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Abstract
Background/Objectives: The anti-spoofing measures are blooming with an
aim to protect the Automatic Speaker Verification systems from susceptible
spoofing attacks. This review is an amalgam of the possible attack types, the
datasets required, the renowned feature representation techniques, modeling
algorithms involving machine learning, and score normalization techniques.
Method/Findings: A detailed analysis of existing datasets is carried based on
the total speaker samples, the number of speakers, and source of availability-
open or licensed. This may foster choosing the right dataset for building
the anti-spoofing frameworks. Further, the feature extraction schemes are
elaborated with an intention to cover the vast span of features existing in
various parts of raw speech for obtaining speaker-specific traits. Further,
the machine learning algorithms ranging from discriminative to generative
to mixed form are explored for seeking the right algorithm in specific attack
conditions. On the whole, these analyses of existing features and machine
learning algorithms together contribute to classifying the unknown test
samples as genuine or spoofed. The score normalization techniques are also
considered in this review to avoid any misclassifications and ultimately reduce
the False Acceptance Ratios. The performance of any anti-spoofing speaker
verification system may be evaluated using standard objective measures such
are Equal Error Rate, False positive ratios, and graphical plots. These measures
are briefly explained in this review. Overall, the critical analysis of individual
methods-feature extraction, machine learning, score normalization, and all
the anti-spoofing datasets are also discussed for giving a kick-start to any
researcher beginning to explore in this direction. The shortcomings and risks
involved in building an enhanced speaker verification system that is robust
to almost all the attack types are listed in this article. The review of studies
conducted so far has led to vital future directions that are enlisted in the
concluding remarks of the article.
Keywords: Automatic Speaker Verification; Spoofed Detection; AntiSpoofing;
Voice Conversion; Speech Synthesis; Replay Speech
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1 Introduction
The task of permitting pre-enrolled speakers with an intension to disallow unknown
ones is called Speaker Verification and that system is an Automatic Speaker Verification
(ASV) (1). The ASV is a crucial part of a Speaker Recognition platform after the Speaker
Identification (SI) mechanism (2). The SI system opts for the most likely speaker among
the presented list of speakers while ASV investigates if the claimed identity is true
or false. Depending upon the input sequence, the ASV may be text-dependent or
independent. The former being preferred in authentication scenarios as it needs higher
accuracy (3). Furthermore, the chances of an ASV being susceptible to spoofing attacks
is inevitable as any imposter could mimic or synthesize the target’s voice for getting
through the intended system. Hence, this study focuses on spoofing and anti-spoofing
measures from the system analysis and decision algorithm perspective.

The developments in reducing channel and noise interference have led to ASV
systems being employed in security-based scenarios such as phone banking (4).
However, the primary concern in using ASV is susceptibility to imposters. According
to studies conducted in (5,6), there are two basic types of attacks: direct or Physical
Access attacks (PA) and indirect or Logical Access attacks (LA). The PA attacks occur
at the sensor level while LA attacks are observed after the sensor, that is at the feature
representation stage or modelling stage. Also, another way of categorizing the spoofing
attacks is through imposter variations which may be impersonated, replayed, voice
converted, or synthetic speech. The impersonation or mimicry is the first-ever attack
on a speaker verification system because of its ease of production. The only criteria are,
the target and imposter’s voice must have a similar fundamental frequency which is
usually the case for twins. Mimicry is a product of a professional artist, who is trained
and dedicated for the sole purpose of copying. The imposter or mimicry artist usually
mimics the prosody and timbre of the target speaker (7). The replayed speech is easy to
reproduce for the attacker as it involves playing pre-recorded speech which is certainly
captured without the permission of the target. This seems to be a text-dependent
scenario where a fixed phrase is used for verifying the speaker’s traits. Capturing real-
time speech or modified speech of the intended target is tough, but is often considered
as a challenge by the imposters and conducted irrespective of the challenges due to no
human intervention for re-producing them.

The synthetic speech may be a by-product of a Text-to-Speech (TTS) system (i.e.
Speech Synthesis (SS) or a Voice transformation or conversion (VC) speech. Presently,
the TTS produces quite intelligible speech as it imitates the human speech production
mechanism (8). On the contrary, the VC speech may be generated from either (or all of
these) human speech production, perception, and prosodic models (9). On the whole,
the ASV comprises of two-fold operating conditions: first being the training phrase
where a statistical model is a result of extracting appropriate features from a known
speaker’s voice and trained through convenientmachine learning algorithms.The saved
model is then used during the testing phase to find if the unknown speaker’s speech
sample belongs to the known speaker or not. The block schematic of internal blocks
during each mode of operation is demonstrated in Figure 1.
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Fig 1. A block schematic of Automatic Speaker Verification framework

The literature offers quite significant reviews of developments in the ASV domain and anti-spoofing measures. The work (10)

describes the basics of biometrics alongwith spoofing attackswhile (11,12) describes a survey of techniques existing in the speaker
verification system from the ASV Spoof challenge perspective that includes protocols, databases, and future directions. Another
review covers the detection of speech synthesis and replay attacks (13). The review of ASV based on short utterances is presented
in (14) which explains challenges including the trends in this field. On the other hand in this article, a thorough analysis of state-
of-art features, training algorithms along with popular databases and evaluation metrics are presented. Unlike past reviews,
this work concentrates on popular methods addressing in-depth function of the blocks belonging to the ASV system. Such an
intensive review of feature extraction and machine learning algorithms employed in anti-spoofing frameworks has not been
conducted according to the best of the authors’ knowledge. In fact, this article also presents a critical evaluation of these internal
blocks for providing a base in developing anti-spoofing frameworks. Thus the main objective of this article are three-fold:

1. Investigating the available datasets for developing anti-spoofing measures in order to analyse the nature and types of
attacks. This will promote a deciding criteria for selecting the right kind of dataset.

2. Investigating the feature representation techniques that help reducing the raw data redundancies and represent the
spoofed and genuine speakers efficiently. This will a kick start for researchers looking out for existing feature extraction
techniques in addition to their pros and cons.

3. Exploring existing machine learning and score normalization algorithms for accurate categorization of input test sample
(as genuine or spoofed). This will keep a track of evolution of machine learning algorithms right from discriminative
models to generative models to the artificial neural networks.

The article is structured as follows: Section 2 describes the ASV system for spoofed speech while section 3 identifies popular
databases employed in studying ASV. Section 4 covers extensive literature related to feature representation techniques, section
5 describes the machine learning algorithms while the score normalization techniques are explained in section 6. Furthermore,
section 7 elaborates evaluation metrics and lastly, section 8 summarizes the article review with hints for future work.

2 ASV system for spoofing attack
Themode of operation for anASV for imposter speech is nearly identical to the standardASVonlywith additional requirements
to detect such mimicked or synthetic speech. Also in the testing mode, the test sample is matched with the trained model to
obtain a score signifying the speaker belongs to a known or unknown class as depicted in Figure 2.

To decrypt the process of spoofing attacks on the ASV and taking necessary actions to prevent it, the characteristics of
natural speech as against artificial or mimicked speech must be investigated. The human behavioural traits such as huskiness,
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Fig 2. Automatic Speaker Verification with spoofing attack

breathlessness, and speaking rate are utterly impossible to mimic or synthesize individually (11). Furthermore, the high-level
features like pitch and duration are not consistent considering inter-speaker and intra-speaker variations. Timbre is also a
potential feature considering natural versus artificial speech.

