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Abstract

Objectives: The present work reports the study of 34 rhonchi (RB) and
Bronchial Breath (BB) signals employing machine learning techniques, time-
frequency, fractal, and non-linear time-series analyses. Methods: The time-
frequency analyses and the complexity in the dynamics of airflow in BB
and RB are studied using both Power Spectral Density (PSD) features and
non-linear measures. For accurate prediction of these signals, PSD and non-
linear measures are fed as input attributes to various machine learning
models. Findings: The spectral analyses reveal fewer, low-intensity frequency
components along with its overtones in the intermittent and rapidly damping
RB signal. The complexity in the dynamics of airflow in BB and RB is investigated
through the fractal dimension, Hurst exponent, phase portrait, maximal
Lyapunov exponent, and sample entropy values. The greater value of entropy
for the RB signal provides an insight into the internal morphology of the airways
containing mucous and other obstructions. The Principal Component Analysis
(PCA) employs PSD features, and Linear Discriminant Analysis (LDA) along
with Pattern Recognition Neural Network (PRNN) uses non-linear measures
for predicting BB and RB. Signal classification based on phase portrait
features evaluates the multidimensional aspects of signal intensities, whereas
that based on PSD features considers mere signal intensities. The principal
components in PCA cover about 86.5% of the overall variance of the data class,
successfully distinguishing BB and RB signals. LDA and PRNN that use non-
linear time-series parameters identify and predict RB and BB signals with 100%
accuracy, sensitivity, specificity, and precision. Novelty: The study divulges the
potential of non-linear measures and PSD features in classifying these signals
enabling its application to be extended for low-cost, non-invasive COVID-19
detection and real-time health monitoring.
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1 Introduction

Respiratory diseases kill almost 3 million people each year, making them one of the
leading causes of pulmonary illness and fatalities. The World Health Organization
divulges that Chronic Obstructive Pulmonary Disease (COPD) takes over the third
position in causing death in First World countries. The primary procedure for
diagnosing lung conditions by physicians is auscultation. The airflow through the
respiratory tract produces lung sounds and gives valuable information about the lung
condition, diseases, and obstructions in the airways. Breath sounds are commonly
divided into two categories - normal and adventitious ("), Over the bronchi, basis
pulmonis, and lung periphery, normal breath sounds such as bronchial (BB), vesicular,
and bronchovesicular are auscultated. Rhonchi (RB), crackle, wheeze, stridor, and
pleural rub are examples of adventitious breath sounds that identify acquired lung
diseases such as restriction in large airways, fluid accumulation in or around lungs,
air passage constriction leading to inflation of a portion of the lungs, pleural layer
inflammation, and others ). The pitch of the breath sound and the ratio of inspiration
to expiration duration vary depending on where it originates. As a result, a thorough
diagnosis of lung disorders requires an inquiry to determine the hallmark characteristics
of normal and abnormal sounds. The paper focuses on the study of rhonchi breath
sound reflecting the pathological conditions of the lung.

Rhonchi is a continuous, low-pitched, adventitious lung sound that is heard in
bronchi during both the inspiratory and expiratory lung cycle®, which indicates
COPD, pneumonia, bronchiectasis, and bronchitis ). For auscultation and biomedical
imaging, several mathematical tools like Fourier transform and wavelet transform have
been employed ). These techniques help in transforming the auscultation signal in
the time domain to the frequency domain. The frequency components present in the
normal and adventitious breath signals vary depending on their origin and the diameter
of airways 7). Though the Fourier transform can tell us the frequency components and
their intensities, it is unable to provide details regarding the instance of its occurrence ®.
The wavelet transform, which brings out the temporal information, overcomes this
limitation by providing the time and duration of occurrence of a particular frequency
component together with its intensity. The sound due to the airflow through the
respiratory tract is a time-series data reflecting the lung condition. The non-linear time-
series analysis of the signal gives information about the respiratory tract conditions
besides the lung condition.

