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Abstract
Background : To design an effective workflow scheduling optimization of web
servers that will bring good trade-offs to meet the workflow task delay prereq-
uisite and performance requirement. Methods: This study presents a delay-
aware and performance-efficient energy optimization (DAPEEO) technique for
workflow execution in a heterogeneous environment (i.e., edge-cloud envi-
ronment). This technique provides a workflow execution model which meets
the application delay prerequisite and performance requirement. Findings:
Our model has been designed to reduce the energy consumption, increase
throughput, reduce computational cost and computational time to provide a
delay-aware and performance-efficient workflow model for the web servers
in hybrid cloud computing. Our model Delay Aware and Performance Effi-
cient Workflow Scheduling of Web Servers in Hybrid Cloud Computing Envi-
ronment (DAPEEO) has reduced the energy consumption by 4.217%, increased
the throughput by 19.51%, and reduce the computational cost by 62.38%
when compared with the existing Deadline-Constrained Cost Optimization for
Hybrid Clouds (DCOH) models. Furthermore, the average energy consumption
showed a reduction of 40.993% and 90.384% when compared with the DCOH
and Self-Configuring and Self-Healing of Cloud-based Resources (RADAR) work-
load model respectively. Experiment outcome shows the DAPEEO technique
achieves much superior energy efficiency, throughput and computation cost
reduction when compared with the existing workflow execution model. Nov-
elty: Existingmodel failed to balance reducing cost, andmeeting workflow exe-
cution deadlines under a heterogeneous environment. On the other side, the
DAPEEO is efficient in bringing trade-offs in reducing energy dissipation and
meeting task deadlines with reduced cost under the edge-cloud computing
model.
Keywords: Cloud Computing; EdgeCloud; DAPEEO; Energy Efficiency;
Throughput; Cost
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1 Introduction
Workflow scheduling optimization of web servers had been an area of research in hybrid IaaS Cloud (i.e., edge-cloud) because it
is an NP-hard problem.Themajor focus of standard workflow scheduling generally aims to finish the execution of the workflow
within the desired cost and tomeet the cutoff time.The scheduler chooses the best-fit assets for the jobs to limit the cost enhance
resource utilization, and minimize the execution time. In (1) to reduce the consumption of energy during the scheduling of
workflow and to use more cache resources for the allocation of the tasks, an EARUmethod has been proposed.This model uses
less energy, time, power for the execution of the workflow when compared with the other existing DVFS workflow scheduling
methods. In (2) using the PSO method and algorithm, ALO has been proposed to optimize the workflow scheduling in the
cloud environment. In this algorithm, a security method DES has been used to encode the cloud data when the scheduling
process is executed. The experimentation results have been carried out in terms of load balancing, makespan, and cost. In (3)

to provide QoS requirements in fog computing, a framework DoSP has been proposed which gives the services for both the
cloud and fog nodes. This framework uses GA to provide the different services required by the user in fog cloud computing.
The main focus of this methodology was to use less cost resources in the fog computing environment. In (4) for the execution
of the workflow in a given deadline method, EMMOO has been proposed which executes the workflow tasks in two steps.
This method uses the deadline-aware method to reduce the time and consumption of energy. In (5) a survey on various cloud
computing environments (meta-heuristic, heuristic, and hybrid clouds) has been done.This survey reviews various algorithms
and methods used for scheduling the workflow. In (6) to resolve the problem of security in the workflow scheduling problems,
a method EAFSA based on EAFSAIPR, IC-PCP, and HECC has been proposed. The goal of this method is to complete the
workflow scheduling task within the given deadline with less energy consumption and to provide more security. In (7) as the
execution of theworkflow task ismore expensive and takesmore time to execute, amethodMOWOSwhich reduces the cost and
increases the makespan has been proposed. In (8) a load balancing task scheduling method, ALTS, for the cloud environment
has been proposed. As the problem of load balancing is NP-hard, the solutions for each problem keep increasing. This method
maps all the incoming tasks to the virtual machines to decrease the usage of resources, makespan, and SLA violations.