2.1 Speech-based Spoofing Attacks

The combined effort by individual steps of training and testing are vulnerable including links between each component like a
microphone to input feature representation, features to classifiers, and classifiers to decision algorithm (15).These attacksmay be
sub-divided into two basic types: Direct or the general spoofing attacks that occur at the microphone and during transmission
to the first input component (feature extraction block); while indirect attacks occur inside the ASV itself which usually needs
access to the system say at the feature level or classifier or decision logic end. The attacker would replace or modify the contents
of these components. Direct access attacks are considered potential risks as opposed to indirect attacks as they don’t require
system-level access. Additionally, four broad categories of representation attacks are natural impersonation, speech synthesis,
VC, and replay speech as described below:

2.1.1 Natural Impersonation
The Impersonation is performed by a professional mimicry artist or imposter who holds the ability to produce similar voice
traits and behaviour or even twins with identical spectral characteristics. Through studies, it is inferred that the imposter does
not depend on the prior knowledge of machines for copying the target speaker. All the imposter needs is a target speaker’s
voice sample and a nearly similar spectral pattern would authorize the imposter (16). In fact, the impersonator tries to reproduce
the prosodic parameters of the target (17). Along with this, the imitator adapts to the target speaker’s accent, pronunciation,
lexicon, and various high-level features.Thereby the voice produced by impersonation could deceive the human ear perception.
However, the practicality of this attack is negligible or extremely low as most often the anti-spoofing ASV considers spectral
parameter traits as the base feature technique.

2.1.2 Speech Synthesis
Speech Synthesis (SS) refers to the conventional TTS system but with a target-specific speech that sounds intelligible, natural,
and yet it is machine-generated speech from prompted text. Some common applications of SS in the younger generation such as
audiobooks, in-the-car navigation, speech translation, etc (18,19). The speech synthesis involves two basic steps: analyze the text
(front-end) and generate waveform or speech (back-end). When analyzing the text, the words and sentences are broken into
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a less complex linguistic unit called a phoneme. On the contrary, the speech generation utilizes these linguistic parameters to
build up a waveform. The careful analysis of literature suggested, four prime waveform generation techniques evolved to date.
The first being the acoustic features specially formants representing every phoneme (20). Following this, the second approach
was rooted in diphones which comprised the second half of the first phoneme till the first half of consecutive phoneme. These
diphones were further represented using a linear prediction algorithm. The third technique was based on selecting the right
speech units and then concatenating them into a single speech sample which is termed as unit selection approach (21). And
lastly, statistical parametric-based synthesis techniques such as Hidden Markov Model (HMM) have shown promising results
in the domain of SS (22,23). Additionally, the DNN is also proposed for SS (23,24).

2.1.3 Voice Conversion
The speech signal from the source speaker is modified statistically/acoustically to sound identical to the target speaker’s speech.
This is a basic parametric difference between speech synthesis and voice conversion algorithms. To modify a source speaker’s
speech, the spectral characteristics and prosody of the imposter are mapped to find no audible change in speech. So the
voice timbre, prosodic parameters like pitch and intonation are amended to be reflected in its characteristics. The spectrum
modifications are performed by statistical parameters, frequency warping, and lastly unit selection algorithm (25). The spectral
modification techniques like Vector Quantization (26), GMM (27), Restricted Boltzmann Machines (RBM) (28) and Deep Belief
Networks (DBN) (29) are explored in producing VC speech. The frequency warping techniques modify the source’s frequency
axis to the target’s speaker. These modification techniques preserve the spectral content producing naturally sounding target
speech (29,30). Furthermore, the unit selection technique gave promising results, producing converted speech similar to the target
speaker’s voice.

Along with spectral parameters, the prosody modification would contribute to closer and natural synthetic speech. Pitch
and duration are looked up when mentioning about speaker’s prosody in case of voice conversion framework (31). The threat to
the ASV systems has increased over the period due to improvements in converted speech signals’ quality.

2.1.4 Replay Speech
Thepre-recorded speech fed into the ASV poses a potential risk to the system’s configuration asmay lead to giving unauthorized
entry to the adversary. Such a spoofed speech could be procured at a given time without the consent of the victim. The speech
samplesmay be concatenated or even clipped to obtain the desired utterance. Such attacks work well in the text-dependent ASV
that has a fixed text phrase for getting access to the system. Spoofing attacks using replayed speech has now been a common
practice due to the availability of affordable, good-quality recording instruments like mobile phones and laptops. Therefore ,
these attacks occur at the microphone level more often than the transmission level. The spectral similarity between natural and
replay speech turn out to be quite close; thus it becomes rightful to conclude that the spectral features are susceptible to replay
speech-based attacks (32). From the point of view of objective score, the False Acceptance Ratio (FAR) has increased due to these
attacks.

2.2 Detection of Spoofed Speech

The spoofed speech is a by-product of a human mimicry or machine’s effort to mimic natural speech traits. The former is a low-
risk attack hence not quite popular in the anti-spoof detection community while the latter involves synthetic speech produced
by a TTS or VC framework or replayed through a recording device. There seems to be a need for detecting spoofed speech from
the natural speech with the sole purpose of protecting unauthenticated access to crucial information. The developments in the
VCfield aremore established than theTTS due to earlywork that began at the start of the 1990s.This impliesmore breacheswere
uncovered using VC speech than SS systems. The preliminary VC attack consisted of Harmonic and Noise Model (HNM) and
HMM-based synthesis (33). As opposed to VC, the SS gained momentum only after developments in HMM-based synthesis (34).
The study in developing countermeasures for attacks beganwith prior knowledge of the attack that yielded biased results yet gave
a kick start in developing algorithms. The work initiated with f0-based contours along with time stability to make distinction
between genuine and spoofed speech (35). The algorithm had a setback for capturing generality as there was scarce variation in
the number of speakers. The visual cues such as images from video were a fine choice for representing speech through Mean
Pitch Stability (MPS) and MPSr (range) along with jitter in (36). In another approach Cosine Normalization Phase Spectrum
(CosPhase) along with Modified Group Delay Function (MGDF) were proposed. The MFCC based features ignore the phase-
related information during feature extraction; hence resulted in an increased EER. Furthermore, Magnitude Modulation (MM)
and PhaseModulation (PM) super-vectors improved EER respectively when fusedwithMGDF features (37,38).These short-term
features produce a lower EER and lead to another inference that the long and short-term features produce related yet reciprocal
content when fusion is performed. Having said that, the short-term features produce artefacts due to framing which is potential
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scope for improvement for speech researchers. Table 1 summarises various features and associated attack types while Table 2
lists the past five years research in the spoof detection area with regards to features along with the detection results.

