Roles in the Smart Contract

The garment design work highlights different participants who are involved and interact with the smart contract. The roles and
communications of the members are given as follows:

Garment Designer:The creator of digital design work. A designer can use the blockchain application to register their works
for copyright protection. This work’s copyright information is validated and the registered work will be sold to the accepted
buyer or customer.

Customer: Using the blockchain application, a buyer could undertake a copyright inspection and purchase for registered
digital design works, if required.

https://www.indjst.org/ 1199

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Fig 3. Block diagram of proposed system

File Server :The digital design work data is stored on the file server and can be shared or downloaded by customers. If all
parties agree, the transaction begins, and the agreed-upon collateral is settled from the file server and sent to the customer.

4.2 Functionalities of the Smart Contract

Smart contract handles the registration of participants, contract token number generation for customers, copyright file
uploading on IPFS, requests for document approval, new registration request andpayment settlement for the confirmed contract
in the chain. For implementation process establishment the smart contract includes the following to achieve the required
functionality:

Methods : Methods are functions that define the contract’s functionality. Some methods include limits that only allow a
specific entity to use them, while others may be open to all participants. The smart contract’s procedures are directly tied to the
contract’s functionality.

Modifiers :Modifiers can be used to change a function’s behavior. They can be used to specify or check a condition prior to
execution. Modifiers are used to restrict access to and execution of a smart contract function to only specific participants.

Events : Events are necessary for informing all parties involved about changes to the transactions in progress. An event
occurs after the execution of any function call. This also makes it easier to trace back in the event of a disagreement.

Variables :Variables are values that change when conditions or function calls are met. Variables may be able to store certain
information depending on the contract.

https://www.indjst.org/ 1200

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

5 Implementation Steps and Testing Results of the Proposed System
The proposed system is implemented using the Remix IDE. It is used to develop and teffigst the smart contract. It is an open
source environment. It can be accessed through the following link https://remix.ethereum.org/. Remix is an environment for
building smart contracts using Solidity code, as well as testing and debugging them. This section concentrates on the specifics
of implementation and testing. The smart contract is tested in Remix IDE. For testing, the three Ethereum addresses assigned
to the participants are as follows:

garment designer: “0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db” customer: “0x5b38da6a701c568545dcfcb03fcb875f56beddc4”
and file server: “014723a09acff6d2a60dcdf7aa4aff308fddc160c”

such that initially each of them has 100 Ethers to test the contract code. For deploying the contract, the proposed system
uses the JavaScript VM environment in the Remix.

The designer created the garment design work. The design document can be copyrighted either by using watermarking (15)
process or by using the ECDSA digital signature algorithm. Using transformation, the design document watermarked into the
cover image. This is watermarked image uploaded into the IPFS.

The proposed system is implemented by using the following sequence of steps. They are (i) Copyrighted design document
created using digital signature creation and verification (described in section 5.1), (ii) smart contract creation (described in
section 5.2) (iii) electronic certificate generation for confirmed created contracts (expressed in section5.3).

5.1 Step1: Process flow of the Digital Signature Generation and Verification

Blockchain technology offers transparency and also provides the capacity to records the each and every log of a transaction on
a public ledger. As a result, the Ethereum smart contract generates events and logs that aid in tracking and making proof of
delivery easier. The smart contract manages all interactions and transactions among the parties. (Figure 4) shows the process
flow of the Creation of Copyright design work using Digital signature and customer’s digital signature verification.

Fig 4. Shows the Copyright data digital signature creation and verification

5.1.1 Digital Signature Generation and Verification
Digital signature is generated based on the following steps (a) Key generation (b) Encryption/Signing (c) Decryp-
tion/Verification.

5.1.1.1 Key Creation or generation:. A public and private key will be generated via the key generation. It connects them
with the help of an Elliptical Curve Digital Signature Algorithm (ECDSA) and it has the following properties, they are signing

https://www.indjst.org/ 1201

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

and validation. A public key, private key, and message will all be included in a signature. The signature will be returned as
another string.