In (9) studied tradeoff optimization of makespan and cost for executing workloads under cloud computing environment.
Here they presented an improved heterogeneous earliest-finish-time (HEFT)-based scheduling mechanism namely FDHEFT
adopting fuzzy dominance rule. Performance is evaluated considering both synthetic and real-time workloads with good
makespan and cost tradeoffs performance when compared with standard workload execution models. In (10) deadline and cost
optimization model namely DCOH for a hybrid cloud computing environment. DCOH aims to reduce the cost of execution
workload with deadline constraints. Further, modeled multi-objective optimization technique to optimize cost and makespan
simultaneously. Experiment outcome shows the model is efficient in bringing good tradeoffs between makespan and cost
performance. However, reducing energy consumption plays a very important role in reducing the cost of workload execution.
In (11) presented an energy-aware processor merging methodologies for executing DAG workload with deadline constraints
for reducing energy consumption under a hybrid cloud environment. Further, quick energy-aware processor merging
methodologies is modeled for reducing the computational overhead of energy-aware processor merging methodologies. In (12)

modeled cost and energy-aware scheduling mechanism for bringing tradeoff performance of cost and energy. The algorithm
is composed of the following phases such as VM selection, task merging, idle VM resource reuse policies, and slack resource
optimization for saving energy. Achieves better performance than other existing workload models considering simple task
workflows. In (13) presented energy and cost optimization scheduling approach for executing data-intensive IoTworkload under
cloud environment. The scheduling mechanism is designed using historical data of VM resource usage in different physical
machines. To optimize energy dissipation of cloud environment the VM resources are scaled up or down; further, in reducing
cost jobs are executed through batch processing. Their model reduces cost and improves energy efficacy by guaranteeing
workload task deadline prerequisite. In (14) focused on addressing the reliability requirement ofmission-critical workloads.Here
a scheduling design is modeled that jointly optimizes reliability and energy efficacy considering workload QoS prerequisite.
The scheduling process is composed of the following stages such as selectivity computation, task clustering, time distribution,
selecting clusters with suitable V/F levels. Good energy efficacy and reliability outcome is achieved when compared with state-
of-art scheduling models.

In recent time evolutionary algorithm such as swarm optimization, genetic algorithm has been used for solving multi-
objective scheduling problem in a heterogeneous cloud environment for executing real-time workloads (15–19). Further, game-
theoretic and Reinforcement Learning (RL) models have also been utilized for solving multi-objective scheduling constraints
for workflow execution in a cloud environment (20–22). In (23) optimized makespan and cost by modeling Cooperative Game
Theory (CGT)-based scheduling strategy for executing relatively very largeworkloads. In (24) presentedReinforcement Learning
(RL)-based workload scheduling technique with different task selectivity. In (25) integrated fuzzy with GT for admission control
and balancing load among physical machines. In (26), for optimizing the task completion time and balance load presented Q-
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Learning model with weighted objective function for workload scheduling on a cloud platform. However, this model is not
evaluated considering modern scientific workflows.

Fig 1.Workload execution on cloud computing platform (27).

In (27) presented an autonomous resource management technique namely RADAR. RADAR is designed to handle
unexpected failure and dynamic resource management according to workload prerequisites. RADAR reduces execution time,
execution cost, and SLA violation when compared with the standard workload execution model. In (28) showed optimal
mapping among task and resource availability is needed for reliable execution of large real-time workloads; such requirement
is considered to be an NP-complete problem (i.e., failed to obtain an optimal solution or no exact solution is obtained).
However, a major concern is energy efficiency, makespan reduction, reliability, and fault-tolerant prerequisite modern data-
intensive applications. In this work, the workload scheduling is designed in such a way that it can optimize makespan and
energy parameters per application dynamic requirement and resource availability considering a multi-core computational
framework. Recently, several workload schedulingmodels have been presented consideringminimizing energy constraints and
maintaining a certain level of QoS. However, existing scheduling models induces high communication cost among processors
because of high memory resource usage and routing overhead. Inter-processor communication cost is very high using existing
techniques as well as these algorithms are relied upon a classic model which is not realistic when applied to a hybrid cloud
environment (29–31). In recent timesworkflow scheduling adopting cloud computational environments have beenwidely studied
in (31). For overcoming research issues this paper presents a delay-aware and performance-efficient energy-optimized workflow
execution model for a hybrid cloud environment. The DAPEEO model can meet task delay prerequisites and reduce energy
consumption by effectively reducing task failure and attaining high-performance efficiency through the energy optimization
model.