Table 1. Various types of Attacks and their associatedfeatures
Type of
Attack

Practical-
ity

TI-
ASV

TD-ASV Features

Imperson-
ation

Low Low Low None

Speech
Synthesis

Medium-
to-high

High High CFCCIF, LFCC, CQCC, ICQC, Deep features, Scattering Cepstral
Coefficients fundamental frequency, Phase based features: GD,
MGD, PSPVoice

Conversion
Medium-
to-high

High High

Replay
Speech

High High Low (random phrase)
High (fixed phrase)

MFCC, LFCC, PLP, CFCCIF, CQCC IMFCC
CNN features
Others: RFCC, SCMC, SSFC, VESA-IFCC

Table 2. Feature Extractiontechniques used in spoof detection
Author Feature Set Classifier Results

Wu et al. 2016
MFCC, CosPh, MGD, PP, SMS GMM-UBM 10.05 (FAR), 10.57(FAR), 8.62(FAR),

22.36(FAR), 26.41(FAR)
UMS SVM 19.47(FAR)
Fusion 7.69(FAR)

Kamble and
Patil 2017

ESA-IFCC
GMM

6.79
MFCC 9.15
ESA-IFCC + MFCC 7.16

Paul et al. 2017 MFCC, IMFCC, LFCC, MFCC+CFCCIF, Sub-band, SFCC,
MOBT, SOBT, ISFCC, IMOBT, ISOBT

GMM 1.99, 0.95, 0.92, 1.21, 1.33, 1.05, 1.85,
2.49, 0.86, 1.46, 1.69

Kavya S. 2018 Mean, Variance, Log Spectrum Siamese NN
and LCNN

6.40

Rahmeni et al.
2019

IAIF SVM 0.8635
IAIF ELM 0.8407
MFCC SVM 0.9329
MFCC ELM 0.5135

Phapatanaburi
et al. 2019

LPR-RP + RP+ CQCC GMM 9.26

Kumar et al.
2019

CQCC + IMFCC + LFBE (x-vector) DNN 6.14

Volkova 2019 FFT Spectrograms LCNN 5.5
Halpern 2020 CQT ResNet 2.63
Chintha 2020 CQCC CRNN 4.02

The developments in known attacks are not in ample for real-time scenarios and open up doors for building algorithms
that can detect spoofed speech irrespective of the attack type. One such study started with the development of the SAS dataset
and ASV Spoof 2015 challenge (11,39). Following which, the Local Binary Patterns (LBP)-DCT for computing the MGDF and
CosPhase (40), Magnitude features such as LMS, RLMS, and phase features like GD, MGD, Instantaneous Frequency (IF),
Baseband Phase Difference (BPD), Pitch Synchronous Phase (PSP) (41) are also found to perform well in spoof detection
task. Apart from phase based features, the Linear Prediction Coefficients (LPC) and its residual (LPR) are also considered
for detecting known attacks (42). Some distinct feature sets like Cross-Teager Cepstral Co-efficient (TECC) (43), Energy
Separation (44) and Time-frequency based LFCC (45) are amongst novel representation techniques.

The heterogeneity in feature sets has thrown researchers challenges and further training/testing of these features is supposed
to be performed through appropriate speaker modelling techniques. The i-vectors approach is a breakthrough in the speaker
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verification scenario; hence it has been proposed for spoof detection scenario with filter-bank based features and Deep Neural
Networks (DNN) (46,47). Furthermore, a comparative study using the Mel Wavelet Packet Coefficients (MWPC) was conducted
to investigate Support VectorMachines (SVM) andDeep Belief Networks (DBN).The SVMperformed better than theDBN (48).
Various ensemble based approaches have also been proposed in the literature paving way for research in Deep Learning
area (49–52).

3 Database for ASV
Primitively for the development of anti-spoofing and spoofing measures in ASV, we need to decide the dataset based on our
goals and specifications. The following section describes various datasets used in ASV-system development. The corpora are
labelled as licensed and open source for ease of understanding and requirements in this research, as summarised in Table 3 and
Table 4 respectively.

Table 3. Licensed dataset for Automatic SpeakerVerification
Type of Attack Dataset #bonafide speech #spoofed speech Number of speakers Language
Impersonation YOHO 5520 - 138 (106M, 32F), 2 naive English
Voice Mimicry NIST - - 5, 1 professional Finnish

WSJ 157000 - 284 English
WSJ 157000 - 284 English

VC NIST-SRE 2006 1570/ 3978 20561/ 2782 504 Many
VC NIST-SRE 2006 1570 20561 - English
VC NIST-SRE 2006 1570 20561 - English
VC, SS, Synthetic spoof NIST-SRE 2006 1344 12648 298 English
SS, Replay, VC BioCPqD-PA 7941 114111 222 (124M, 98F) Portuguese

Table 4.Open-source datasets for Automatic Speaker Verification
Type of Attack Dataset #bonafide speech #spoofed speech #speakers Language
SS, VC SAS 33431 309592 106(45M, 61F) English
Replay RSR 2015 133243 - 300(157M, 143F) English
VC and replay RSR 2015 133243 - 300(157M, 143F) English
VC and SS ASV2015 9404 Kn92000, Unk92000 46(20M,26F) English
SS, VC, Replay AV Spoof 5576 LA20060, PA43320 44(31M, 13F) English
SS, Replay, VC VoicePA 5576 129988 16 English
Replay RedDots 2346 16067 62 English
Replay ASV Spoof 2017 1298 12008 24 English
SS, Replay, VC ASV Spoof 2019 71747 137457 20 English

3.1 Licensed / Proprietary Datasets

TheYOHOdataset has large utteranceswith office space recordings but lacks variations pertaining to vocabulary (53).Thedataset
offers more number speakers with 106 Male while 32 Female speaker voices. There were 24 utterances in 4 sessions each. The
utterances are low pass filtered at 3.4kHz and up sampled to 8kHz comprising 5500 utterances in all. Contrarily, the WSJ is a
multi-speaker dataset but not created for ASV, as was the case for YOHO. As the speaker variability and size is large, it may be
entitled for producing new synthetic speech and then treating the original corpus as genuine speech samples.Thework (36) used
the corpus SI-284 of the WSJ (WSJ0 and WSJ1) for the synthetic speech generation which comprises 81 hours of recording for
284 speakers.

The NIST-SRE is a speaker recognition corpus developed by a joint collaboration of NIST and LDC. There are multiple
speakers with conversational telephonic speech (54). BioCPqD-PA is a proprietary database, that has 222 speakers recorded in
the Portuguese language. The dataset is known to be versatile as a result of variations in recording environments. It comprises
in all 27,253 samples with 7,941 evaluation samples while another condition in which 3,91,678 spoofed samples are present
amongst which 1,14,111 are evaluation samples (55).
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3.2 Open Source datasets

The SAS (Speaker Verification and Anti-spoofing) dataset is built from the VCTK corpus with 106 speakers sampled at 16kHz
frequency. The corpus contains 22,831 natural speech as opposed to 2,03,592 spoofed speech. The VC and SS are the source of
spoofed speech (39).

The RSR 2015 corpus is a text-dependent Speaker Recognition database with 151 hours and 30 minutes of speech recorded
in English. There are nearly 300 speakers and 1,96,844 utterances segregated for development and evaluation motives (56,57).

Furthermore, the very initial dataset built for the sole purpose of boasting anti-spoofing development startedwithASV Spoof
2015. The dataset has 1,93,404 spoofed samples generated using VC, and SS(known attacks, LA) while 9,404 genuine samples.
Additionally, the corpus has unknown attack-based spoofed samples for developing attack independent algorithms (28). The AV
Spoof corpus was developed as a major part of the BTAS 2016 Challenge (58). The dataset includes various presentation attacks
in particular VC and SS-based; with 20,060 LA spoofed samples and 43,320 PA spoofed samples.There are 5,578 natural speaker
samples.