Signature =F (public key, private key, message)

5.1.1.2 Encryption/Signing:. Encryption ismost commonly employed to conceal data within other data. A string ormessage
will be encrypted in the form of hash value. Its goal is to conceal secret message. Signing is used to generate a unique output
string, but it also makes the original message public. Algorithm 1 describes the creation of digital signature using ECDSA
algorithm.

Algorithm 1: Creation of Digital Signature using ECDSA algorithm ECDSA signatures contains of two integers: r and s (where r is 1st
half of the bit in signature, s is the second half of the bit in a signature). A variable v is a verification signature or recovery identification
used by Ethereum.The signature can be written using the following variables r, s, or v. The sender will require the message to sign and
the private key (d�) to sign it with in order, to produce a signature. The following is a description of the ”simplified” signature procedure.
1. Hash (e) value calculated from the message(m) to sign.
2. A secure arbitrary value for k is generated.
3. Calculate point (x1, y1) on the elliptic curve by multiplying k with the G constant of the elliptic curve.
4. Calculate r= x1 mod n. If r equals zero, go back to step 2.
5. Compute s= k-1(e+ rda) mod n. If equals zero, go back to step 2.
Where, k is a random number, e is a hash value of message(m), da is private key.

5.1.1.3 Decryption/Verification:. The validation requires only at the receiver’s end to retrieve and verify the data. If the
validation function’s output hash value matches the public key, the signature is genuine; otherwise, it’s a forgery.

Validation = F (signature, message)
Case(i) validation=public key which implies the signature and message is valid;
Case (ii) validation ̸=public key which means the signature and message is not valid.
After signing the design document, the designer sends the public key and message to the customer. The customer retrieves

the sent document and verifies digital signature using the public key. Algorithm 2 describes the verification algorithm of the
ECDSA digital signature.

Algorithm 2: Verification algorithm of the ECDSA Digital Signature
1. Hash (e) calculated to recover the message.
2. Compute point R= (x1, y1) on the elliptic curve, where x1 is r for v=27, or r + n for v=28.
3. Determine u1=-zr-1 mod n and u2=sr-1 mod n.
4. Compute point Qa=(xa, ya)=u1G+u2R.
5. Qa = , then reject the signature. Otherwise, convert the x coordinate x1 of Q an integer x11 and calculate v= x11 mod n
6. Accept the signature if and only if v=r.
Where Qa is the point of the public key for the private key used to sign the address. It is used to generate an address and also compare it
to the address provided. If it matches the signature is valid. v is the last byte of the signature (v is either 0 or 1). x and y are elliptical
coordinates. G is a base point of Elliptical curve. R is the reflection point of the x axis.

This environment is only accessible to the authenticated user. The digital signature is decrypted by the customer using the
owner’s public key.This assures the authenticity, as only owner has his private key, only the owner can encrypt using his private
key, which can then be decrypted using the owner’s public key. For message integrity, the hash value generated by the customer
from the message must be the same. If the generated key should be the same every time. If not, the consumer assumes the key
is a forgery.

5.1.2 The Copyright document
IPFS is a decentralized file system that produces a unique hash for each file or design document. The registered
users only can access and view the garment design document. This specified file can have downloaded and viewed
by the authenticated users who know the public key of the document. This copyrighted document includes the
information of the garment designer’s id, name, design created date and design specifications of the garment design. The
IPFS hash of a test document-1 is “QmZu6JVbsMoyzujjUmJqhQAfDQb8vqvCNiyJ4DEAbc474u” and test document-2 is
“QmbEvHM25343kzzrJRuVfTDrZE39QbGYSURgr69Yps5jK4” respectively.

https://www.indjst.org/ 1202

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Fig 5. (a) shows the digital signature generation and verification for the design file (b) shows the sample copyrighted garment design document
of the designer.

