
INDIAN JOURNAL OF SCIENCE AND TECHNOLOGY

RESEARCH ARTICLE

OPEN ACCESS

Received: 21-09-2021
Accepted: 18-02-2022
Published: 25.03.2022

Citation: Devadas R, Cholli NG
(2022) PUGH Decision Trapezoidal
Fuzzy and Gradient Reinforce Deep
Learning for Large Scale
Requirement Prioritization. Indian
Journal of Science and Technology
15(12): 542-553. https://doi.org/
10.17485/IJST/v15i12.1757
∗
Corresponding author.

raghudevdas@gmail.com

Funding: None

Competing Interests: None

Copyright: © 2022 Devadas &
Cholli. This is an open access article
distributed under the terms of the
Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the
original author and source are
credited.

Published By Indian Society for
Education and Environment (iSee)

ISSN
Print: 0974-6846
Electronic: 0974-5645

PUGH Decision Trapezoidal Fuzzy and
Gradient Reinforce Deep Learning for
Large Scale Requirement Prioritization

Raghavendra Devadas1,2∗, Nagaraj G Cholli3

1 Research Scholar, RV College of Engineering, Visveswaraya Technological University,
Belgaum
2 Assistant Professor, Department of CSE, Presidency University, Bangalore
3 Associate Professor. Department of ISE, RV College of Engineering, Bangalore

Abstract
Objective: To prioritize requirements for large scale software projects within
time involving uncertainty in the opinions among different stakeholders.Meth-
ods: We propose Pugh Trapezoidal Fuzzy and Gradient Reinforce Learning
(PTF-GRL) methods for large scale software requirement prioritization. A Pugh
Decision-based Trapezoidal Fuzzy Requirement Selection model is designed,
inputting the functional and non-functional requirements of the correspond-
ing stakeholders. With the assistance of Trapezoidal Fuzzy Inference, the qual-
itative factors are mapped with the corresponding numeric factors, which
increases the computational efficiency. Findings: Performance is analyzed
based on four parameters: The first parameter is accuracy and our method
showed improvement of 4%, 7% and 3% compared to JRD-SCRUM, IFS and SRP-
Tackle respectively. The second parameter is prioritization time and found that
our method had reduced time of 30%, 37% and 39% compared with existing
methods. The third parameter is precision and it was found that our method
improves precision by 6%, 10% and 5% compared with the other twomethods.
The final parameter we consider is the test suite execution and our method
showed improvement of 12%, 19% and 5% compared with the existing two
methods. Novelty/Applications: The originality of this work indicates the bet-
ter performance along with the optimal test suite execution even considering
the uncertainty factor in the proposed method compared with existing similar
methods.
Keywords: Software Project; Pugh Decision Matrix; Trapezoidal Fuzzy
Inference; Gradient Orientation; Reinforce Learning; Requirement
Prioritization

1 Introduction
Agile software development (ASD) consists of incomplete requirements identification,
vague requirements analysis, secondary requirement prioritization that has aminimum
negative influence on the functionality of software systems and quality. A Joint
Requirements Documents (JRD) and Systematic Customer Resolution Unraveling

https://www.indjst.org/ 542

https://doi.org/10.17485/IJST/v15i12.1757
https://doi.org/10.17485/IJST/v15i12.1757
https://doi.org/10.17485/IJST/v15i12.1757
raghudevdas@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
www.iseeadyar.org.
https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

Meeting (SCRUM) called, JRD-SCRUM was proposed in (1) that in turn incrementally identified, implemented, evolved, and
managed system requirements via software development cycle.

An action research method was proposed with the objective of qualitatively validating the requirement prioritization based
on data and user requirements acquired from a product-concentric Norway-based software company. With this, the individual
responses for implementing JRD with SCRUM were proved to be highly accurate. However, during the requirement selection
process, with the large amount of uncertainty involved between different stakeholders, a significant amount of precision is said
to be compromised. To address this issue, in this work, a Pugh Decision-based Trapezoidal Fuzzy Requirement Selectionmodel
is proposed that in turn improves the precision rate by minimizing the uncertainty.

An Intuitionistic Fuzzy Approach (IFS) provided a scalable framework to ensure stakeholders’ preferences in the form
of priority values via multidimensional evaluation parameter was proposed in (2,3). It also concentrated on the collaboration
between stakeholders by taking into consideration both the intuitionistic and nonmembership parameter. Also, the dependency
and developer’s initial preference along with the technical constraints were considered.

With this reliability and robustness to errors were ensured. However, with expeditious changing large scale software projects
with plentiful data including both functional and non-functional requirements the test suite execution was not ensured.
Hence to address this issue, in this work a deep learning model called, Gradient Orientation-based Reinforce Requirement
Prioritization is designed to flexibly procure more perceptions into individual test cases, therefore ensuring an optimal number
of test suite execution.

The association of stakeholders is a key success factor for Software Engineering (SE). Numerous process mechanisms are
within easy reach to represent Requirements Engineering (RE)activities. Key activities comprise requirements elicitation,
prioritization, and negotiation. The requirement prioritization shows its significance in comparison to others. It also assists
in determining the requirements to be incorporated into a project. In addition, prioritization strengthens the negotiation of
requirements that focus on the resolution of disagreements by defining an agreement that meets all stakeholders.

A hybrid fuzzy analytical hierarchy process was designed in (4) via a multi-criteria decision-making approach for
quantifying reusability in requirement prioritization. In the present-day situation, the concept of social networks has entirely
metamorphosed into a new domain and hence has the potential to impact RE activities. In (5), an approach was proposed
whereby the social network was exploited to carry out RE activities such as elicitation, prioritization, and negotiation. However,
with a multi-stakeholder perspective, the prioritization process was not concerned with diversification. To address this issue,
aspect-based requirement mining techniques were proposed in (6) taking into consideration the diversification aspect.

Requirements Specifications (RSs) are feasibly the most innermost artifacts to the requirement engineering procedures.
This is due to the reason that an RS lays out the requisite features, potentialities, and aspects of a system-to-be. To facilitate
understanding and links between stakeholders with distinct backgrounds and competencies, natural language is being used
today.