TheVoice PresentationAttack corpus has emerged fromAVSpoof corpus only for genuine samples. VoicePAdataset contains
replay speech that is recorded using a laptop where speech is replayed using internal and external speakers. Moreover, there are
replay speech samples present from iPhone and Samsung phone devices (internal speakers). There is broad range of spoofed
utterances including 3,91,678 samples from which 1,14,111 samples are fixed for evaluation. Contrarily, the natural speech
samples are 27,253 from which 7,941 samples are again reserved for assessment purposes (59).

The RedDots is a text-dependent replay speech corpus (60) that contains native and non-native 62 English speakers with small
phrases recorded on multiple devices. The corpus contains 16,067 replayed spoofed samples while 2,346 natural samples. Since
the dataset is designed by considering crowdsourcing during replaying and recording, it was entitled to be included in the ASV
Spoof 2017 challenge.

After successfully conducting ASV Spoof 2015 challenge, the organizers refined and launched a new dataset ASV Spoof
2017 that was adapted from the RedDots replay dataset. There are 24 speakers, 1,298 genuine, and 12,008 spoofed samples (61)

. The ReMASC (Realistic replay attack Microphone Array Speech Corpus) is a replay speech dataset that has been designed
considering the voice-controlled device. There are 45,472 spoofed and 9,240 natural speech samples with 55 speakers. The
recording areas include outdoors, inside the home, and in vehicles as well (62).

The ASV Spoof 2019 corpus is a third consecutive challenge for anti-spoofingmeasures development broadened to synthetic
(VC, SS) and replay speech. There are 20 speakers, 71,747 LA, and 1,37,457 PA samples, with tandem-DCF introduced in
addition to the other evaluation measures for the challenge (5,64).

4 Feature Representation for Spoof Detection
The voice signal when sampled and stored in digitized data form contains alot of application-independent content which may
not be required for performing the dedicated task of ASV. Thus, the speech signal is represented using appropriate features
through framing windowing and conversion. This conversion operation may be time, spectral, cepstral, or some form of
filtering to reduce the redundant contents. Taking this into consideration, speech features may be categorized as low-level (or
short-term), long-term (or prosodic), and high-level features. Additionally, there are deep features that obtained from using
DNN as a feature extraction scheme. The low-level or short-term features are linked with a speaker’s timbre. The aim here
is to capture local information within a frame of 20-40ms. So the spectral representation parameters like MFCC, LPCC and
Cochlear Model contributing to glottal parameters may be categorised as short-term features when extracted over the defined
frame duration. These kind of features are synthesizable with simplicity and hence are more susceptible to spoofing attacks
(65,66). The long-term or prosody-based parameters are linked to human-like auditory traits including pitch and duration
of the speaker, intonation, and Constant Q-transform Cepstral Coefficients (CQCC) (45,52,67). The prosodic parameters are
obtained from long segments of spoken speech like words and syllables representing speaking rate, style, and intonation levels.
These features are less likely to channel distortions yet the training process requires a larger data size (68). Furthermore, the
algorithms involving the extraction of pitch do not perform well in noisy scenarios. Likewise, the high-level parameters that
are obtained from lexicons to characterize behaviour of speaker and lexical cues. Phonemes and ideolect are also high-level
features. These unique parameters are preferred over short-term and long-term parameters due to the fact that they are less
affected by noise and channel distortions. Yet, there seems to be a possibility for exploring more as researchers are hesitating to
apply these high-end features in standalone ASV because they need a high-front-end like speech recognition framework (63,64).

The features may be segregated based on the duration of the segment as sub-segmental, segmental, and supra-segmental.
The speaker utterance is framed using a frame duration of 3 ms to 5 ms in the sub-segmental parameters. The research clarifies
that source excitation parameters are extracted through sub-segmental features (65,66). The segmental features involve the same
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framing as in sub-segmental features except for the duration of the frame is changed and increased to 10 to 30mswith shifting of
frames with overlap to maintain continuity and avoid loss of information due to sharp edges of frame boundaries. The speech
as a signal is generally non-stationary in nature and yet observed to be stationary for 10 ms to 30 ms duration, hence the
segmental parameters’ frame duration is justified. So the vocal tract parameters are obtained via segmental parameters. Lastly,
the supra-segmental parameters are extracted with 100 ms to 300 ms frame size. These features symbolise the behavioural traits
of the speaker like accent, word duration, speaking style, etc (65,67). The popular features used in ASV and countermeasures are
described below:

4.1 Mel Frequency Cepstral Coefficients (MFCC)

The MFCC based perceptual features are preferred in most speech processing frameworks such as automatic speaker
recognition (68,69). The frequencies are transformed intoMel scale through the standard procedure of short-term representation
using framing, windowing, and spectral transformation as portrayed in Figure 3. The real cepstrum is processed through a
triangular filter bank with T th order. The triangular filtering is used to average out the centre frequency energies. The Mel
scale is known to have linear spacing for lower frequencies while the logarithmic distribution for higher frequencies. The mel
frequency fMEL is computed as

fMEL = 2595log(1+ f r/700) (1)

Fig 3. Feature Extraction block schematic for MFCC

Thus, the MFCC coefficient Ch is given as

Ch = ∑T
m=1 [logX (m)]cos [πh/T (m−0.5)] (2)

Where h is the cepstral coefficient index.TheMFCCcoefficients alongwith their first and secondderivatives are usually included
in the feature set. Another form of representation is through an inverse mel filter bank for Inverse MFCC coefficients that
represent high-frequency regions efficiently (51).

4.2 Mel-warped Overlap Block Transformation (MOBT)

Prior to speech processing, theMOBTparameters are efficient in capturing discriminative informationprovided by the formants
. The filter-bank energies (MFLE) are segregated into overlapping and non-overlapping frames. Besides that, for computing the
cepstral parameters, the filter-bank energies are block transformed, and the DCT of every block yields MOBT parameters as
seen from Figure 4. Similar to IMFCC, inverse mel scale might be considered in place of Mel scale in MOBT to extract IMOBT
parameters (70,71).

4.3 Speech-Signal-Based Frequency Cepstral Coefficient (SFCC)

For investigating the significant role of frequency content in the speech production model, warping of frequency is performed.
A similar purpose is inculcated in SFCC features too (71). The input time-domain speech signal v(t) is firstly passed through
STFT followed by power spectral density operation for every frame is computed which is given as

P(i,w) = 1/N ∨V (i,w)2 (3)

Here,N is the total samples for one window. When P(i,w) is averaged over entire speech data, the ensemble energy P(w) is
calculated along with log function and lastly, distributed in a manner as below

A j =
∫ w j+1

w j log P̄(w)dw and j = 1, . . . . . . ,P (4)
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Fig 4. Feature Extraction block schematic for MFCC, MOBT, IMFCC, IMOBT, SFCC, SOBT, ISFCC, ISOBT techniques

A j = A j+1, j = 1, . . . . . . ,P−1 (5)

Where, A j is the jth area interval, w j is lower cut-off and, w j+1is the higher cut-off frequencies. The P point speech-based
frequency warping is given as

F
[(

w j +w j+1
)
/2
]
= j/P, j = 1, . . . . . . ,L (6)

Where, F (w) is a continuous function when P approaches infinity and lie within 1.
The frequency warping helps convert spectral to the cepstral domain to get a triangular filter.The ISFCC is product of inverse

warping operation as against SFCC (71). Furthermore, the SOBT parameters are produced as a combined effort of MOBT and
SFCC while the inverse would yield ISOBT (71) as seen in Figure 4.