(Figure 5a) shows the message signature generation and verification for the design file. (Figure 5b) shows the sample
copyrighted garment design document of the designer.

Encrypted copyright garment design file has been stored in the IPFS by the registered garment designer.This file also contains
the terms and conditions of the contract.

5.2 Step 2: Creation of Smart Contract

Figure 6 describes process flow (Step2) and the sequence of activities of a smart contract.

Fig 6. Shows the process flow and the sequence of activities of a smart contract

The creation of smart contract consists of the following steps:
a. Contract creation request made by the registered customer to designer for agreed digital design document.The registered

customers only can access and view the garment design document. If the designer accepts the customers request, the smart
contract will be created by the designer.

b. If the contract terms and conditions are accepted by the customer, then the customer deposits the guaranteed amount for
confirmation.Then the smart contract automatically generates the contract token number for the specified customers ethereum
address.

c.The designer sends the specified file public key to the customer. Now the authenticated customer can download the design
document, who knows the encrypted key of the document. After successful smart contract creation, the remaining payment is
transferred from the customer to the garment designer and file server.

https://www.indjst.org/ 1203

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

d. The final copy of the garment design document is uploaded in the IPFS by the designer with the version number. If the
contract is not successful, then the guarantee/ collateral amount will be refunded to the customer.

e. If the customer needs to perform any modifications to the existing document, the customer sends the request for designer
approval. If any modification is performed in the document, then it will be uploaded to the IPFS with the approval granted by
the designer.

f. The new registration request is made by the customer or designer. If the new entry address is not existing, then it will be
added to the contract. Otherwise, new registration request will be rejected.

a. Contract C reation
Algorithm 3 indicates the process of document request by the customer and based on the customer request the designer

creates the contract.

Algorithm 3: Contract Creation and Document Request
Input: EAc=Ethereum address of customer, EAd=Ethereum address of designer, SContract = ContractState
Dreg is the Registered Designer
Creg is the Registered Customer
Dreg←CregRequest the Design Document
Restrict access to only
Dreg∈ EAd Dreg←SContract is Created

The registered customer ethereum address “0x5b38da6a701c568545dcfcb03fcb875f56beddc4” requests the design docu-
ment. When customers request the design document, it is an automatic payable operation. At the time of customer’s request,
1 ether value is detected from the document requested, customer ethereum address. As per the customer request, the designer
creates the smart contract. (Figure 7a) shows the input value, contract execution and event log of the created contract.

The registered garment designer “0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db” makes the contract registration based
on the customer request.

b. Contract Token Number generation
The customer needs to pay the advance payment for contract confirmation.The collateral is 2 Ether because the contract fee

is 1 Ether. The file server also paid the collateral of 2 Ethers for the customer and a token was issued for each customer when
the customers successfully submitted their payment along with their request. Algorithm 4 describes the sequential steps of the
collateral payment.

The customer balance is nearly 99 ethers, which represents the successful contract requisition. The file server balance is 96
ethers, which represents the collateral payment deposited by the file server for the customers. (Figure 7 b) shows the ether
balance of all the participants, before and after collateral payment execution of the smart contract.

Algorithm 4 : Collateral Payment
Notations Used: EAfs=Ethereum address of file server, EAd=Ethereum address of the designer, EAc=Ethereum address of the customer,
SContract = ContractState, SCustomer =CustomerState, SDesigner =DesignerState, TKNContract= Customer Contract Token Number
Input: EAfs, EAd, EAc, IPFS hash, TKNContract , Document Price, Collateral, SContract , SCustomer EA= Ethereum Address
SContract ← Created
EA Set of all static ethereum addresses saved in this contract Restrict access to any customer Creg∈ EA
if Contract value=document price +collateral then
SCustomer ← file server Deposited Collateral←Customer Deposited Collateral
Customer TKNContract ← Contract token number generated Successfully
SCustomer ← Received TKNContract and Hash
else
Revert SContract and show an error
End