A software effort estimation using Bayes with fuzzification of numbers was utilized in (7) based on the optimal control using
Gene and Particle Swarm Optimization, therefore, contributing to the estimation accuracy. Yet another novel approach was
proposed in (8) by utilizing Bayesian network classifiers to categorize the software defects. However, neither the existence nor a
completely precise execution of such understandings is guaranteed. An automatic approach was designed in (9) using amachine
learning-based approach, therefore reducing the time-consuming process. A case study for agile method adaptation exploring
requirement prioritization for large scale software projects was investigated in (10). Amachine learningmodel was utilized in (11)

to maintain the prediction accuracy of spatial information involving prioritization based on the significance of data. However,
customization of stakeholders’ specifications was said to be of great significance.

The contributions of the work include the following:

• The main contribution of the proposed Pugh Trapezoidal Fuzzy and Gradient Reinforce Learning (PTF-GRL) is used to
handle uncertainty and test suite execution issue among different stakeholders during large scale software prioritization.

• To handle uncertainty issues among different stakeholders for large scale software projects employing Pugh Decision-
based Trapezoidal Fuzzy Requirement Selection model in a precise and computationally efficient manner.

• To focus on issues concerning test suite execution among different stakeholders while involving large scale software using
a deep learning model called, Gradient Orientation-based Reinforce Requirement Prioritization.

• Our experimental results have been computed on a software requirement dataset. By applying our PTF-GRL method on
this dataset, we show that the method is deployable in large scale software project settings.

This study is organized as follows: Section 2 discusses about research gap andmotivation; Section 3 describes the proposed Pugh
Trapezoidal Fuzzy and Gradient Reinforce Learning (PTF-GRL) method with an elaborated discussion on how stakeholders
and developers cooperate and provide initial requirements that are in turn employed in the algorithm to compute requirement

https://www.indjst.org/ 543

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

selection and final requirement prioritization. Section 4 introduces the experimental settings for implementing the PTF-GRL
method followed by empirical validation and comparison of performance assessment of PTF-GRL with JRD-SCRUM and IFS.
Finally, Section 5 presents the conclusion.

2 Research Gap and Motivation

The software configuration was developed to customize the software for dissimilar users. In (12), an integration of indicator-
based evolution algorithm and the differential evolutionary algorithm was proposed to minimize the search space involved
during prioritization. A systematic literature review of software requirements prioritization, its strengths, the limitation was
investigated in depth in (13). Yet another consistency prioritization model using fuzzy fault tree analysis was proposed in (14).
However, it was not found to be feasible enough for large scale agile development. To address this issue, a case study including
different processes and purposes was designed in (15).

In recent years, software development organizations are modeling agile mechanisms in the global software development
(GSD) environment with the purpose of meeting the requirements of the swiftly evolving and ceaselessly growing business
framework. The specific objectives of the work proposed in (16) were to identify the crucial hurdles and design a prioritization-
based taxonomy for modeling agile evolution in the GSD framework. An empirical study for agile requirements prioritization
for large scale software projects was proposed in (17).

Arranging and identifying a set of releases with requirement prioritization denotes a demanding task owing to the reason
that the requirements consist of their features, involving, technical priority, implementation cost, the significance of one ormore
stakeholders toinclude the requirement, and so on. In (18), Verbal Decision Analysis was employed for identifying reasonable
solutions to resolve these types of issues. Yet another approach utilizing hybrid access was employed in (19) to prioritize both
functional and non-functional requirements, therefore, reducing the time involved. Two factors, cost, and value were analyzed
in (20) using a hybrid technique, therefore, reducing the time involved in the prioritization process.

A software project management framework was introduced in (21) for enhancing the success rate. But the time took was
higher. A multiattribute framework was developed in (22) to verify and validate stakeholder objectives and constraints. The
designed framework was enhancing the accuracy of the prioritization. However, it failed to handle the real-world project issue
in engineering management. To solve the issue, the Test case prioritization (TCP) method was introduced in (23) to reduce the
computational complexity and execution time. But the various latest cases were added to the test suite.

The novel nature-inspired optimization method called Bat algorithm was developed in (24) to enhance the software quality
for reducing the time. However, it failed to handle the TCP issue.

Requirements Change Management in Agile (ARCM) was introduced in (25) for discovering the success factors. But the
prioritization accuracy was not enhanced. The requirement prioritization method was introduced in (26) to focus on the
scalability issues. Therefore, the prioritizationaccuracy was improved. The approach (27) designed focused on determining the
importance of requirements with respect to different stakeholders.

New semiautomated scalable prioritisation technique called ‘SRPTackle’ was designed in (28). SRPTackle provides a
semiautomated process based on a combination of a constructed requirement priority value formulation function using amulti-
criteria decision-makingmethod, clustering algorithms (K-means and K-means++) and a binary search tree to reduce the need
for expert involvement and increase efficiency. But requirement prioritization time was not minimized.

Fuzzy AHP methods were introduced in (29) for discovering the taxonomy of the SPI success factors. But the requirement
prioritization accuracy was not considered.An analytic hierarchy process method was developed in (30) to recognize and
prioritize the challenges. AHP approach was introduced in (31) to achieve the software organizations by using scale agile method
inGSD. FuzzyAHP based conceptualmappingwas developed in (32) for handling theGSD to prioritize the empirically validated
achievement factors. Interdependency among the large scale requirements and an approach to address volatility of requirements
were in addressed in (33).

All distinct types of explorations illustrate that there is a requirement for methods that prioritize the requirements of all
stakeholders by their viewpoint and control the semantic of large-scale software handling uncertainty and test suite execution
with absoluteness and uniformity. Therefore, we utilized fuzzy and deep learning models to handle uncertainty and improve
test suite execution among different stakeholders to reduce the human endeavor to control large scale software.

Motivated by the above research gaps, this research study has been performed with the objective to address the issue
of uncertainty and test suite execution improvement management in the domain of large-scale software prioritization by
selecting and prioritizing the key features and their categorical functional and non-functional requirements that could positively
influence the software engineering activities.

https://www.indjst.org/ 544

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

3 Proposed Methodology
This section details the proposed Pugh Trapezoidal Fuzzy and Gradient Reinforce Learning (PTF-GRL) method. Qualitative
software requirements obtained from the software requirement dataset are the essential inputs of the proposed method. The
PTF-GRLmethod provides an interactive requirement selection and prioritization process capable of handling uncertainty and
test case execution between different stakeholders during large scale software prioritization. Figure 1 shows the block diagram
of the PTF-GRL method.