4.4 Linear Prediction Cepstral Coefficients (LPCC)

s(k) = a1s(k−1)+a2s(k−2)+ ....+a js(k− j) (7)
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The LPC is simple to compute in order to have low computations (72). The speech production model is represented using Auto-
regressive Moving Average (ARMA). The LPC model employs all-pole filters through the prediction of the kth speech sample
using linear combination of previous j samples.

e(k) = s(k)− ŝ(k) = s(k)−
j

∑
m=1

ams(k−m) (8)

Where a1,a2 . . . ,a j are the LPC parameters for every individual frame. Thus, error during prediction error is computed as
Where s(k) is the original speech sample and ŝ(k) is the predicted sample. Further, the square of error is calculated to obtain

unique coefficients,

Ek = ∑p

[
sk(k)−∑ j

m=1 amsk(p−m)
]2

(9)

The p stands for total samples in one analysis frame. To computer LPCC features, the squared error is differentiated wrt to LPC
coefficients or filter weights as shown in Figure 5.

δEm/δam = 0 (10)

Therefore, the cepstral coefficients are

C0 = loge ( j) (11)

Cp = ap +∑m = 1P−1m/p Cmap−m ... f or1 < p < j (12)

Cp =
p−1
∑

m=p− j
m/pCmap−m (13)

Fig 5. Feature extraction using LPCC technique

4.5 Cochlear filter cepstral coefficients (CFCC)

The conventional feature extraction techniques involve pre-processing such as windowing, framing, and low pass filtering.
Contrastingly, human speech production does not operate on these pre-processing principles. Moreover, the framing and
windowing operations surely introduce artefacts and discontinuities in the processed speech in contrast to the actual raw speech
model. Hence, distinction of natural speech over a synthetic speech that is pre-processed becomes easier and will have the
effects of distortions seen in their spectral response. One such feature is CFCC (73) that builds on the base of auditory cepstral
coefficients and the block schematic is depicted in Figure 6.

Fig 6. Feature extraction using CFCC technique

So, the speech x(t) is processed by Auditory Transform (AT) producing traveling wavesW (a,b)inside the BasilarMembrane
given as

W (m,n) = x(t)∗ψm,n (t)whereψm,n (t) = 1/
√

mψm,n ((t −n)/m] (14)
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The x(t)and ψ (t) belong to Hilbert space. The factor m is scaling parameter while n is the time shift parameter, with energy
that remains the same for all values of m and n given as∫ ∞

−∞∨ψm,n (t)2dt =
∫ ∞
−∞∨ψ (t)2dt (15)

The cochlear filter is presented as

ψm,n (t) = 1/
√

m
(
(t −m)/nα e(−2π( fLβ ){(t−m)/n}]cos(2π ( fL)(t −m)/n]+θ

]
u(t −n) (16)

The α and β define the shape and width of the cochlear filter respectively.The value for θ must satisfy the admissibility property
of mother wavelet ψ (t), ∫ ∞

−∞ ψ (t)dt = 0 → ψ (w)w=0 = 0 (17)

Specifically, there exists a natural number Cψ such that Cψ =
∫ ∞

0 ∨ψ (w)∨wdw < ∞ implying that wavelet ψ (t)is a Bandpass
Cochlear filter with the lowest frequency fLand center frequency fC.

m = fL/ fC (18)

In specific sub-band filter, kth sub-band filter, the value of m should be available in advance for a specific center frequency of
cochlear filter at k ∈ (1,28]. After Cochlear filters the frequencies, the hair cell behaves like transducers to promote the vibration
of BM. The hair cell vibrates in a positive direction only, hence -

h(m,n) = (W (m,n))2∀W (m,n) (19)

The output from the hair cell gets transformed into nerve spike density representation, which is given as,

s(a,b) = 1/g∑q+g−1
n=q h(a,n) q = 1,Q,2Q, . . .∀a,b (20)

Where window length is g and window shift duration is Q. From the above function, the output obtained is further passed
through the cube root and followed by the DCT function.

4.6 Cochlear Filter Cepstral Coefficients with Instantaneous Frequency (CFCCIF)

The CFCC-IF features were first applied in ASV through ASV Spoof 2015 Challenge (74). The CFCC along with Instantaneous
Frequency (IF) together builds up the CFCC-IF coefficients. The CFCC features are based on wavelet transform that utilizes
the AT, Hair cell, and Nerve spike density computation. The product of Nerve spike density and IF is differentiated followed by
non-linear log operation Int the end, DCT is applied to de-correlate the parameters producing CFCC-IF parameters as shown
in Figure 7.

Fig 7. Feature extraction using CFCC-IF technique
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4.7 Constant-Q Cepstral Coefficients (CQCC)

The CQCC was successfully utilized in anti-spoofing by (75). Like STFT, the CQCC is known to produce conjointly time-
frequency variations. The important highlight of CQCC is high-frequency resolution at low frequencies and high-time based
resolution for high frequencies. The spectral response obtained because of Constant QT is then processed through a non-linear
logarithmic scale and then linearized by the Constant QT scale. Yet again, DCT is applied for producing the CQCC parameters
as portrayed in Figure 8.

Fig 8. Feature extraction using CQCC technique

4.8 Magnitude based features

The time-domain speech signal is difficult to process and visually gives no clue of frequency contents. To do so, the STFT
representation of speech yields magnitude and not to mention the phase contents too. On the whole, the spectral contents help
process the data better. Thus, the magnitude-based features hold quite some weightage while detecting spoofed speech. The
STFT of speech utterance is given as

Z (t,w) = S (t,w)∨ e jθ(t,w) (21)

Here, S (t,w)∨ signifies magnitude-related content while θ (t,w) holds the phase contents. The Log-Magnitude Spectrum
(LMS) and Residual LMS (R-LMS) are worthy to detect spoofing attacks. LMS parameters are derived by the simple process of
computing logarithmic of magnitude spectrum obtained because of STFT which is given as

M (w) = log∨Z (t,w)∨ (22)

Therefore, it may be confirmed that the LMS features hold crucial magnitude contents such as formants, pitch, and specifically
the harmonics present in the vowel spectrum. Also, the logarithmic operation limits the dynamics of the speech spectrum (76).

Furthermore, the R-LMS features are well established in speech recognition frameworks but still are not much explored in
an anti-spoofing environment. Moreover, the synthetic speech from VC or TTS algorithms represents formants quite well. So,
using formants to differentiate between speakers is tough. Furthermore, the LPC technique is popular for representing formants
well enough, but the residual part has no presence of formants. The R-LMS parameters are obtained using the LMS algorithm
on the LP-residual (LPR) signal (76).