Non-linear time-series analysis is a potent mathematical technique to unveil the
deterministic and stochastic parameters of time-series data. Geometric representation
of the complex trajectories of a dynamic system could be represented by its phase
portrait drawn in the two-dimensional phase space. The construction of the phase
portrait, and the maximal Lyapunov exponent (A), point to the complexity of a
system®). The Fractal dimension (D){?), Hurst exponent (H), and sample entropy
(S) are regarded as the measures of complexity and randomness of a system. Several
methods like epsilon-blanket, walker-divider, power spectrum, and box-counting
methods are used for finding fractal dimension depending on the nature of the problem.
The sample entropy, a parameter proposed by J. S. Richman, E. Lake, and J. R. Moorman,
describes the system’s complex, uncertain, and random nature, which measures the
speediness of the information generated in the time-series and is widely employed in
biomedical engineering 11).

Computer-based unsupervised and supervised classifiers help automatically classify
lung sounds in real-time. Data sets with identical characteristics can be classified
with the unsupervised principal component analysis (PCA) based on dimensionality
reduction. Supervised learning models - linear discriminant analysis (LDA) and pattern
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recognition neural network (PRNN) provide precise classification and prediction of breath sound based on the extracted
features. The multidimensional aspects of dynamic non-stationary time-series lung sound like complexity, randomness, and
unpredictability can be efficaciously evaluated by analyzing the non-linear features of the signal. The present work inquires
about the adventitious breath sound rhonchi through machine learning techniques, time-frequency, non-linear time-series,
and fractal analyses and compares it with the normal breath signal BB to explore the possibility of employing them in lung
auscultation for efficient classification with a higher prediction accuracy rate.

2 Materials and Methods

In the present study, thirty-four lung sound signals gathered from online databases with a duration of 2 s - 5 s at a sampling
frequency of 44,100 Hz1>~14) are subjected to frequency domain/fast Fourier transform, time-frequency localization/wavelet,
and non-linear time-series analyses. For classifying the normal and pathological sound signals, the feature extraction method
is adopted for PCA. The BB and RB sound signals in the time domain (t) are transformed into the frequency domain (®) by the
fast Fourier transform technique for carrying out the analysis. The signal’s (x ()) Fourier transform, X (@) is calculated as %,

X (w) = [x(t)e /?dt. (1)

The PSD function, which provides the signal power (P) distribution over a specific range of frequency (f ), can be computed
from the fast Fourier transform signal of length N by,

p= XOF 2)

The PSD function gives the signature frequency components of the signal that can be used in feature extraction for classifying
the signals by the unsupervised machine learning classifier, PCA. For this, the data in the range 100 Hz - 1000 Hz is divided
into twenty-six sub-bands, and the average value of P for each sub-band is taken as the representative feature for performing
PCA using R programming.

The temporal distribution of frequency components with their intensities can be obtained from the wavelet analysis. Morse
wavelets are eigenfunction wavelets that may be used to estimate time-varying spectral bands by taking the average of time-
scale Eigen scalograms. They are suitable for examining real signals, which have varying amplitude and frequency over time
and are employed to investigate localized discontinuities as well. Thus the translation of the mother wavelet — Morse wavelet
(¢)-through the signal generates the wavelets useful for the analysis of the signal. The wavelet transform of the signal x (¢) for
a scale parameter € and translation parameter ¥ is given by 1),

Wef (&,7) = [ " x(1) £ 2o (F) dr. (3)

Non-linear signals that are continuous in time but non-stationary are either periodic or non-periodic. A non-linear time-
series study provides information about the underlying parameter values of the data set. Applying Cao’s algorithm, the phase
portrait is plotted using the parameters - embedding dimension (m) and the time delay (7) (found out from the mutual
information function). The reconstructed vector X of length 7 in the phase space is®,

X= an(mfl)‘rv an(m72)rv ~~~~~~ 1 Xn- (4)