After successful the smart contract creation and successful guarantee/collateral payment the contract token number has been
generated. This is performed as an internal function of smart contract. The contract token number is built using a keccak256
hash. It is an in-built hash process which is especially created by the ethereum blockchain. This hash is generated by using
the TokenGeneration () function and which has the following data, the Ethereum address of the customer (EAcus), number of
customers (NoC), number of successful sales (NoS), Token validity (TV), and time stamp of the block(BlockTimestamp). It can be
written as TokenCustomer= keccak256(EAcus, NoC, NoS, TV, BlockTimestamp ). This contract token number creation is providing

https://www.indjst.org/ 1204

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Fig 7. (a) Input value, Contract execution message and event log of the created contract (b) Shows the ether balance of all the participants,
before and after collateral payment execution of the smart contract (c) shows the Collateral Payment execution and event log for the created
customer token number of the smart contract.

the a unique identity to each customer. (Fig.7c) shows the collateral payment execution and event log of the token generation
of the customer with the ethereum address “0x5b38da6a701c568545dcfcb03fcb875f56beddc4”.

c. Successful Transaction
Algorithm 5 represents the consecutive steps of the design document download, successful and unsuccessful payment

settlement.
The customer ethereum address, contract token number and design document hash data are checked by the designer. If

the data are correct then the designer sends the specified file public key to the customer. Now the authenticated customer
can download the design document, who knows the encrypted key of the document. (Figure 8 a) shows the customer sample
downloaded file from IPFS.

https://www.indjst.org/ 1205

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Algorithm 5: Document download and payment Settlement
Input: EAfs, EAd, EAc, SContract , SCustomer , Sdesigner

Ethereum address of fileserver, customer and designer address saved in the contract.
if SCustomer ==Successful Download and satisfied then
Contract remaining value to filesever fspay= collateral + x Contract remaining value to designer despay= docprice/2 EAfs←fspay←EAc
//Customer pay the remaining contract payment to fileserver
EAd←despay←EAc //Customer pay the remaining contract payment to designer Customer successfully settle the payment SCustomer
←Transaction Completed
SDesigner←Generate E certificate for the Successful contract
else
SCustomer==Unsuccessful Download or not satisfied then
Check the Customer TKNContract
Fileserver→Refund the Collateral to Customer
SCustomer ←Payment Refunded Successfully
else
Revert SContract and show an error
End

Fig 8. (a) shows the customer sample downloaded file from IPFS (b) shows the successful document download result and event log of the
customer in the smart contract(c) shows the Ether payment settlement by the customer to the designer for the smart contract (d) shows the
Ether balance of all the participants for the successful payment settlement of the smart contract (e) shows the unsuccessful transaction and
event log of the contract disagreement operation

https://www.indjst.org/ 1206

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

In the successful transaction, the customer downloaded the design document effectively which is indicated by the smart
contract file server. (Figure 8b) shows the successful document download result and event log of the customer in the smart
contract.

If the customer is satisfied with the downloaded document, the remaining contract payment is settled to the designer as
per the contract guidelines. If the total contract amount is 6 ethers mean, already the collateral payment is 2 ethers paid by the
customer. The remaining 4 ethers need to be paid by the customer. This 4 ethers amount is shared by the file server and the
designer, 2 ethers each respectively. (Figure 8c) shows the Ether payment settlement by the customer to the designer for the
smart contract.

The customer ethereum address “0x5b38da6a701c568545dcfcb03fcb875f56beddc4” paid the remaining 2 ethers to the
designer “0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db”. As like customer transfer the remaining 2 ethers to the fileserver
“0x14723a09acff6d2a60dcdf7aa4aff308fddc160c”. (Figure 8d) shows the ether balance of all the participants for the successful
payment settlement for the smart contract.