Fig 1. Block diagram of Pugh Trapezoidal Fuzzy and GradientReinforce Learning

As illustrated in Figure 1, the PTF-GRL method is split into two sections. First requirement selection is modeled by means
of Pugh Decision-based Trapezoidal Fuzzy Requirement Selectionmodel to handle uncertainty between different stakeholders.
Followed bythe selected requirements, a requirement prioritization method is designed using Gradient Orientation-based
Reinforce Requirement Prioritization model to address test suite execution. An elaborate description of the PTF-GRL method
is provided in the following sub-sections.

3.1 Pugh Decision-based Trapezoidal Fuzzy Requirement Selection model

In the formulation of a large-scale software project, software developers must attempt to improve business value while
maintaining a high degree of certainty that the product will be completed on time and within budget. Owing to this, restrictions
management is frequentlymademandatory tomodel the hard decision as towhich stakeholders’ opinions to consider andwhich
opinion to ignore, therefore heavy concern towards the uncertainty aspect. In this work, a Pugh Decision-based Trapezoidal
Fuzzy Requirement Selection model that deals with the uncertain situation between different stakeholders during large scale
software prioritization is designed.The inferences of the PughDecision-based Trapezoidal Fuzzy Requirement Selectionmodel
dispense with the coarse-grained information and control the uncertainties in the decision-making issues on the basis of the
discernments. Figure 2 shows the structure of Pugh Decision-based Trapezoidal Fuzzy Requirement Selection model.

As shown in Figure 2, let us consider a Trapezoidal Fuzzy Numbers (TFN) represented by a triad ‘
(
T ls, T ns, T ms

)
’ that

denotes the membership function ‘µT (R)’ of the software requirement for large scale software projects.

µT(R) =

R−T1 s

Tns −Tls ,T
ls ≤ R ≤ Tns

Tms −R
Tms −Tns ,T

ns ≤ R ≤ Tms

0, Otherwise

(1)

From equation (1), ’T ls’, ‘T ns’ and ‘T ms’ represent the least significance, nominal significance, and the most significant
requirement values respectively. Let us further consider two Trapezoidal Fuzzy Numbers ’T1 =

(
T ls

1 , T ns
1 , T ms

1
)
’ and ‘T2 =

https://www.indjst.org/ 545

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

Fig 2. Structure of Pugh Decision-based Trapezoidal Fuzzy Requirement Selection

(
T ls

2 , T ns
2 , T ms

2
)
’, then the distance between ‘T1’ and ‘T2’ is estimated as given below.

Dis(T1,T2) =

√
1
3

[(
T ls

1 −T ls
2
)2

+(T ns
1 −T ns

2)2 +(T ms
1 −T ms

2)2
]

(2)

The conventional deep dive (1) cannot handle stakeholders’ uncertainty related to quantifying the priorities of different criteria.
Owing to this reason, a fuzzy inference (FI) is integrated with the Pugh Decision Matrix model called, Fuzzy Inference-based
PughDecisionMatrix, which is used to selectmore accurate and adequate requirements using theminimumextent of possibility
in uncertain problems. Trapezoidal Fuzzy Numbers are utilized in this model for selecting rankings of the benchmark and
procuring priority weight of definite benchmark utilizing the Pugh Decision Matrix. As ’T1’ and ‘T2’ are two Trapezoidal Fuzzy
Numbers, then the extent of possibility is formulated as given below.

T 2 =
(
T ls

2 , T ns
2 , T ms

2
)
≥ T1 =

(
T ls

1 , T ns
1 , T ms

1
)

(3)

EoP (T2 ≥ T1) = SUP (MIN(µT1 (R)) ,(µT2 (R))] (4)

Owing to the reason that different types of software products include non-functional and functional requirements, then for
each requirement extent values are analyzed by means of Pugh Decision Matrix as given below.

PDM (REVal) =

SH1
(

SF1
(W1)

)
SH2

(
SF1

(W1)

)
SH3

(
SF1

(W1)

)
. . . SHn

(
SF1

(W1)

)
SH1

(
SF2

(W2)

)
SH2

(
SF2

(W2)

)
SH3

(
SF2

(W2)

)
. . . SHn

(
SF2

(W2)

)
.

SH1
(

SFn
(Wn)

)
SH2

(
SFn

(Wn)

)
SH3

(
SFn

(Wn)

)
. . . SHn

(
SFn

(Wn)

)
.

Agg(SH1] Agg(SH2] Agg(SH3] . . . Agg(SHn]

(5)

From equation (5), the holistic aggregates acquired from the Pugh Decision Matrices for each requirement extent values are
utilized in formulating and checking the consistency between the pair-wise matrices and for de-fuzzifying thematrix to address
uncertainty to a greater extent.The pseudo-code representation of PughDecision andTrapezoidal Fuzzy Requirement Selection
is given in Algorithm 1.

As given in Algorithm 1, the objective is to select the relevant requirements among different stakeholders during large scale
software prioritization with high precision in a computationally efficient manner. To attain this objective, the requirements of
the customers are provided as input, first, using Pugh Decision and Trapezoidal Fuzzy Requirement Selection algorithm, with
the aid of Trapezoidal Fuzzy Numbers the objects or the requirements are mapped between 0 and 1. Followed by which, the
distance between the two TFN’s requirements is obtained. Finally, the extent of possibility via PughDecisionMatrix is estimated
to obtain and select precise function, non-function requirements in a computationally efficient manner.

https://www.indjst.org/ 546

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

Input: Customers ‘C =C1, C2, C3,,Cm’, Requirements ‘R = R1, R2, R3,,Rn’
Output: Precise and computationally efficient requirement selection
1: Begin 2: For each customer ‘C’ and requirements ‘R’ [including both functional ‘FR’ and non-functional requirements ‘NFR’] 3:
Extract the requirements ‘R’ from the customers ‘C’ 4: Obtain the rule using equation (1) 5: Estimate fuzzification inference via two
Trapezoidal Fuzzy Numbers as in equation (2) for both functional ‘FR’ and non-functional requirements ‘NFR’ 6: Estimate the extent of
possibility via Pugh Decision Matrix as in equations (3) and (4) for both ‘FR’ and ‘NFR’ //Perform de-fuzzification 7: Estimate
requirement extent values via Pugh Decision Matrix as in equation (5) for both ‘FR’ and ‘NFR’ 8: Return relevant function requirements
‘RFR’ and non-functional requirements ‘RNFR’ 9: End for 10: End
ALGORITHM 1. Pugh Decision and Trapezoidal Fuzzy Requirement Selection

3.2 Gradient Orientation-based Reinforce Requirement Prioritization model

The goal of requirement prioritization is to identify and prioritize the ordered sequence of test samples to increase the
performance metric. With this purpose, in our work Gradient Orientation-based Reinforce Requirement Prioritization model
is designed to disclose failure as early as possible and therefore contribute to test suite execution.