As the system evolves in time, the Maximal Lyapunov exponent (A) quantifies the probable average separation between
neighboring state-space orbits/curves. A positive A indicates the exponential divergence of the system with time, suggesting
randomness and unpredictability. The distance between two Takens’ vectors in the phase space d(t) and 8(0) at time tand t =

0 are related by,
log% =A -t (5)

The slope in equation (5) estimates A ®),

To estimate the time-series data’s complexity, one can employ the parameters — D, H, and S. D is a measure showing that
the patterns in a time-series are self-affine. The box-counting technique estimates the value of D by placing the signal on grids
of different dimensions, s, and counting the number of grids N(s) necessary to cover the signal. N(s) and s possess values that
obey a fractal power law with D, given by 19,

N(s)ocs P,
The value of D is the slope of logN (s) vs. log(%) graph from which H value can be estimated as®,
H=2-D.

It represents the long-term memory of a time-series, and its value ranges from 0 to 1. The value of H classifies the time-series
into - (i) antipersistent (when H lies between 0 and 0.5), (ii) Brownian (when H = 0.5), and persistent (when H lies between
0.5and 1) 7).
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The measure of randomness in a data may be assessed from sample entropy 8§ (m, ) derived from the correlation sum C
(r) of dimensions m and m+1 for a radius r as given in Eq. (8). The mean sample entropy for multiple r values is the sample
entropy value at a certain embedding dimension ).

S(m,r) = In (C,Cn+(1r<r)>> (8)

The non-linear time-series features - S, A, m, D, and T - give significant information about the multidimensional
characteristics of a lung sound signal. Supervised learning models — LDA and PRNN - based on non-linear features are
employed to classify and predict BB and RB, where seventy percent of the total data set is subjected to five-fold cross-validation
for model training, and the remaining for signal prediction. To assess classification performance, the confusion matrix (CM) and
the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) are utilized @9, As the accuracy of the trained model
increases, prediction accuracy also increases. Machine learning models predict the sample data into four categories, and the
associated terminologies obtained from a CM are - (i) True-positive (TP), (ii) False-positive (FP), (iii) True-negative (TN), and
(iv) False-negative (FN). Based on these metrics from the CM, various statistical parameters - accuracy, sensitivity, specificity,
and precision - are defined to assess supervised learning models’ performance ??). The LDA and PRNN are performed with the
help of the Classification learner * and ‘nprtool; respectively, in the MATLAB R2020a to classify and predict BB and RB signals.

3 Results and Discussions

The study detailed in the paper suggests a new method for auscultation employing mathematical techniques. The BB and RB
being a time-series, as shown in Figure 1, the signals are analyzed using spectral and time-series analyses for diagnosing the lung
condition. The analysis helps in unveiling the characteristic features in the breath sound signals corresponding to a particular
pathological condition. Of the thirty-four samples analyzed, a representative time spectrum of BB and RB is shown in Figure 1,
whose fast Fourier transform is depicted in Figure 2. From Figure 1, it is oberved that the bronchial breath takes about 2.5 s to
complete one respiration, while the RB showing the pathological state of the lung, completes one respiration in 5 s. When BB
displays a pause between the two phases of respiration, the RB signal exhibits a near continuity with lesser sound intensity. The
origin of the BB signal is due to the flow of air through the bronchi and trachea ®. From Figure 1, it can also be understood that
the inspiration and expiration in BB have almost the same loudness compared to the lesser sound intensity during expiration
in RB. The lowering of sound intensity in RB can be understood from its origin. The obstructions or increased fluid secretions
in bronchi cause turbulence in the air passing through it, generating the RB signal. The airflow through obstructions and fluid
secretions results in the damping of the amplitude of vibration of the air molecules producing the sound signal, as shown in the
inlay of Figure 1b. The chain of rapidly damped sinusoidal oscillations, shown in the inlay figure of Figure 1b, is the magnified
image of a portion of the signal, which is the characteristic of RB. The reduction of loudness can also be viewed as the energy
dissipation of the moving air molecules on collision with the soft fluid media between the airways and the bronchi wall.