The significance of the work:
• Presented workflow execution model that meets application delay prerequisite and performance requirement.
•The DAPEEO technique improves energy efficiency and reduces computational costs for a hybrid cloud environment.

2 Delay Aware and Performance Efficient Workflow Execution Model (DAPEEO For
Hybrid Cloud Environment)
This work presents a Delay-Aware and Performance-Efficient Energy Optimization (DAPEEO) technique for workflow
execution in a hybrid cloud computing environment. The architecture of the hybrid cloud environment is shown in Figure 2.
First, the hybrid cloud system and workflow execution model is described. Second, the workload execution data transmission
model is described. Lastly, the workload execution model using the DAPEEO technique is presented.
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Fig 2.The architecture of a Hybrid cloud environment for workload execution

2.1 System and Workflow Execution on Hybrid Cloud Environment

This work considers a hybrid cloud environment for executing the scientific workflow. Let’s consider there are a set of IoT
devices that are connected for running DAG applications. An example of such a workflow is shown in Figure 1. These devices
are connected to an edge server for computing different operations. Further, the edge server is connected cloud environment.
The cloud environment is composed of a set of host and virtual machines as described below

T = {t1, t2, t3, . . . , tn} (1)

The edge device is also composed of a computing device for executing a task, and its virtual machine is represented as t0. This
work assumes that there will be a stable connection for the communication and computation process.The edge server possesses
both compute-intensive and deadline aware workflows; its performance efficiency and deadline prerequisite are Spre andMpre,
respectively. Here the edge server can execute workflow or can offload it to the cloud environment based on task performance
and deadline requirement. The proposed system model will aid in improving overall system performance with minimal task
failures.

The workflow model is described as follows; the task is divided into o subtasks. The association among different tasks is
represented as a DAG as follows

H = {U, F} (2)

The subtask in H is represented as follows

U = {u1,u2,u3, . . . ,uo} (3)

and each subtask has predefined computational resource requirement as follows{
α j,β j

}
(4)

where α j represent task size and β j represent total processing element needed for completing the task u j. The workflow
connected edges F is represented as follows

F =
{

f jl
(
tk,tm

)}
(5)

As shown in Figure 1, the edge defines the association among different subtasks, and its directions define dependencies that
subsequent subtasks shouldn’t be initialized till the preceding subtasks are completed. For easiness, the following notation
prec(u j) and subseq(u j) defines preceding and forthcoming subtasks ofu j, respectively. The communication overhead among
subtask u j and ul is represented by the following function f jl (tk, tm). Communication cost is dependent on the processing
element of the cloud environment and the edge server. Thus, if u j and ul are not associated, the for random tk andtm,
f jl (tk, tm) = 0. The subtask without forthcoming subtask is represented as end subtask uend and similarly, the subtask without
preceding subtask is represented initialization task uinit .
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2.2 Workload Data Transmission Model For Hybrid Cloud Environment

Here every edge server is connected with a cloud server; thus, can offload computing of subtask to cloud server. The
communication bandwidth of offloading subtask u j computing process from the edge server to cloud environment t j is
represented aswk, and is computed using the following equation

wk = Xlog2

(
1+

Qhk

σ2

)
(6)

where X represent communication data rate, Q defines transmission power of edge server, σ2 defines its noise power, and hk
describe communication gain among edge server and cloud environment tk. The communication gain is computed using the
following equation

hk = e−γ
k (7)

where e j depicts distance among the edge server and cloud environment tk, and γ defines the path loss component. Thus, the
communication delay of offloading subtask u j to cloud server tk is obtained using the following equation