After successful payment, the designer uploads the final copy of the design document in the IPFS with the version number
for further reference.

d. Unsuccessful Transaction
If the customer disagrees with the contract the collateral amount must be refunded to the customer. The designer checks

the token number of the customer. The designer downloads the disagreed smart contract information using off-chain. The
collateral payment settled as like successful transaction. The collateral amount of 4 ethers should be refunded, 2 ethers for the
customer and 2 ethers for the fileserver. The ethereum address “0xca35b7d915458ef540ade6068dfe2f44e8fa733c” given as an
input parameter. (Figure 8e) shows the unsuccessful transaction since the file cannot be downloaded effectively.

e. Document Modification/Uploading Approval
If the customer required any modification in the contract design document or terms and conditions, the customer must

get the approval from the designer. The registered customer requests the designer for document modification. Based on the
request, the designer checks the customer address and document hash. Algorithm 6 represents the steps of the design document
modification request by the customer.

Algorithm 6: Design Document Modification Request
Input: EAc, EAd, IPFS Hash, Creg, Dreg, SContract ,SCustomer ,SDesigner

SContract==Created
SCustomer is ReadytoSubmit
Restrict access to only Dreg∈ EAd
if Creg (EAc) and IPFS hash=true then
SDesigner ==AcceptModificationRequest
SContract ←WaitForDesignersApproval
SCustomer ←SubmittedForApproval
SContract → GrantApproval for document modification
else
Creg (EAc) and IPFS hash̸=true then
SDesigner ̸=AcceptModificationRequest
SContract ←WaitForDesignersApproval
SCustomer ←SubmittedForApproval
SContract ←ApprovalRejected for document modification
else
Revert SContract and show an error
End

Case (i): Customer Address, Document Hash == Matched with existing smart contract =>Approval granted to document
modification (if designer accepts the modification)

If Customer address and document hash matches with smart contract data, then the state of the request changed from
Waitfordesignerapproval state to SubmittedforApproval state. The customer gives a request with the input parameters such
as customer’s ethereum address “0x5b38da6a701c568545dcfcb03fcb875f56beddc4” and the IPFS hash of a garment design
document “QmbEvHM25343kzzrJRuVfTDrZE39QbGYSURgr69Yps5jK4”. Based on the given inputs requestforApproval
function executes and the event log shows the approval status of the customer. (Figure 9 a) displays the execution of the
document modification approval request function and corresponding event log of the smart contract.

https://www.indjst.org/ 1207

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Algorithm 7: Uploading the Modified design Document
Input: EAc , SContract , SCustomer , SDesigner

SContract ←Wait For Designers Approval
SCustomer ← Ready to Submit S
Designer ←Waiting To Sign
Restrict access to only Dreg∈ EAd
if document hash[EACus]=IPFSHash of Document then
SContract ←Approval Provided
SCustomer ←Approval Granted
SDesigner ←Approval Success
Customer uploads the modified Document with the version number
else
SContract ←Approval Denied
SCustomer ← Approval Not Provided
SDesigner ←Approval Failed
Customer not permitted to perform the document modification
else
Revert SContract and show error
End

Algorithm 7 represents the uploading the modified design document based on the customer request.
The designer provides the approval to modify the document, then the customer’s performs the granted modifications and

it sends to the designer for approval. The designer verifies the modified data. If the modification is accepted by the designer,
then the transaction state of the customer changed from NewVersionSigned to Approval Granted while executing the provide
Approval To modified and Upload () function. The successful upload approval grant, will be permitted by the designer. This
modified design document is uploaded to the IPFS with the hash and the version number of the document. The customer
provides their ethereumaddress as an input “0x5b38da6a701c568545dcfcb03fcb875f56beddc4” to execute the provideApproval
To modified and Upload () function. (Figure 9b) displays the successful execution and event log of modified document upload
approval of the smart contract.