The fast Fourier transform analysis of RB and BB sound signals, shown in Figure 2a and 2b reveal that RB shows a lesser
number of frequency components of lower intensities than BB. A closer examination of the PSD plot of RB shows overtone
bands in the region 430 Hz — 600 Hz corresponding to the fundamental frequency components in the region 215 Hz - 300 Hz.
In addition to the absence of the overtone band in BB, the center frequency of the fundamental band shows a hypsochromic
shift when compared with that of RB. The frequency spread in RB and BB decreases due to the narrowing of the bronchial tube
caused by the presence of secretions and obstructions.

The lowering of frequency spread in RB than in BB is due to the lowering of the diameter of the bronchi caused by the
presence of secretions and obstructions. The details displayed in the PSD plot (Figure 2a and 2b can be represented in the
wavelet scalogram (Figure 2c and 2d), eliciting the time-instance of the occurrence of component frequencies along with their
magnitudes. From the wavelet scalogram of BB (Figure 2c), it is evident that the period of occurrence of high-intense frequency
components is longer all through BB inspiration than during expiration. It is interesting to note from Figure 2d that, albeit the
high-intense frequency components are present, it lasts only for a short duration. The presence of overtone bands in Figure 2b,
in addition to the fundamental, suggests that the diameter of the airways changes due to obstructions. The wavelet scalogram
of RB displays its characteristic features like longer duration of breathing, lesser frequency spread, and the train of intermittent
damping oscillations.

The airflow passing in and out through the thoracic cavity is a complex dynamic process that could be analyzed with a non-
linear approach by plotting the phase portraits of both BB and RB signals shown in Figure 3a and 3b, using R programming.
The optimal delay time is chosen as the time delay at which the average mutual information holds the smallest value, and the
algorithm proposed by Cao estimates the embedding dimension. The A values for bronchial and rhonchi lung sounds shown
in the box plot (Figure 3c) display information about the rate at which the phase points diverge in time (with 7= 39 for BB and
7= 36 for RB), revealing the variation in the complexity depicted through the phase portraits (Figure 3a and 3b).

https://www.indjst.org/ 1044


https://www.indjst.org/

Renjini et al. / Indian Journal of Science and Technology 2022;15(21):1041-1051

a
20000{?
S 10000+
©
g o
2
£ -10000
20000+
00 05 10 15 20 25 30 35
Time (s)
40000 17 o
—
30000 - i
=] 0
— p |
2 20000+ -
— E—EDDU
[ <L 309 312 315 3.18
S 10000 e
3 0-
<
-10000
-20000-
0 1 2 3 4 5
Time (s)

Fig 1. Time domain of lung sounds - (a) BB (b) RB.

Sample entropy (S) is another factor that determines the system’s complexity. The value of the mean sample entropy for BB
and RB represented through the box plot Figure 4a are 1.17 and 2.13, respectively. The higher value of entropy for the RB signal
gives information not only about the increased complexity in the dynamics of airflow through the airways but also about the
internal morphology of the airways containing mucus and other obstructions. The mucosal secretions and obstructions present
non-uniformly changes the cross-sectional diameter of the airways different at different points. When the air flows through such
an airway, vortices and turbulence gets generated, as represented in Figure 4b, resulting in a higher entropy value for RB.

The complexity of a self-affine signal is reflected through its fractal dimension, D. Figure 5a displays the box-whisker plot of
D calculated for BB and RB lung sounds. It is found that the average value of D is less for RB than BB. The BB signal possesses
larger complexity than the RB signal due to the persistence of high-intense multiple frequency components during respiration,
as depicted in Figure 2 by the spectral density and wavelet analyses. Hurst exponent (H) is an important factor usually used
for reflecting the complexity of a system represented as a time-series. The mean H values for RB and BB, shown in the box plot
Figure 5b, are 0.27 and 0.198, respectively. An H value lying between 0 and 0.5 shows the negative correlation nature of the
time-series, indicating the randomness involved in the airflow through the tracheobronchial tract. A value of H closer to 0.5
means more is the randomness associated with the signal, which attributes to the higher value of the same to the RB signal.