Ms
jk =

δ j

wk
(8)

The overall energy induced by the edge server for offloading subtask u j to cloud server is computed using the following equation

µs
jk = QMs

jk. (9)

2.3 Workload Execution Model for Hybrid Cloud Environment

The workload is either executed in the edge server or is offloaded and executed in the cloud environment. The delay induced
for workload subtask u j execution in an edge server environment with the processing element G0is defined using the following
equation

Mm
j =

α j

G0
(10)

The energy induced for executing a task in an edge server environment is obtained using the following equation

µm
j = φMm

j (11)

φ represent energy expended by processing element per instance of time.
Similarly, the delay induced for executing offloaded workload on cloud environment is computed.The computation capacity

of the cloud environment is described as follows

G = (G1,G2,G3, . . . ,Gn} (12)

The delay induced for completing workload execution is composed of communication delay and execution delay. Thus, the
overall delay for completing workload execution in the cloud environment is obtained using the following equation

M0
jk =

α j

Gk +Ms
jk

(13)

For easiness, the delay induced for executing workload locally on edge server or cloud environment is measured using the
following equation

M jk =
α j

Gk +Ms
jk

(14)

where Ms
jk = 0 when k = 0.
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The task failure rate for workload subtask uk considering Poisson distribution on processing element tk is obtained using the
following equation

S jk = f−ωkαk/Gk (15)

The processing efficiency for executing DAG workload is computed as follows (25)

S (H) = ∏s j∈T ∑tk∈T y jkS jk (16)

where y jk defines subtask index, which can be shown as follows

y jk =

{
0, if the task uj is given to processing element tk
1, otherwise (17)

In this work for workload task H execution, the energy consumption is minimized considering reducing delay and improving
performance efficiency. Here the energy consumption for executing workload in edge server and on cloud environment is
uniformly measured using the following equation

µ j = y jµm
j +∑n

k=1 y jkµs
jk (18)

Then, the objective problem can be defined using the following equation

min∑o
j=1 µ j (19)

The following constraint must be satisfied by the above-described objective function in achieving an effective workload
execution solution

M (H)≤ Mpreq (20)

The above equation (20) describes the constraint of total execution delay of workloadGmust be lesser than given delay bounds.

S (H)≤ Spreq (21)

The bound described in the above equation (21) described the performance efficiency of workload must be higher than given
performance efficiency bounds.

∑n
k=0 y jk = 1 (22)

The constraint defined in the above equation (22) describes that every subtask can be either executed in an edge server or the
cloud environment.

τ (u j)≥ τ (ul)+∑n
k=0 ylkMlk, ∀ul ∈ prec(u j) (23)

τ (u j)+∑n
k=0 y jkM jk ≤ τ (ul) , ∀ul ∈ subseq(u j) (24)

y jk ∈ (0,1} (25)