Case (ii): Customer Address, Document Hash ̸= Matched with existing smart contract =>Approval not Granted to
Document modification (if designer not accepts the modification)

If the input value (customer address or document hash) not matched with the existing contract data, the designer
will not accept the customer modification request. Then the designer will not provide the ApprovalGrant for document
modification. Here, the contract transaction state reformed from SignatureDenied to ApprovalFailed. The customer gets the
Approval Rejected information from the designer. So it is represented as failed transaction or approval rejected for document
modification. (Figure 9c) displays the event log of the rejected approval for document modification in the smart contract.

Case (iii): If the function executed by unregistered entity.
If any of the values are (customer address or document hash) is not matched with the existing contract data, it implies

the customer request condition is failed, so the transaction is terminated and it revert back to the initial state. In this case,
the customer is not considered as a registered member of the contract. So the designer will not provide the permission for
modification. So it is represented as a failed transaction. (Figure 9 d) displays the error message of the unsuccessful execution
and event log of the document modification rejection of the unregistered member in the smart contract.

f. Request new registration entry address/Approval
This section grants the new registration entry as per the designer or customer request. The designer or customer provides

the ethereum address as an input value. This contract checks the new registration request. Algorithm 8 describes the new
registration request of the unregistered member.

Case (i): If new entry address ̸= Existing address=> Approval granted
The new entry address given by the designer or customer. The requesting ethereum address state is checked in the contract

whether the address is existing or not. If the address is not available, then the new address transaction state is modified from
WaitToRegister state to NewRegistrtaionRequested. The successful new registration request, will receive a grant approval for
new registration.

New registration request by the customer or designer by executing the requestNewRegistration() function. It is tested by
a following new entry ethereum address as an input “0xca35b7d915458ef540ade6068dfe2f44e8fa733c”. It is a new address,
so it receives the registration approval from the smart contract. (Figure 10 a) shows the successful execution of the

https://www.indjst.org/ 1208

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Fig 9. (a) displays the execution and event log of document modification approval request function of the smart contract (b) displays the
successful execution and event log of modified document upload approval of the smart contract. (c) displays the event log of the rejected
approval for document modification in the smart contract (d) displays the error message of the provide Approval To modified and upload()
function executed by unregistered member in the smart contract.

Algorithm 8: New Registration Request of the unregistered member
Input: EANew= Ethereum address new registration requested
SContract is Approval Provided
New Registration State is Wait to Register
if EAnew is ==Exist then
Contract State reverts and shows an error
else
Contract state changes to EANew
New RegistrationState← EANew
CDesigner changes to ApprovalFailed New Registration Request← Permission Granted
else
Revert SContract and show an error
End

https://www.indjst.org/ 1209

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

Fig 10. (a) Shows the successful execution of the request New Registration () function and the corresponding event log of new registration
approval grant in smart contract (b) Shows the registration failed message of the already registered user in the smart contract.

requestNewRegistration() function and the corresponding event log of new registration approval grant in smart contract.
Case (ii): If new entry address == already registered =>New Registration Failed
New registration request by the customer or designer by executing the requestNewRegistration() function. If the ethereum

address is already registered, then it displays the error message. The following ethereum address is given as an input
“0x583031d1113ad414f02576bd6afabfb302140225”. It has been already registered. (Figure 10 b) shows the registration failed
message of the already registered user in the smart contract.

Step 3: Generating E-certificate for confirmed Smart contracts

a. For a successful smart contract, the e-certificate is generated by the designer and uploaded to the IPFS.
b. The customer can download the certificate for their authentication.
Generating E-certificate for Confirmed Smart Contracts
The designer checks the status of the payment settlement for the confirmed smart contracts. If the payment settlement is

finished, then the designer will create the e-certificate for this successful smart contract. The e-certificate contains the details of
customer token no, customer id, IPFS Hash of a file, and a description about the design work and duration of the contract. This
e-certificate is uploaded to the IPFS file system. For authentication the customer can download the e-certificate whenever they
require. (Figure 10 c shows the e-certificate of the confirmed smart contract for the garment design work.