Artificial intelligence and deep convolutional neural networks have been employed to classify lung sounds using various
input attributes such as spectral features (short-time Fourier transform, fast Fourier transform), cepstral features (Mel
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Fig 3. Phase portraits of the signals (a) BB, (b) RB, and (c) the box plot of maximal Lyapunov exponent for BB and RB.

coefficients), and a combination of both. A study carried out by Shin-Yun Jung et al.(!) provides a feature engineering
technique for extracting specific features for the depth-wise separable convolution neural network (DS-CNN) to accurately
and efficiently categorize lung sounds. The input features employed are the spectral (short-time Fourier-transform), the cepstral
(Mel-frequency cepstrum coefficient), and the combined features of these two achieving an accuracy of 82.07%, 73.02%, and
85.74%, respectively. The VGG16 classifier employed by Yoonjoo et al. in CNN and support vector machine architectures
classifies adventitious breath sounds - crackles, wheezes, or rhonchi - with an accuracy of 85.7% and an average AUC of 0.92 %),
Ravi Pal and Anna Barney employ an iterative envelope filter combined with a mean D value, which is capable of detecting
synthesized fine and coarse crackles (except for real fine and coarse crackles)®. A CNN architecture implemented in Python
using Keras has been employed by Baghel et al. to classify normal and one of the adventitious lung sounds (crepitation, rhonchi,
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and wheeze). An average validation accuracy of 94.24 % with a validation loss of 0.4859 is obtained with 958 and 106 training
and validation samples ?1),

PCA helps in distinguishing two data sets having similar parameters based on the method of feature extraction®?. The
signature frequency components of BB and RB appearing in the PSD are extracted by dividing the data sets into 26 sub-bands
and taking the mean of each sub-band as its representative feature. The 26 features of each signal are taken to figure out the PCA
using R studio software. The sum of the variances of all individual principal components is termed total variance, and the ratio of
the variance of a principal component to the overall variance is the proportion of variance shown by that principal component.
Thus the overall variance is the sum of the variances of all individual classes. The variance depicted by each individual class,
when divided by the total variance, details how much variance each class of data explains. Here, when the variable classes (BB
and RB) are combined, total variance of 86.5 % is obtained by taking the sum of variances of the first two principal components.
The data classes are projected in the first two principal components in Figure 6, which cover about 86.5% of the total variance of
the original data classes. This proves the potentiality of using PCA as a useful tool for the classification of BB and RB depending
on their spectral characteristics.

Since PCA is an unsupervised learning method, supervised learning techniques, LDA and PRNN, are used to classify BB
and RB. LDA classifies by increasing the variance between the groups and decreasing the variance within the group ®®. The
phase portrait features S, A, m, D, and 7, resulting from the non-linear time-series study of BB and RB, are the five attributes
used to classify the signals as these parameters reflect the signal strength in addition to the temporal correlation. To achieve a
balance between underfitting and overfitting, the hyperparameter tuning procedure is required. So seventy percent of the total
number of breath sound signals used to train the network are subjected to five-fold cross-validation, which prevents the trainer
LDA model from overfitting and increases the prediction accuracy.