In the proposed model, let us consider a triad ‘(T S, P(T S) , f (S))’, where ‘T S’ represents the test samples, ‘P(T S)’ is the
permutation of test samples and ’ f (S)’ is a function scaling ‘P(T S)’ to rational numbers.Then, for the ‘n− th’ factor, failing test
samples are organized simultaneously resulting in a progression ‘F1, F2, F3, . . . , Fn’ with ‘Fi’ forming an organization of failing
test samples in the ‘i−th’ instance. Similarly, the same operation is performed for passing test cases, forming, ’P1, P2, P3, . . . , Pn’
with ‘Pi’ forming an organization of passing test samples in the ‘i−th’ instance. Every permutation of the input test suite as states
is provided that the test suite ‘T ’ with ‘n’ instances of test samples and the state space size is said to be ‘n!’. Figure 3 illustrates
the distinct test suite permutations or the structure of permuted state space.

Fig 3. Test suite permutation

As specified in Figure 3, the states form the permutations of the input test suite, an action refers to the condition that it is the
indicator for the Gradient Orientation-based Reinforce Requirement Prioritization model to progress from one permutation
to another. In our work, the Gradient Orientation-based Reinforce Requirement Prioritization model is the state of input test
suite switches between each other in an arbitrary pattern. The structure of arbitrary action learning is illustrated in Figure 4.

As the test samples are ranked on the basis of the accumulated decision cases as each test sample’s individual reward and
the test sample failure rewards are taken into consideration. In other words, failing test samples are more concentrated and
rewarded than the passing test samples, therefore resulting in earlier execution. This is formulated as given below.

RTSF
i (TS) =

{
1−TS.Deci, if TS ∈ TSi

0, Otherwise (6)

As given in equation (6), for each test samples ’T S’ the reward function returns the test sample’s decision as each test sample’s
individual reward. Then, for every test sample ‘T S’ in the set of failing test samples ‘T SF ’, the weights of the failing test
instances are increased for an intended proportion ‘PrF ’, and accordingly, rewards are estimated.On the other hand, test samples
belonging to passing test instances are increased to an intended proportion ’PrP’. Therefore, in our proposed work, we select
‘PrF ≥ PrP’ as higher proportions or weights have higher priority.

https://www.indjst.org/ 547

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

Fig 4. Structure of Arbitrary Action Learning

With this objective finally, a Gradient Orientation function is employed in our work to evaluate the policy ‘Polθ ’
by means of a parameterized function estimator. The objective here remains in maximizing the objective function
denoting the return represented by ‘R(α)’ (i.e., representing the sum of rewards) of the test sample orientations ‘α =
(s0,a0, s1, a1, s2, a2,,snan)’ selected by the policy ‘Polθ ’.

J (θ) = ∑R(α) = ∑n
i=1 r (si, ai, si+1) (7)

To maximize this objective function (i.e., considering test sample failure rewards than the pass test samples), the policy ‘Polθ ’
only generates test sample orientations correlated with high returns ‘R(α)’ and circumventing those with low returns. The
objective function employs the projection of the return overall probable test sample orientations. The likelihood that a test
sample orientation is occasioned by the policy ’Polθ ’ is denoted as ‘ρθ (α)’ mathematically formulated as given below.

ρθ (α) = ρθ (s0,a0, s1, a1, s2, a2,,snan) (8)

= ρθ (s0)∏n
i=1 Polθ (si, ai)Prob (si+1 | si,ai) (9)

From equation (9), ’ρθ (s0)’ represents the initial probability starting in ‘s0’ and ‘Prob (si+1 | si, ai)’ represents the transition
probability. Finally, given a test sample, the proposed model evaluates the total weight. The larger the value, the higher the test
sample, and the test instance is ranked in the resultant test suite, therefore contributing to robust and optimal requirement
prioritization. The pseudo-code representation of Gradient Orientation-based Reinforce Requirement Prioritization is given
below.

Input: Input: Customers ‘C =C1, C2, C3,,Cm’, Requirements ‘R = R1, R2, R3,,Rn’,
Output: Robust and optimal requirement prioritization
1: Initializerelevant function requirements ‘RFR’ and non-functional requirements ‘RNFR’ 2: Initialize test samples ‘T S’, permutation of
test samples ‘P(T S)’ 3: Initialize failing test samples ‘Fi = 0’ 4: Initialize passing test samples ‘Pi = 0’ 5: Begin 6: Foreach customer ‘C’
and requirements ‘R’ [including both relevant function requirements ‘RFR’ and non-functional requirements ‘RNFR’] 7: Formulate the
objective function as in equation (6) 8: Estimate return or sum of reward as in equation (7) 9: For each test sample orientation 10:
Evaluate the gradient policy and rank resultant test suite as in equations (8) and (9) 11: Return prioritized results (s) 12: End for 13: End
for 14: End
ALGORITHM 2. Gradient Orientation-based Reinforce Requirement Prioritization

As given in Algorithm 2, the objective is in prioritizing the software requirements involving large scale software projects.
To attain this objective, a deep learning model with the Gradient Orientation function is designed that flexibly procure more
perceptions into individual test cases or test samples, therefore resulting in an optimal number of test suite execution. Here,
with the aid of Deep Reinforce learning failing test samples are highly concentrated than the passing test samples. This early
execution is attained contributing to robust and optimal requirement prioritization.

https://www.indjst.org/ 548

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

4 Results and Discussion
In this section, the proposed Pugh Trapezoidal Fuzzy and Gradient Reinforce Learning (PTF-GRL) for large scale software
requirement prioritization are illustrated employing the dataset https://www.kaggle.com/iamsouvik/software-requirements-d
ataset (3). The performance is simulated in Python. An elaborate comparison is provided with the state-of-the-art methods,
[Joint Requirements Documents (JRD) and Systematic Customer Resolution Unraveling Meeting (SCRUM) – JRD-SCRUM
[1], Intuitionistic Fuzzy Approach (IFS) (2) and Semiautomated scalable prioritisation technique (SRPTackle) (28).