The constraint described in Equation (23) and equation (24) describes the succeeding subtasks that have to wait till its
preceding subtask has completed the subtask, where τ (u j) is the initializing time of a subtask u j.Themain idea of the proposed
methodology is to reduce task execution delay and improve performance efficiency which relies on the certain constraint
described in Eq. (20) to (25); here the constraint with minimal energy consumption resources are obtained for workload
execution in the hybrid cloud environment. First, the subtask is ordered in an upward manner for generating subtask sequence
set Û . Second, obtain the processing efficiency and delay bounds of every subtask on different processing elements in edge
server and cloud environment. Lastly, when allocating resources for a subtaskû j, find a processing element withminimal energy
overhead and satisfies the bounds for executing subtaskû j. Thus, the proposed workflow scheduling technique can reduce cost
and energy consumption when compared with existing workflow scheduling methodologies which are experimentally shown
below.
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3 Results and Discussion
Here experiment is conducted for evaluating the performance of Delay Aware and Performance Efficient Energy Optimization
(DAPEEO) over existing workflow scheduling techniques (10), (27). The existing Deadline-Constrained Cost Optimization
for Hybrid Clouds (DCOH) (10) for the Heterogeneous Cloud Computing Environment have mainly focused to reduce the
computational cost and makespan. They have utilized the Deadline-Constrained Cost Optimization to reduce the cost of the
workflow in a given deadline by 100.0%. They have also proposed another model Multi-objective Optimization for hybrid
clouds (MOH) to optimize themakespan and reduce the cost simultaneously while executing the workflow. In Self-Configuring
and Self-Healing of Cloud-based Resources (RADAR) (27), they have mainly focused to reduce the cost of execution, SLA
violation, and execution time. The main objective of the RADAR is to solve the problems of unexpected failures and also
to allocate the resources to the given task if there is any failure by a given server. The experiment is conducted using cyber-
shake workflow. Energy efficiency, throughput, and computation cost are considered for evaluating performance.The IoT-edge
server environment is modeled using the SENSORIA simulator and the cloud environment is modeled using CloudSim and is
combined through object-oriented programming language in building a hybrid cloud environment.

3.1 Workflow Description

The scientific workflow is generated by the Pegasus group, ASKALON. Each workflow has different computation features
and structures. These workflows are CPU, I/O, and memory-intensive in nature. This work evaluates the workflow execution
model using Cyber-shake workflow; the cyber-shake workflow is used for characterizing earthquake hazards using synthetic
seismograms by the Southern California Earthquake Center (SCEC).The tasks in cyber-shake are generally arememory hungry
and CPU intensive. The cyber-shake workflow is described in Figure 3. More details of cyber-shake workflow can be obtained
from Google.

Fig 3. A sample representation of cyber shake

3.2 Energy Efficiency Performance

Here experiment is conducted for evaluating energy efficiency performance achieved using DAPEEO and the existing
method (10). Experiments have been conducted by varying CyberShake workload size 30, 50, 100, and 1000.The average energy
consumed for executing workload is measured inWatts. Figure 4 shows the outcome achieved using DAPEEO over the DCOH
model. From the result, it can be seen proposedDAPEEOachievesmuch better energy efficiency in comparisonwith theDCOH
workload scheduling model considering varied workload sizes. An average energy efficiency performance improvement of
20.25% is achieved using DAPEEO over the DCOH workload scheduling model. Similarly, the experiment is conducted for
100 and 1000 workload sizes for evaluating the performance of other existing approaches such as RADAR (27) and DCOH as
shown in Figure 5. An average energy efficiency performance improvement of 40.993% and 90.384% is achieved usingDAPEEO
over DCOH and RADAR workload scheduling model, respectively. From the result, it can be stated DAPEEO is very efficient
for executing the larger task.
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Fig 4. Average energy consumptioncomparison of DAPEEO over existing method using scientific workloadCyber-shake.

Fig 5.Average energy consumption comparison ofDAPEEOover existingworkloadschedulingmethodusing scientificworkloadCyber-shake.

3.3 Throughput

Here experiment is conducted for evaluating throughput performance achieved using DAPEEO and the existing method (10).
Here experiment is conducted by varying CyberShake workload size 30, 50, 100, and 1000. The throughput for executing
workload ismeasured in terms of normalized percentage. Figure 6 shows the outcome achieved usingDAPEEOover theDCOH
model. From the result, it can be seen proposedDAPEEOachievesmuch better throughput performance in comparisonwith the
DCOH workload scheduling model considering varied workload sizes. An average throughput performance improvement of
79.14% is achievement using DAPEEO over the DCOHworkload scheduling model. From the result, it can be stated DAPEEO
throughput performance gets better with increases in workload size. Thus, are efficient for executing the extremely very large-
scale workload.