Fig 11. e-certificate of the confirmed smart contract for the garment designwork

https://www.indjst.org/ 1210

https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

6 Comparison of Existing Work
The proposed work compared with the following common terms used in the References: Blockchain, Data encryption,
Interplanetary File System(IPFS), Proof-of-Delivery (PoD), Digital Right Management (DRM), off-chain transaction process
and digital watermarking(DW). The comparison of existing work with the proposed framework is given in Table 1.

Table 1. Comparison between the existing and proposed work
State of Art Application Described Block

chain
Data
Encryption

IPFS PoD DRM Off-
chain

DW

Reference (2) Document version control of the digital
data

yes No yes no no yes No

Reference (3) Author Royalty yes No yes yes yes yes No
Reference (4) Sharing digital data yes yes yes yes no no No
Reference (6) Design work yes yes no yes yes yes No
Reference (8) Research data right management Yes No no no yes no No
Reference (9) Sale of Digital Content Yes No yes yes no yes No
Reference (12) Review based system Yes No no no no no No
Proposed
system

Digital garment design work Yes yes yes yes yes yes Yes

7 Conclusion and Future Work
This paper, presented a blockchain based solution and framework for digital garment design work with proof of delivery. Digital
copyrighted documents are created and verified by using the digital signature algorithm. The copyrighted digital signature
authentication or watermarked data provides the secure sharing of data on the network. Blockchain and smart contracts can
improve the owner’s identity and security. The proposed system was implemented and tested by using the RemixIDE for the
following functionalities such as design document copyrights, document versions and payment settlements. The blockchain
and IPFS decentralized file system ensures the secure storing of design data, good productivity and it also maintains the smart
contract agreement between the parties with reliability. The ethereum network, illustrates the blockchain-based platform that
enables the off-chain transaction process. The proposed work compared with the existing work based on several criteria such
as blockchain, IPFS etc. The future work of the system can be extended with multi party smart contract, traceability with QR
(Quick Response) code and analysis of various attacks of the smart contract.

References
1) Ferrer-Gomila JL, Hinarejos MF. A Multi-Party Contract Signing Solution Based on Blockchain. Electronics. 2021;10(12):1457–1457. Available from:

https://doi.org/10.3390/electronics10121457.
2) Nizamuddina N, Salaha K, AzadbM, Arshadc J, RehmanMH. Decentralized document version control using ethereum blockchain and IPFS. Computers

and Electrical Engineering. 2019;76:183–197. Available from: https://doi.org/10.1016/j.compeleceng.2019.03.0140045-7906/.
3) Nizamuddin N, Hasan H, Salah K, Iqbal R. Blockchain-Based Framework for Protecting Author Royalty of Digital Assets. Arabian Journal for Science and

Engineering. 2019;44(4):3849–3866. Available from: https://doi.org/10.1007/s13369-018-03715-4.
4) NazM, Fahad A, Al-Zahrani R, Khalid N, Javaid AM, QamarMK, et al. A Secure Data Sharing PlatformUsing Blockchain and Interplanetary File System.

Sustainability . 2019;11:7054–7054. Available from: https://doi.org/10.3390/su11247054.
5) Lin KP, Chang YW, Wei ZH, Shen CY, Chang MY. A Smart Contract-Based Mobile Ticketing System with Multi-Signature and Blockchain. 2019 IEEE

8th Global Conference on Consumer Electronics (GCCE). 2019;p. 231–232.
6) Lu Z, Shi Y, Tao R, Zhang Z. Blockchain for Digital RightsManagement of DesignWorks. 2019 IEEE 10th International Conference on Software Engineering

and Service Science (ICSESS). 2019.
7) AhmedWAH,Maccarthy BL. Blockchain-Enabled Supply Chain Traceability in the Textile and Apparel Supply Chain: A Case Study of the Fiber Producer,

Lenzing. Sustainability. 2021;13(19):10496–10496. Available from: https://doi.org/10.3390/su131910496.
8) Pérez JJB, Queiruga-Dios A, Víctor G, Ángel Martín Del Martínez, Rey. Traceability of Ready-to-Wear Clothing through Blockchain Technology.