To ensure fair comparison, similar set of requirements are selectedwithin the same environment with the aid of Intel(R) Core
(TM) i3 CPU 2.13 GHz processor with 4 GB RAM for all three methods, PTF-GRL, JRD-SCRUM (1), and IFS (2), SRPTackle (28).
Simulation parameters employed for analyzing the results are requirement prioritization accuracy, requirement prioritization
time, precision, and the number of test suite execution.

4.1 Performance analysis of requirement prioritization accuracy

Owing to the fact that the software quality is defined by the customer or stakeholder’s satisfaction, with the purpose of improving
the stakeholder’s satisfaction under certain yardsticks like, time, resource, the software engineer requires to prioritize the
requirements concerning large scale software projects. The benchmark for identifying the requirement prioritization remains
in measuring the accuracy and this is mathematically expressed as given below.

RPA = ∑n
i=1

RAP

Ri
(10)

Fromequation (10), the requirement prioritization accuracy ’RPA’ is estimated on the basis of the requirements analyzed ‘Ri’ and
the requirement prioritized in an accurate manner ‘RAP’. It is measured in terms of percentage (%).Themeasure of requirement
prioritization accuracy has been tabulated in Table 1 .Themeasure of higher requirement prioritization accuracy indicates that
the proposed PTF-GRL method is comparatively better than (1,2,28).

Table 1. Tabulation forrequirement prioritization accuracy using PTF-GRL, JRD-SCRUM (1), IFS (2) and SRPTackle (28).

Require-
ments

Requirement Prioritization Accuracy (%)
PTF-GRL JRD-SCRUM IFS SRPTackle

60 96.66 93.37 91.66 94.66
120 95.89 91.29 89.99 93.39
180 95.29 90.59 89.39 89.39
240 95.04 90.39 88.29 92.89
300 94.19 90.04 88.04 93.19
360 94.04 91.19 87.39 92.09
420 95.29 91.89 89.29 93.39
480 95.59 92.39 90.19 93.59
540 96.04 91.19 89.09 94.29
600 94.19 90.59 88.04 92.09

Table 1 illustrates the figurative representation of requirement prioritization accuracy for three different methods, PTF-
GRL, JRD-SCRUM (1), IFS (2) and SRPTackle (28) respectively. The Table 1shows the results for 600 distinct functional and non-
functional requirements acquired at different time instances between different stakeholders. It can be noticed that increasing
the number of requirements does not have any influence on the accuracy rate for all the three methods. However, with ‘60’
requirements acquired from two different stakeholders involved in simulation and ‘58’ requirements correctly prioritized
using PTF-GRL, ‘56’ prioritized correctly using JRD-SCRUM (1) and ‘55’ prioritized correctly using IFS (2), the requirement
prioritization accuracy was found to be ’96.66’, ’93.33’ and ’91.66’. ’94.66’ respectively. Likewise, nine various performance
results are observed. From these results, the requirement accuracy is said to be better using PTF-GRL when compared to (1), (2)
and (28).

The reason behind the improvement in requirement prioritization accuracy is the application of the Pugh Decision and
Trapezoidal Fuzzy Requirement Selection algorithm. By applying this algorithm, the lesser extent of possibility via Pugh
Decision Matrix is employed for accurately selecting the requirements in a computationally efficient manner. In addition, the
Pugh DecisionMatrices are employed to carry out the consistency checking among pair-wise matrices. De-fuzzification is used

https://www.indjst.org/ 549

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

to reduce the uncertainty among stakeholders.This in turn improves the accuracy of requirement prioritization using PTF-GRL
by 4% compared to (1), 7% compared to (2) and 3% compared to (28).

4.2 Performance analysis of requirement prioritization time
During the process of prioritization of requirements involving large scale software projects, time is the major criterion of
concern. It is said that a great deal of time is consumed during the process of prioritizing requirements. Therefore, any
requirement prioritization method necessitates time. This is mathematically expressed as given below.

RPT = ∑n
i=1 RPi ∗Time(RP) (11)

From equation (11), the requirement prioritization time ’RPT ’, is estimated on the basis of the requirements involved in large
scale software projects ‘RPi’ and the corresponding time consumption in requirement prioritization ‘Time(RP)’.It is measured
in terms of milliseconds (ms). The measure of requirement prioritization time has been tabulated in Figure 5. The measure of
minimum requirement prioritization time indicates that the proposed PTF-GRL method is more effective than (1), (2) and (28).

Fig 5. Requirement prioritization time

Figure 5 illustrates the figurative representation of requirement prioritization time using three different methods, PTF-GRL,
JRD-SCRUM (1), IFS (2) and SRPTackle (28) respectively with respect to 600 different requirements involving both functional
and non-functional types. A linear increase is found in the requirement prioritization time with the increase in the number
of requirements provided as input during the simulation. This is because with the higher number of requirements to be
prioritized, the larger number of requirements for different types of software products is formed and that results in a rise
in the requirement prioritization time also. However, with simulations conducted for requirement prioritization time, the
time consumed for a single requirement being ’0.155ms’ using PTF-GRL, ‘0.185ms’ using JRD− SCRUM (1), and ’0.205ms’
using IFS (2), and0.225ms using SRPTackle (28) the overall requirement prioritization time was observed to be ‘9.3 ms’,
‘ 11.1 ms’,’12.3 ms’ and ’13.55’ respectively. Similarly, the remaining nine runs are executedwith different counts of requirements.
The obtained performance of requirement prioritization time of the (PTF-GRL) method is compared to existing methods.

From the results, it is inferred that the requirement prioritization time is lesser using PTF-GRL than compared to (1,2,28).
The reason behind the improvement is due to the application of Trapezoidal Fuzzy Numbers applied to the Pugh Decision
Matrix. The sufficient requirements are precisely selected by using Pugh Decision Matrix with minimum time even in case of
uncertainty between stakeholders. With this, the requirement prioritization time using PTF-GRL is said to be reduced by 30%
compared to (1), 37% compared to (2) and 40% compared to (28).