Fig 6.Throughput comparison of DAPEEO over existing workload scheduling method using scientific workloadCyber-shake.
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3.4 Computation Cost

Here experiment is conducted for evaluating computation cost performance achieved using DAPEEO and existing methods
such asDCOH (10). Here experiment is conducted by varying CyberShakeworkload size 30, 50, 100, and 1000.The cost incurred
for executingworkload ismeasured under theMicrosoftAzure cloud.Figure 7 shows the outcome achieved usingDAPEEOover
the DCOH model. From the result, it can be seen proposed DAPEEO achieves much better computation cost performance in
comparison with the DCOH workload scheduling model considering varied workload sizes. An average computation cost
reduction of 78.90% is achieved using DAPEEO over the DCOH workload scheduling model. From the result, it can be stated
DAPEEO computation cost performance gets profitable with increasing workload size.Thus, are suitable for provisioning both
small and very large-scale workloads with high profit.

Fig 7. Computation cost comparison of DAPEEO over existing method usingscientific workload Cyber-shake.

3.5 Comparison of the Results

From the overall result achieved in the above section, it can be stated the proposedDAPPEEO is very efficient in reducing energy
consumption, reducing cost, and improving throughput over DCOH, 2019 (10), RADAR, 2019 (10). Further, to describe the
novelty of the proposed DAPPEO, a comparison of the proposed DAPPEO over other recent workflow scheduling frameworks
is described in Table 1.

Table 1. Comparison table of proposed DAPEEO over existing workflow scheduling approach
DCOH, 2019 (10) RADAR, 2019 (27) QRAS, 2021 (30) DAPEEO

Heterogenous cloud Yes Yes No YES
Scientific workload Yes No No YES
QoS Metric used for
scheduling

Cost and processing time Cost and reliability Energy Energy, Delay, and
processing time

Workload type
support

Small and medium-large
complex workload

Small and medium
complex workload

Small and large
simple workload

Small and large
complex workload

SLA considered No No No Yes
Fault-tolerant
provided

No Yes No Yes

The DCOH-based workflow execution model is effective in minimizing cost and time for the small to medium complex
workload. The RADAR-based workflow execution model is efficient in minimizing cost and with good reliability for the
execution of the small tomediumcomplexworkload. Similarly, theQRAS-basedworkflow executionmodel is efficient in energy
for the execution of small to large simple workloads. However, the proposed DAPEEOmodel is efficient in minimizing energy,
delay, and processing time for the execution of small to large workloads. FromTable 1, it can be noticed themajor factor limiting
the usage of the existing model is they suffer significantly for the execution of larger workload as they could not guarantee fault
tolerance; however, in DAPPEO the adoption of a novel offloading mechanism with energy minimization constraint meeting
QOS objective defined significantly aid in achieving better performance for both smaller and larger workloads. No prior work
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has considered optimizing energy minimization strategy to meet the application deadline and performance requirement of
workload execution under the edge-cloud model.

4 Conclusion
This work presented various workflows scheduling algorithms for cloud and edge-cloud environments. The Delay Aware and
Performance EfficientWorkflow Execution (DAPPEO)model provides a method to increase the performance of themodel and
reduce the cost for the execution in a given deadline. DAPEEO has reduced the energy consumption by 4.217%, increased the
throughput by 19.51%, and reduce the computational cost by 62.38% when compared with the existing Deadline-Constrained
Cost Optimization for Hybrid Clouds (DCOH) models. Furthermore, the average energy consumption showed a reduction
of 40.993% and 90.384% when compared with the DCOH and Self-Configuring and Self-Healing of Cloud-based Resources
(RADAR) workload models respectively. Experiment outcome shows the DAPEEO technique achieves much superior energy
efficiency, throughput and computation cost reduction when compared with the existing workflow execution model.

Future workwould consider designing of fault-tolerant scheduling algorithmusing the soccer league optimization technique
for efficiently re-utilizing system resources in executing data-intensive workload scheduling on multi-core cloud computing
architecture. The performance of both proposed workflow scheduling and the existing workflow scheduling approach will be
evaluated using data-intensive real-time workload such as epigenome will be considered for evaluation.
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