4.9 Phase based features

The STFT representation of speech produces magnitude-related and phase-related spectrums. The phase contents from the
speech are perceptually indistinguishable. Still when differentiating between speakers, the smallest of parameter counts; hence
phase too is a potential choice for spoof detection. So, the phase-associated features including Group Delay (GD), Modified GD
(MGD), Instantaneous Frequency (IF), Pitch Synchronous Phase (PSP), and Baseband Phase-Difference (BPD), are used by
researchers for anti-spoofing (77,78). Additionally, the phase spectrum is considered unstable making pattern matching tedious
due to phasewarping. So, phase spectrums aremodified further to benefit from them in anti-spoofing scenario.TheGD function
of phase spectrum is obtained by computing derivation wrt frequency and is given below

G(w) = princ(θ (w)−θ (w−1)) (23)

Where, the princ(.) functions maps the phase spectrum to (−π,π). Despite its abilities to extract pitch and formants efficiently
from speech, the standard GD function lacks in grasping short-time spectral contents as zeros are existing in z-plane which are
nearer to the unit circle. Hence, the MGD function was introduced to overcome the shortcoming of the GD function (77). The
MGD parameters are computed as

D(w) = T (w)/T (w)∨T (w)α (24)
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T (w) = Sreal (w)Creal (w)+Simag (w)Cimag(w)/M (w)2γ (25)

Here, the α and γ are meant to fine-tune the function, M(w) is the smoothened Z(w), while Z(w) is the complex speech
spectrum. The derivation of phase spectrum wrt frequency yields GD parameters while the derivative wrt to time axis produces
a different parameter called Instantaneous Frequency (IF) (79). The IF can be computed as

F (t,w) = princ(θ (t,w)−θ (t,w−1)) (26)

So, it may be inferred that GD and IF provide complimentary contents which may be useful for spoof detection. Furthermore,
BPDparameters aremore steady time derivative phase parameters that are also computed to support spoof detection studies (70).
The BPD parameters are given as

B(w) = princ(F (t,w)−ΩtP) (27)

Here, P is frame shift expressed using total samples, Ωt is frequency which is constant and is equal to 2π p/L, FFT length
is L. Additionally, the PSP is another choice when computing phase parameters. The speech signal consists of periodic and
non-periodic signals. The periodic part is usually computed from fixed frame size while with regards to PSP parameters, it is
extracted using pitch instances. The Glottal Closure instants (GCI) are important for deciding the start and end of the pitch
period (77). The algorithm begins with one pitch period preset and keeps updating from consecutive pitch periods. Another
phase parameter is Cosine Normalization Function or more commonly addressed as Cosine Normalized Phase (CosPhase) (21).
Below are the steps for computing CosPhase parameters

1. Unwarp the phase spectrum
2. Compute cosine function to the spectrum obtained in step (i). This normalizes the function to -1 and +1.
3. Lastly, apply DCT after normalizing the function from step (ii). Choose initial eighteen parameters with their△ and△2.

4.10 Miscellaneous features

Besides the categorical parameters which have a certain rigid way of classification like phase, magnitude, human speech
production, or perceptualmodel; there exist other features thatmight not fit in the given categories but are specifically developed
for spoof detection. So, indirectly they are handcrafted for dedicated tasks and may be fused to benefit from their combination
rather than individual shortcomings. These parameters are Perceptual Linear Prediction (PLP), Rectangular Filter Cepstral-
Co-efficients (RFCCs), Spectral Centroid Magnitude-Co-efficients (SCMC), Sub-band Spectral Flux Co-efficient (SSFC), and
Variable length Teager energy operator energy separation algorithm- instantaneous frequency cosine coefficients (VESA-IFCC)
(86,87).

4.11 Critical Evaluation of Feature Representation in ASV

The features are the key to any speech application because the manner in which raw speech frames are represented affects the
performance of that application. Therefore, knowing the salient qualities of a feature set helps in choosing the right feature.
The MFCC based features have established popularity amongst the entire speech and audio community because of their ability
to represent human response accurately. Despite that, these features do not consider phase when extracting parameters from
the speech (80). Also, the synthetic speech production algorithms (TTS or VC) usually ignore the phase as it is imperceivable.
This led to research on phase-based features in addition to magnitude features such as LMS, Residual-LMS, GD, MGD, IFD,
BPD, and PSP. Furthermore, the VC speech that uses mel-frequency warping highlights the lower frequency regions as against
the high-frequency regions. While all this time, the high-frequency components held vital speaker traits that contribute to
differentiate synthetic speech. Thus, the long-term features are found to be more effective than short-term features (81), not to
forget the CQCC and CFCCIF.

The sub-band-based not limited to LFCCandESA-IFCC, gained importance since the artefacts in synthetic speech are spread
across various sub-bands. The temporal features such as IF and magnitude envelope capture these artefacts. Additionally, the
wavelet filter banks are also explored to represent scalograms. The conventional LP features are also explored lately as they
represent spectral peaks more accurately than valleys (82).

The prosodic features represent the accent and speaker ques, yet they are easy to reproduce and hence susceptible to attacks.
Also, there is a demand for a larger data size for training to extract prosody from speech.
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Furthermore, the pitch extraction techniques do not perform up to the mark in noisy environments (11). On the contrary,
the high-level features are more reliable since they are less sensitive when exposed to variations in channel and noise. This is
opposite to prosodic and spectral parameters (70,90).

5 Machine Learning techniques
The Machine learning algorithms either govern the pattern classification or learning of features. After feature representation,
the statistical models train using significant features to further prepare for testing. The test sample may belong to a known/
unknown attack or is simply a genuine speaker.The task is complex but made solvable using efficient machine learning schemes
for speaker modeling, and also decision-making tasks.

The speaker models may be subdivided into generative, discriminative, and mixed/fused approaches. The generative models
comprise of Gaussian Mixture Models (GMM) (83,84), i-vectors (36) Vector Quantization (VQ) (21), and Hidden Markov Models
(HMM) (93) while discriminative models include the Support Vector Machines (SVM) (94), deep learning, and neural
networks (85,86).The increasing developments in utilizing DNN in the speaker verification scenario are owing to accurate results
and of course, their ability to discriminate between speakers (46). Consider an unknown test utterance T that is claiming to be
speaker A, then building a hypothesis for determining the class of the utterance.

HA : T is uttered by A (28)

HA : T is not uttered by A (29)

The efficiency of speaker verification depends greatly on the model building; thus, the appropriate model choice will further
improve results.The below sub-sections describe commonly usedmodeling algorithms that lead to a reduction in EER implying
better anti-spoofing techniques (51).

5.1 Vector Quantization (VQ) technique
The VQ-based codebook mapping technique is suitable for text-dependent scenarios. When the training phase begins, the
codebook is built through clustering techniques (87). The clustering algorithm averages out the temporal information present
in codebook. Moreover, there is no requirement for temporal alignment. The input vector is compared against every codeword
from the codebook. The code word that has least distance is selected as a matched pair (37). One such approximation technique
is the nearest neighbor’s algorithm which performs better than Dynamic Time Warping (DTW) and VQ (87). As opposed to VQ
technique, the nearest neighbor algorithm considers temporal content. The input frame is compared to past frames forming a
distance-based inter-frame matrix. The nearest neighbor is one with the lowest distance amongst input and past frame. The
match score produced is the average of distance for input frames. The match scores together give the log-likelihood ratio
approximation.