4.3 Performance analysis of precision
Precision is measured as the fraction of relevant requirements correctly and incorrectly prioritized among the number of
requirements taken for experimental evaluation. The precision is mathematically estimated as given below,

P =

[
tp

tp + fp

]
(12)

From equation (12), the precision ’P’ is measured on the basis of the true positive ‘tp’ (i.e., correctly prioritized) and false
positive ‘ fp’ (i.e., incorrectly prioritized).Themeasure of precision has been tabulated in Table 2.Themeasure of better precision

https://www.indjst.org/ 550

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

indicates that the proposed PTF-GRL method is more efficient than (1,2,28).

Table 2. Tabulation for precision using PTF-GRL, JRD-SCRUM (1), IFS (2) and SRPTackle (28)

Require-
ments

Precision (%)
PTF-GRL JRD−SCRUM IFS SRPTackle

60 0.93 0.9 0.88 0.89
120 0.9 0.877 0.777 0.887
180 0.91 0.866 0.789 0.879
240 0.96 0.887 0.788 0.889
300 0.97 0.889 0.888 0.91
360 0.93 0.881 0.899 0.91
420 0.999 0.888 0.877 0.899
480 0.94 0.885 0.886 0.91
540 0.95 0.883 0.881 0.885
600 0.91 0.887 0.885 0.889

Table 2 shows the figurative portrayal of precision for three different methods, PTF-GRL, JRD-SCRUM (1), IFS (2) and
SRPTackle (28) respectively. It is inferred that the precision rate is not found to be inversely or directly proportional to the
requirement set as provided by two different stakeholders. This is due to the reason that the requirements utilized in our work
consist of both functional and non-functional requirements and also both the negative and positive aspects involved in the
non-functional requirements. Due to this inconsistency of precision between stakeholders for distinct requirements are said to
persist. Nevertheless, simulation results show a true positive rate of 56, 54, and 53 and a similarly false positive rate of 4, 6, and 7
using three different methods respectively. For experimentation, the precision of PTF-GRL is ‘0.93 %’, and the precision of JRD-
SCRUM (1), IFS (2) and SRPTackle (28) being ‘0.9%’, 0.88% and 0.89%.In the same way, a diversity of results is observed and the
results are compared.The overall results show that the PTF-GRL improves the precision by 6% compared to (1) , 10% compared
to (2) and 5% compared to (28) respectively .With these results, the incorrect requirement prioritization using PTF-GRL is found
to be lesser than (1,2,28).

The reason behind improved precision value is due to utilization of Pugh Decision Matrices for each requirement extent
value. Consistency checking between pair-wise matrices (i.e., between stakeholders) is also performed by de-fuzzifying the
Pugh Decision Matrices for minimizing uncertainty involved between stakeholders. Only after this, the prioritization process
for requirements is performed, the Gradient Orientation function, flexibly obtains more perceptions into individual test cases
or test samples. With this function, according to distinct requirements of the stakeholders, correct prioritization is ensured
using PTF-GRL.

4.4 Performance analysis of test suite execution

Test suite execution refers to the number of fault identification involved in prioritizing the requirements concerning large scale
software projects. In other words, the minimum the test suite execution, the higher is the chance of obtaining the failure cases
involved in prioritization and therefore improving the overall performance. A test suite refers to a collection of test samples
(i.e., requirements) intended to test a set of behaviors (i.e., failing test instances) of software programs (i.e., large scale software
projects). This is mathematically expressed as given.

TSE = ∑n
i=1

PrF

Ri
∗100 (13)

From the equation (13), the test suite execution ‘T SE ’ is measured based on the requirements that intends to be actual failing
test instances ‘Ri’ and the probable failing test instances measured ‘PrF ’. It is measured in terms of percentage (%).Themeasure
of test suite execution has been shown in Figure 6. Measure of higher test suite execution indicates that the proposed PTF-GRL
method is more efficient than (1,2,28).

Finally, Figure 6isthe graphical plot of test suite execution against the requirements. As revealed in Figure 6, the test suite
execution of four different methods PTF-GRL, JRD-SCRUM (1), IFS (2) and SRPTackle (28) are represented by three different
colors namely blue, red, and green,pink color respectively. The requirements are taken in the horizontal direction whereas the
performance of test suite execution is observed on the vertical axis. A test suite comprises a set of test cases that are grouped

https://www.indjst.org/ 551

https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

Fig 6. Graphical representation of test suite execution

for test execution purposes. In our work, the test suite consists of a set of requirements provided by different stakeholders for
requirement prioritization. Also, the test plan assists in organizing test suite execution, and hence by including both the test
samples and the test suite in our work, both the test suite execution and testing activities for requirement prioritization are said
to be performed parallel. Therefore, increasing the number of requirements does not influence the test suite execution.

Moreover, by employing the Gradient Orientation function that flexibly procures more perceptions into individual test cases
or test samples, large number of test suite execution are said to be ensured. Followed by, Deep Reinforce learning is used to focus
the failing test samples than the passing test samples. Therefore, the test suite execution is obtained in an early manner. As a
result, the test suite execution is improved by using PTF-GRL by 12% compared to (1), 19% compared to (2) and 5% compared
to (28) respectively.

5 Conclusion
One of themost critical phases of requirement engineering is requirement prioritization owing to the fact that several executions
have been employed for explicit requirement elicitation.However, none of themethods can be said to be efficient as eachmethod
possess their advantages and drawbacks. In this study, Pugh Trapezoidal Fuzzy and Gradient Reinforce Learning (PTF-GRL)
method are proposed for large scale software requirement prioritization. The PTF-GRL method involved all the stakeholders
and worked for any number of requirements, therefore contributing to both accuracy and time. Moreover, by utilizing Gradient
Orientation-based Reinforce Requirement Prioritization more perceptions into individual test cases can be modeled therefore
ensuring test suite execution. Experiments are performed to compare our proposed PTF-GRL method with the state-of-the-
art methods. The results of this study verify the significance of our method to meet the emergent requirements in software
requirement prioritization. Simulations results showed an improvement of 4%, 7% and 3% accuracy upon comparison with
JRD-SCRUM, IFS and SRPTackle, therefore reducing the requirement prioritization time by 30% compared to JRD-SCRUM,
37% compared to IFS and 40% compared to SRPTackle. Moreover, the test suite execution was improved by 12% compared to
JRD-SCRUM, 19% compared to IFS and 5% compared to SRPTackle respectively. The proposed work failed to reduce both the
costs and duration of a project for addressing the high priority requirements.