The confusion matrix and the AUC of the classifier are shown in Figure 7. Figure 7a shows that the trained LDA model
classifies BB and RB with 100% accuracy, and the AUC shown in Figure 7b depicts a value of 1, indicating its superior
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classification ability. The specificity, sensitivity, and precision are also found to be 100%. Neural networks are a subclass
of machine learning techniques and are the heart of deep learning algorithms. PRNN helps in classifying two datasets by
discovering the regularity patterns in them with the help of dedicated algorithms®¥. A simple shallow neural network is
constructed with a double-layer feed-forward network with five non-linear measures as input predictors and ten neurons in
the second/hidden layer (Figure 8). The scaled conjugate gradient backpropagation technique is used to train the model with
seventy percent data for training and thirty percent equally divided for testing/validation. For PRNN, the input dataset of
BB and RB is divided into three categories — train data, test data, and validation data - in the percentage ratio of 70:15:15.
The confusion matrices and the ROC curves of train, test, validation, and total data for PRNN are displayed in Figure 9 and
Figure 10, respectively, show a perfect classification of 15 RB and 19 BB signals from the given dataset. The best validation
performance is obtained at the 23'¢ epoch in 0.07s with a loss function value of 5.22 x 10°°. As is evident from Figure 10, AUC
has a value of 1 for all the datasets, which shows the maximum distinguishability between the classes. The 100% accuracy,
sensitivity, specificity, and precision shown by supervised learning techniques suggest that the non-linear measures are the
better choice for classifying RB and BB signals. The proposed method using the PSD and the non-linear time-series features
suggests an improved prediction accuracy (86.5% and 100.00%) than the above-discussed machine learning architectures in
classifying normal (BB) and adventitious (RB) lung sounds.

o P (0:00,1.00)

H

s H AUC = 1.00
H
£

r— _ B

False Discovery Rate

ROC Curve
Area Under Curve (AUC)
@ Current Classifier

0 02 04 06 08 10
BB RB False Positive Rate

Precicted Clss (a) (b)

Fig 7. (a) Confusion matrix derived from LDA classifier showing the prediction accuracy of BB and RB and (b) corresponding AUC derived
from the LDA classifier for BB and RB.

Fig 8. The PRNN structure.

4 Conclusion

The work elucidated in the paper is a stepping stone in the development of a potential tool for pulmonary auscultations using
non-linear measures-based classification. The signals are analyzed by employing mathematical techniques like fast Fourier
transform, time-frequency localization using wavelet, phase portrait, non-linear time-series, fractal, and machine learning
techniques. It is reported that the novel coronavirus also affects the lungs and respiratory tract, causing short-term or acute
bronchitis symptoms, which suggests the possibility of extending these techniques to COVID - 19 auscultations. The analysis
of thirty-four samples both in time and frequency domains unveils a lesser number of component frequencies, and its overtones
of lower intensities in the RB signal help in distinguishing RB from BB. The wavelet scalogram displays the characteristic features
of RB, like longer respiration time, lesser frequency spread, and sequential intermittent damping oscillations. The dynamics of
airflow during RB and BB up on analyzing by fractal and time-series analyses reveal the complexity involved. The persistence of
intense multiple frequency components, seen in the spectral density plot and wavelet scalogram of BB, reveals the same higher

https://www.indjst.org/ 1049


https://www.indjst.org/

Renjini et al. / Indian Journal of Science and Technology 2022;15(21):1041-1051

Fig 9. Confusion matrices for training, validation, testing, and prediction of BB and RB.
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complexity as observed in the fractal analysis. The value of the Hurst exponent, though, suggests both RB and BB signals to
be antipersistent; its higher value for RB indicates the randomness involved in the airflow dynamics through the air passage
in the lungs. The maximal Lyapunov exponent, as well as the phase portrait, reveal the complexity of the system. The higher
entropy value of the RB signal, besides depicting the complexity of airflow, gives information about the internal morphology of
the airways containing mucus and other obstructions. When the features extracted from power spectral data detail the signal
magnitude, the non-linear measures - S, A, m, D, and 7 - tell the temporal correlation of the data points that represents the
signal’s multidimensional properties such as complexity and randomness. The unsupervised classifier PCA using the features
extracted from PSD data helps in distinguishing RB from BB, with a total variance of 86.5%. The supervised learning models -
LDA and PRNN - employing non-linear time-series parameters help not only in classifying the RB and BB signals but also in
predicting them with 100% accuracy, sensitivity, specificity, and precision.

5 Author Contributions

All the authors have equally contributed to this work.
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