Sustainability;2020(18):7491–7491. Available from: https://doi.org/10.3390/su12187491.
9) Khan SN, Loukil F, Ghedira-Guegan C, Benkhelifa E, Bani-Hani A. Blockchain smart contracts: Applications, challenges, and future trends. Peer-to-Peer

Networking and Applications. 2021;14(5):2901–2925. Available from: https://doi.org/10.1007/s12083-021-01127-0.
10) Leka E, Selimi B, Lamani L. Systematic Literature Review of Blockchain Applications: Smart Contracts. In: 2019 International Conference on Information

Technologies (InfoTech). IEEE. 2019. Available from: https://doi.org/10.1109/infotech.2019.8860872.
11) Fang W, Chen W, Zhang W, Pei J, Gao W, Wang G. Digital signature scheme for information non-repudiation in blockchain: a state of the art review.

EURASIP Journal on Wireless Communications and Networking. 2020;2020(1). Available from: https://doi.org/10.1186/s13638-020-01665-w.

https://www.indjst.org/ 1211

https://doi.org/10.3390/electronics10121457
https://doi.org/10.1016/j.compeleceng.2019.03.014 0045-7906/
https://doi.org/10.1007/s13369-018-03715-4
https://doi.org/10.3390/su11247054
https://doi.org/10.3390/su131910496
https://doi.org/10.3390/su12187491
https://doi.org/10.1007/s12083-021-01127-0
https://doi.org/10.1109/infotech.2019.8860872
https://doi.org/10.1186/s13638-020-01665-w
https://www.indjst.org/


Geethanjali et al. / Indian Journal of Science and Technology 2022;15(24):1195–1212

12) Saleh OS, Ghazali O, Ehsan RM. Blockchain based Framework for Educational Certificates Verification. Journal of Critical Reviews. 2020;7.
13) Qureshi A, Jiménez DM. Blockchain-Based Multimedia Content Protection: Review and Open Challenges. Applied Sciences;11(1):1–1. Available from:

https://doi.org/10.3390/app11010001.
14) Dobre RA, Preda RO, Badea RA, Stanciu M, Brumaru A. Blockchain-Based Image Copyright Protection System using JPEG Resistant Digital

Signature. 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME). 2020;26:206–210. Available from:
https://doi.org/10.1109/SIITME50350.2020.9292296.

15) Geethanjali D, Priya R, Bhavani R. Protected Copyright Information Sharing using Blockchain for Digital Garment Design Work. Journal of Education:
Rabindrabharati University;XXIII, No.:2021–2021.

https://www.indjst.org/ 1212

https://doi.org/10.3390/app11010001
https://doi.org/10.1109/SIITME50350.2020.9292296
https://www.indjst.org/

	Introduction
	Related Work
	Key Components of the proposed system
	3.1 Smart Contract
	3.2 Digital Signature
	3.3 Digital Certificate
	3.4 Elliptic Curve Digital Signature Algorithm (ECDSA
	3.5 Off-Chain Transaction Process
	3.6 IPFS (Interplanetary File System
	3.7 Fileserver

	Proposed System
	4.1 Participant Roles in the Smart Contract
	4.2 Functionalities of the Smart Contract

	Implementation Steps and Testing Results of the Proposed System
	5.1 Step1: Process flow of the Digital Signature Generation and Verification
	5.1.1 Digital Signature Generation and Verification
	5.1.2 The Copyright document

	5.2 Step 2: Creation of Smart Contract
	Step 3: Generating E-certificate for confirmed Smart contracts

	Comparison of Existing Work
	Conclusion and Future Work