References
1) Saeeda H, Dong J, Wang Y, Abid MA. A proposed framework for improved software requirements elicitation process in SCRUM: Implementation by a

real-life Norway-based IT project. Journal of Software: Evolution and Process. 2020;32(7). Available from: https://dx.doi.org/10.1002/smr.2247.
2) Gupta A, Gupta C. A novel collaborative requirement prioritization approach to handle priority vagueness and inter-relationships. Journal of King Saud

University - Computer and Information Sciences. 2019. Available from: https://dx.doi.org/10.1016/j.jksuci.2019.12.002.
3) Software Requirement Dataset . 2021. Available from: https://www.kaggle.com/iamsouvik/software-requirements-dataset.
4) Thapar SS, Sarangal H. Quantifying reusability of software components using hybrid fuzzy analytical hierarchy process (FAHP)-Metrics approach. Applied

Soft Computing. 2020;88:105997–105997. Available from: https://dx.doi.org/10.1016/j.asoc.2019.105997.
5) Seyff N, Todoran I, Caluser K, Singer L, Glinz M. Using popular social network sites to support requirements elicitation, prioritization and negotiation.

Journal of Internet Services and Applications. 2015;6(1):1–16. Available from: https://dx.doi.org/10.1186/s13174-015-0021-9.
6) Ali S,HafeezY,Asghar S,NawazA, Saeed S. Aspect-based requirementsmining technique to improve prioritisation process:multi-stakeholder perspective.

IET Software. 2020;14(5):482–492. Available from: https://dx.doi.org/10.1049/iet-sen.2019.0332.
7) Zare F, Khademizare H. Software effort estimation based on the optimal Bayesian belief network. Applied Soft Computing. 2016;49:968–980.

doi:10.1016/j.asoc.2017.10.047.

https://www.indjst.org/ 552

https://dx.doi.org/10.1002/smr.2247
https://dx.doi.org/10.1016/j.jksuci.2019.12.002
https://www.kaggle.com/iamsouvik/software-requirements-dataset
https://dx.doi.org/10.1016/j.asoc.2019.105997
https://dx.doi.org/10.1186/s13174-015-0021-9
https://dx.doi.org/10.1049/iet-sen.2019.0332
http://dx.doi.org/10.1016/j.asoc.2017.10.047
https://www.indjst.org/

Devadas & Cholli / Indian Journal of Science and Technology 2022;15(12):542–553

8) Hernández-González J, Rodriguez D, Inza I, Harrison R, Lozano JA. Learning to classify software defects from crowds: A novel approach. Applied Soft
Computing. 2018;62:579–591. Available from: https://dx.doi.org/10.1016/j.asoc.2017.10.047.

9) Abualhaija S, Arora C, SabetzadehM, Briand LC, TraynorM. Automated demarcation of requirements in textual specifications: a machine learning-based
approach. Empirical Software Engineering. 2020;25(6):5454–5497. Available from: https://dx.doi.org/10.1007/s10664-020-09864-1.

10) Dingsøyr T, Moe NB, Fægri TE, Seim EA. Exploring software development at the very large-scale: a revelatory case study and research agenda for agile
method adaptation. Empirical Software Engineering. 2018;23(1):490–520. Available from: https://dx.doi.org/10.1007/s10664-017-9524-2.

11) Shinkuma R, Nishio T. Data Assessment and Prioritization in Mobile Networks for Real-Time Prediction of Spatial Information with Machine Learning.
2019 IEEE First International Workshop on Network Meets Intelligent Computations (NMIC). 2019;92:1–19. doi:10.1016/j.asoc.2016.07.040.

12) Xue Y, Zhong J, Tan TH, Liu Y, Cai W, Chen M, et al. IBED: Combining IBEA and DE for optimal feature selection in software product line engineering.
Applied Soft Computing. 2016;49:1215–1231. Available from: https://dx.doi.org/10.1016/j.asoc.2016.07.040.

13) Hujainah F, Bakar RBA, AbdulgabberMA, Zamli KZ. Software Requirements Prioritisation: A Systematic Literature Review on Significance, Stakeholders,
Techniques and Challenges. IEEE Access. 2018;6:71497–71523. Available from: https://dx.doi.org/10.1109/access.2018.2881755.

14) Sahin B. Consistency control and expert consistency prioritization for FFTA by using extent analysis method of trapezoidal FAHP. Applied Soft Computing.
2017;56:46–54. doi:10.1007/s10664-016-9491-z.

15) HeikkiläVT, PaasivaaraM, LassseniusC,DamianD, EngblomC. Managing the requirements flow from strategy to release in large-scale agile development:
a case study at Ericsson. Empirical Software Engineering. 2017;22(6):2892–2936. Available from: https://dx.doi.org/10.1007/s10664-016-9491-z.

16) Shameem M, Kumar RR, Nadeem M, Khan AA. Taxonomical classification of barriers for scaling agile methods in global software development
environment using fuzzy analytic hierarchy process. Applied Soft Computing. 2020;90:106122–106122. Available from: https://dx.doi.org/10.1016/j.asoc.
2020.106122.

17) Daneva M, van der Veen E, Amrit C, Ghaisas S, Sikkel K, Kumar R, et al. Agile requirements prioritization in large-scale outsourced system projects: An
empirical study. Journal of Systems and Software. 2013;86(5):1333–1353. Available from: https://dx.doi.org/10.1016/j.jss.2012.12.046.

18) Barbosa PAM, Pinheiro PR, Silveira FRV, FilhoMS. Selection and Prioritization of Software Requirements ApplyingVerbal DecisionAnalysis. Complexity.
2019;2019:1–20. Available from: https://dx.doi.org/10.1155/2019/2306213.

19) Dabbagh M, Lee SP. An Approach for Integrating the Prioritization of Functional and Nonfunctional Requirements. The Scientific World Journal.
2014;2014:1–13. Available from: https://dx.doi.org/10.1155/2014/737626.