5.2 Gaussian Mixture Models (GMM)

The GMM models are popular for generalization and assume that the nature of input data is Gaussian (70). The individual
gaussian has an associated mean, standard deviation, and feature vectors are multiple gaussians called mixture of gaussians.
The GMM is represented using output probability function for X feature vector,

p(X/λk) =
G
∑

m=1
wmdm (30)

Where λk is a weighted sum of G components for kth speaker, wmis the mixture weight with
G
∑

m=1
wm = 1 while the dm is density

for individual components, and a K-variate GMM gaussian function is given as

dm = 1/
[
(2π)K/2 |∑m|1/2

]
e−1/2(X−µm)

′Σm−1(X−µm) (31)

Where µmis a mean vector of the dimension (K) while ∑
m

signifies covariance matrix, with dimension (K ×K). The GMM for

a speaker k, λk is given as

λk = µm,∑
m
,wm ∧m = 1,2, ...,G (32)
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The criteria for selecting total mixtures are dependent on the kind of language, such as English language which has 45 phones.
Thus, total mixtures selected must be higher than the total-phones so 64 is an appropriate measure. The mean, deviation, and
mixture weights are obtained through parameter estimation including Expectation-Maximization (EM),Maximum Likelihood
(ML), and Maximum A-Posteriori criteria (MAP) (3). Out of these, the ML algorithm is quite common. Suppose for a given
utteranceT = t1, t2, ..., tN , target model λtarget and imposter model λimposter , the ML ratio is given as

Pr (T ∈ target)
Pr (T ∈ imposter)

=
Pr (λtarget ∨T )

Pr (λimposter ∨T )
(33)

Thus, in logarithmic scale, Bayes Rule is given as,

Λ(T ) = logp(T ∨λtarget)− logp(T ∨λimposter) (34)

The prior probabilities are ignored as they are constant. The likelihood ratio is compared to a threshold φ .

Λ(T )≥ φ → Acceptedastarget (35)

Λ(T )< φ → Re jectedastarget (36)

The likelihood ratio is a score obtained by a fair comparison of the targetmodel to the impostermodel.The value of the threshold
is updated regularly depending on these scores to steer clear of any false positives and negatives. The likelihood of sample
belonging to the target is given as

logp(T ∨λtarget) =
1
N ∑

N
logp(tn ∨λtarget)

n=1
(37)

5.3 GMM and Universal Background Models (UBM)

The ASV system acknowledges the test sample as known when the score obtained equals to or is greater than the set threshold.
There is another model built which is the imposter model using GMM also called UBM. The UBM is known to represent
any claimed speaker’s identity efficiently. The data required for training a UBM is large which contributes to better parameter
estimation. Subsequently, the number of components also increases (as against a single GMM like above 256). The motive of
building a UBM is to reduce the speaker dependency i.e., speaker-independent features distributed speaker’s data (3,84,88). Along
with imposter model training, the UBMovercomes the issue of training all the GMM in case of a new addition to the data. Only
UBM is trained when new data is added and not the individual GMMs. Assume a UBM model with feature F = F1,F2, ....,Fn
wrt to a specific speaker. At ithinstant, with c components, to train this feature vector into the UBM, the probabilistic alignment
is given as

Pr (c∨Fi) =
wc pc (Fi)

∑K
k=1 wk pk

(38)

Here, pc (Fi) is probability density function for ith feature vector with wc is mixture weight. Thus mean, variance, and mixture
weights are calculated as

ηc =
I
∑

i=1
Pr (c∨Fi)cthweight (39)

Ec (F) =
1
ηc

I

∑
i=1

Pr (c∨Fi)Ficthmean (40)

Ec
(
F2

)
=

1
ηc

I

∑
i=1

Pr (c∨Fi)F2
i cthvariance (41)
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The calculated mean, variance, and mixture weights are further used to update the previous values of UBM for the cth

component.

ŵc =
[αcwηc

I
+(1−αw

c )wc

]
γ (42)

µ̂c = [αm
c Ec (F)+(1−αm

c )wc]µc (43)

σ2
c = αv

c Ec
(
F2

)
+(1−αv

c )
(
σ2

c +µ2
c
)
− µ̂2

c (44)

Here, γ is scaling parameter for maintaining summation to unity, (αw
c ,αm

c ,αv
c ) are adaptation parameters that remove any

mismatches between past and currently estimated parameters. The mean estimation involves setting weight and variance to
zero.

5.4 Support Vector Machines (SVM)

Theclubbing of generative and discriminativemodels is an interesting alliance inASV research (89).TheGMM-UBM framework
produces a speaker template that is fed to the SVM and SVM being a natural solution to ASV problem discriminates between
speakers efficiently (89). This framework implies that SVM is an appropriate choice for binary classification tasks.

TheGMM-UBM framework assumes a diagonal covariancematrix andMAP is employed for training.The resultant adapted
model is a stacked version comprising ofmeanwith K dimensions called super vectors and K is the totalmixtures. So, this GMM
based super vector is amapping function between speech utterances and the higher dimensionmatrix.Thus, these super vectors
are treated as SVM features and the unknown sample is detected as

u(x) =
M
∑

l=1
αltlG(x,vl)+b (45)

where tl is the required output which might be equal to a positive one for acceptance and a negative one for imposter. The

support vector is vl , b is the learning constant,
M
∑

l=1
αltl is ideally zero and αl > 0. The kernel is given as

G(x,vl) = m (46)

Here, the mapping function is m(.) that converts input features to super vectors, distance measure u(x) separates hyperplane,
and its polarity shows the category of the unknown sample. Regarding the x super vectors, the predicted label as zero, points to
negative class while one signifies positive class.

5.5 Joint Factor Analysis (JFA)

The factors responsible for the efficiency of the GMM-UBM alliance are two-fold: the first being speaker variations and the
second is session variability i.e. from training to testing (90). These issues are solved by building models of individual speakers
and channel distortions as is the case for JFA. The algorithm branches out GMM super vectors V, into individual speaker-
dependent super vectors i and channel-dependent super vector, c

V = i+ c (47)

where, i = j+K f +Dg and c = Nh, K is a low-rank speaker variability matrix, D is a diagonal variability matrix that models
residual variability that cannot be captured by the speaker, f and g are speaker factors and residuals respectively. The low-rank
channel variability matrix is N and h is a channel factor vector. During the training stage, the GMM super vectors are obtained
by JFA based training, and channel-dependent information is not considered. On the contrary in the testing stage, channel-
dependent information is acquired from test utterance and the obtained super vector is ranked using linear dot product (87).

https://www.indjst.org/ 3042

https://www.indjst.org/


Chadha et al. / Indian Journal of Science and Technology 2021;14(40):3026–3050

5.6 I-vectors

The JFA technique causes system degradation relating to performance due to loss of channel-dependent content being ignored
during the training stage (91). To get rid of this problem, i-vectors were introduced (4,16). The i-vectors are known to use single
variability space for GMM super vectors and are represented as

µ = j+Bw (48)

Where, j is the same super vector used in JFA, B is a lower-rank variability matrix for entire training data and w is the total
variability factor.The cosine similarity score (CSS) gives the angular difference between i-vector wTest and target i-vector, wTarget
for classification objectives.

score
(
wTarget ,wTest

)
=

< wTarget ,wTest >∥∥wTarget
∥∥∥wTest ∥

(49)

5.7 Hidden Markov Models (HMM)

The HMM comprise of a hidden stochastic process using an observation sequence (35). The arcs and chain form a markov chain
where arcs direct to the transitional probabilities that connect one state to another. The HMM differs from Markov chain with
a slight variation of hidden state while state and transitional probabilities are already known in the Markov chain’s case (92).
The conventional GMM is an obvious choice when building an ASV state-of-the-art model which does not take into account
the temporal information present in the features. Along with temporal contents, linguistic information is also ignored when
building a phone-based GMM (93). For processing temporal information, HMM is considered. The HMM performs well in
text-dependent scenarios while GMM takes a lead in text-independent tasks (3).