20) Jamilah D, Michael I, Jasser MB, and. Software Requirements Prioritization Tool using a Hybrid Technique. International Journal of Engineering and
Advanced Technology. 2019;9(1):1631–1635. Available from: https://dx.doi.org/10.35940/ijeat.a2634.109119.

21) Sarker KU. Explicit specification framework to manage software project effectively. Indian Journal of Science and Technology. 2020;13(36):3785–3800.
doi:17485/IJST/v13i36.1244.

22) Tompkins M, Iammartino R, Fossaceca J. Multiattribute Framework for Requirements Elicitation in Phased Array Radar Systems. IEEE Transactions on
Engineering Management. 2020;67(2):347–364. Available from: https://dx.doi.org/10.1109/tem.2018.2878688.

23) Zhou ZQ, Liu C, Chen TY, Tse TH, Susilo W. Beating Random Test Case Prioritization. IEEE Transactions on Reliability. 2021;70(2):654–675. Available
from: https://dx.doi.org/10.1109/tr.2020.2979815.

24) Bajaj A, Sangwan OP. Test Case Prioritization Using Bat Algorithm. Recent Advances in Computer Science and Communications. 2021;14(2):593–598.
Available from: https://dx.doi.org/10.2174/2213275912666190226154344.

25) Mughal S, Abbas A, Ahmad N, Khan SU. A Social Network Based Process to Minimize In-Group Biasedness During Requirement Engineering. IEEE
Access. 2018;6:66870–66885. Available from: https://dx.doi.org/10.1109/access.2018.2879385.

26) Kamal T, Zhang Q, Akbar MA, Shafiq M, Gumaei A, Alsanad A. Identification and Prioritization of Agile Requirements Change Management Success
Factors in the Domain of Global Software Development. IEEE Access. 2020;8:44714–44726. Available from: https://dx.doi.org/10.1109/access.2020.
2976723.

27) AbdElazim K, Moawad R, Elfakharany E. A Framework for Requirements Prioritization Process in Agile Software Development. Journal of Physics:
Conference Series. 2020;1454(1):012001–012001. Available from: https://dx.doi.org/10.1088/1742-6596/1454/1/012001.

28) Hujainah F, Bakar RBA, Nasser AB, Al-haimi B, Zamli KZ. SRPTackle: A semi-automated requirements prioritisation technique for scalable requirements
of software system projects. Information and Software Technology. 2021;131:106501–106501. Available from: https://dx.doi.org/10.1016/j.infsof.2020.
106501.

29) Khan AA, ShameemM, Kumar RR, Hussain S, Yan X. Fuzzy AHP based prioritization and taxonomy of software process improvement success factors in
global software development. Applied Soft Computing. 2019;83:105648–105648. Available from: https://dx.doi.org/10.1016/j.asoc.2019.105648.

30) ShameemM, Kumar RR, Kumar C, Chandra B, Khan AA. Prioritizing challenges of agile process in distributed software development environment using
analytic hierarchy process. Journal of Software: Evolution and Process. 2018;30(11):e1979–e1979. Available from: https://dx.doi.org/10.1002/smr.1979.

31) Shameem M, Khan AA, Hasan MG, Akbar MA. Analytic Hierarchy Process Based Prioritisation and Taxonomy of Success Factors for Scaling Agile
Methods in Global Software Development. IET Software. 2020;14(4):389–401. Available from: https://dx.doi.org/10.1049/iet-sen.2019.0196.

32) Khan AA, Shameem M, Nadeem M, Akbar MA. Agile trends in Chinese global software development industry: Fuzzy AHP based conceptual mapping.
Applied Soft Computing. 2021;102(3):107090–107090. Available from: https://dx.doi.org/10.1016/j.asoc.2021.107090.

33) Devadas R, Cholli N. Interdependency aware QUBIT and BROWNBOOST rank for large scale requirement prioritization. International Journal of
Computing and Digital Systems. 2022;11:625–634. Available from: http://dx.doi.org/10.12785/ijcds/110150.

https://www.indjst.org/ 553

https://dx.doi.org/10.1016/j.asoc.2017.10.047
https://dx.doi.org/10.1007/s10664-020-09864-1
https://dx.doi.org/10.1007/s10664-017-9524-2
http://dx.doi.org/10.1016/j.asoc.2016.07.040
https://dx.doi.org/10.1016/j.asoc.2016.07.040
https://dx.doi.org/10.1109/access.2018.2881755
http://dx.doi.org/10.1007/s10664-016-9491-z
https://dx.doi.org/10.1007/s10664-016-9491-z
https://dx.doi.org/10.1016/j.asoc.2020.106122
https://dx.doi.org/10.1016/j.asoc.2020.106122
https://dx.doi.org/10.1016/j.jss.2012.12.046
https://dx.doi.org/10.1155/2019/2306213
https://dx.doi.org/10.1155/2014/737626
https://dx.doi.org/10.35940/ijeat.a2634.109119
http://dx.doi.org/17485/IJST/v13i36.1244
https://dx.doi.org/10.1109/tem.2018.2878688
https://dx.doi.org/10.1109/tr.2020.2979815
https://dx.doi.org/10.2174/2213275912666190226154344
https://dx.doi.org/10.1109/access.2018.2879385
https://dx.doi.org/10.1109/access.2020.2976723
https://dx.doi.org/10.1109/access.2020.2976723
https://dx.doi.org/10.1088/1742-6596/1454/1/012001
https://dx.doi.org/10.1016/j.infsof.2020.106501
https://dx.doi.org/10.1016/j.infsof.2020.106501
https://dx.doi.org/10.1016/j.asoc.2019.105648
https://dx.doi.org/10.1002/smr.1979
https://dx.doi.org/10.1049/iet-sen.2019.0196
https://dx.doi.org/10.1016/j.asoc.2021.107090
http://dx.doi.org/10.12785/ijcds/110150
https://www.indjst.org/

	Introduction
	Research Gap and Motivation
	Proposed Methodology
	3.1 Pugh Decision-based Trapezoidal Fuzzy Requirement Selection model
	3.2 Gradient Orientation-based Reinforce Requirement Prioritization model

	Results and Discussion
	4.1 Performance analysis of requirement prioritization accuracy
	4.2 Performance analysis of requirement prioritization time
	4.3 Performance analysis of precision
	4.4 Performance analysis of test suite execution

	Conclusion