5.8 Multi-layer Perceptron (MLP)

The basic Feedforward Neural Network (FNN) is also termed a Multi-layer Perceptron (MLP) that uses back-propagation
to train its weights. Usually, they perform binary classification when applied to ASV for clear distinction amongst known to
unknown speakers.The construction ofMLP is simple with nodes in every layer andmultiple layers with interconnected nodes.
The input to the nodes is utilized to calculate the weighted sum while the transfer function gives results of output nodes. The
gradient descent algorithm is utilized to determineweights using back propagation. For anASV, theMLPdiscriminates between
the imposter and genuine speaker by computing a score from every frame of test utterance (94).

5.9 Deep Neural Networks (DNN) for ASV

TheDNN is the new hope in not only the decision-making and speakermodeling but also as bottleneck features. In other words,
for end-to-end ASV, DNNs act as features. The speaker representation is influenced by the speaker model, representation level,
and loss function during training.

Furthermore, the DNN bottleneck features preliminarily acquire the speaker-specific information at frame level followed
by utterance level. The DNN output i.e., DNN features are modified into i-vectors and at last, PLDA is employed to determine
the verification score (95). So, it is harmless to treat DNN alone as a feature representation technique or clubbing it with other
existing features such as MFCC. The commendable performance by DNN is due to the reason that GMM does not predict the
phonetic contents in the text-dependent scenarios (96). More studies based on DNN can be accessed from (25,51,97).

5.10 Convolution Neural Network (CNN)

Theconventional Feed-forwardNN (FNN)has a similar layout as theCNNs.The components are identical like theweights, bias,
non-linear conversion function; still, there seems to be a difference in local connectivity (51).The FNN has connectivity between
all the layers with the input nodes while the CNN comprises small filters that cover the entire input that gathers the summation
of the result. This is the basis of convolution operation (70,98). Thus, the layers in a CNN are a sandwich of convolution, max
pooling, and fully connected layers. An extension to standard CNN layers, the addition of Max Feature Map (MFM) layer is
used in Light CNN to boost in selecting local features. On the whole, variations in Convolution (Conv), MFM andMax pooling
(Max) layer build various light CNN architectures such as AlexNet has 4 Conv, MFM and 4 Max, VGG has 5 Conv, 4 Network-
In-Network (NIN)+ MFM, and 4 Max while Residual CNN has 5 Conv, Residual Block - 2 convolution, 2MFM with no batch
normalization and 4 Max layers.
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5.11 Recurrent Neural Network (RNN)

The RNN is a sequence-based NN that considers weight estimation over a timestamp (77). When the RNN is unfolded a DNN
is obtained that consists of layers with time step. The weight matrixWx(where x can be input, hidden, and output) and biases by
(where y is input and/or output) for input r1,r2, ...,rL has output given as

hl = ϕz (Winput .rl +Whidden.hl−1 +binput) (50)

yl = ϕo (Wout put .hl +bout put) (51)

The conventional RNN efficiently captures temporal contents in a single direction only, hence the Bidirectional RNN (99) is
proposed.

5.12 Critical Evaluation of Machine Learning algorithms in ASV

The GMM has been widely chosen on the account of their commendable performance in ASV task. Yet again at the same time
require larger datasets for training with moderate to a high quality of data posing difficulty in noisy environments. The urge
for a large dataset can be addressed through a diagonal covariance matrix that subsides the computational intricacy as well.
Another concern is centered around unknown data, the GMM is unable to capture non-linearities due to its generative nature
contributing to a low classification score.This concernmay be addressed through data segmentation into training, development,
and testing labels. While the GMM-UBM framework is preferred as against individual GMM overcoming unknown data
problem. As a consequence, UBM is trained on a larger dataset gradual increment in mixture number makes them robust to
unknown data.

Furthermore, the GMM-SVM alliance has advantages of generative and discriminative models leading to high accuracy
scores. Nonetheless, the MLP needs larger data for an optimized performance and longer training time to reach that milestone.
Above all, the DNN are found to outperform all networks with competence to adapt as features and learning unknown data
which is contrasting to generative models. The CNN is used where variability is observed in time while RNN is preferred in
case of temporal data (100).

6 Score Normalization
The unnecessary variations in the score are stabilized using score normalization techniques. The operation of normalization
is equivalent to thresholding in speaker dependent scenarios. The normalization techniques found in literature are based on a
unique assumption that the imposter’s score to have gaussian distribution. Thus, the mean µG and standard deviation σG are
accustomed normalize a given score Y)א )

Y)א̂ ) =
G(Y )−µG

σG
(52)

The normalization process implemented by means of the target speaker’s statistical information is Zero Normalization
(ZNorm) (101,102). The similarity score is measured through relational analysis of the target speaker’s model with various set
of imposters as in imposter similarity score. This similarity score is further used to compute µG and σG. The good thing
about ZNorm is permitting offline parameter estimation. However, the Test Normalization (TNorm) utilizes the test sample
to compute µG and σG (103). During the testing stage, a set of imposters are involved in computing the imposter similarity
score for specific test utterances. It is observed that the significant improvement due to TNorm is when low false positives are
obtained. In contrast to the ZNorm, the TNorm has to be conducted in the online mode which is the testing stage.

The ZNorm variants like Handset Norm (HNorm) and Channel Norm (CNorm) may offer a reduction in the channel as
well as microphone effects (104). The HNorm and CNorm are conducted for every individual speaker model which has chances
of being attacked through handset or channel. So during the testing stage, the prior knowledge of the effect (either handset or
channel) leads to application to respective parameters for score normalization. The main drawback of ZNorm and TNorm is
being informed about the imposter in advance which is technically impossible. To address this issue, the DNorm fits right in to
predict pseudo-imposter information from the background model through appropriate algorithms like Monte-Carlo (105).
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6.1 Limitations of Score Normalization technique

The ZNorm can estimate parameters offline while TNorm needs online estimation. The TNorm outperforms cohort
normalization by employing variance for approximating the distribution of cohort population more efficiently. As this
estimation is based on the same target speaker-test. Thus, acoustic mismatches are intervened. Though TNorm has a major
setback of language dependency of the speaker (102).

7 Evaluation Metrics for ASV
The ASV system built with experimental features and classification needs to qualify closer to or even prove better than state-of-
the-art techniques. This is feasible through standard evaluation measures used in ASV scenarios.

Let t be a verification trial linked to two speech samples t = s1,s2. In case the trial is supervised, theremight be labels present
for respective samples at {A1,A2}, which are indirectly controlled by samples belonging to the same or different speakers.
Consider a test set T for the same speaker and different speakers with correct detection labelled as A1 or A2. Thus, based on
these labels there are two potential errors reported in the case of Miss Detection (MD) also called False Negative or False
rejection Ratio (FRR) and the second being False Positive (FP) or False Alarm (FA) or False Acceptance Ratio (FAR).

The probability for detecting error for a specific test set is given as

p(MD/T ) =
Numbero f missdetectionsNMD

Numbero f sametrials∨T1∨= p(MD/T ,d)
(53)

p(FA/T ) =
Numbero f missdetectionsNFA

Numbero f sametrials∨T2∨= p(FA/T ,d)
(54)

Where, d is the threshold that keeps track of both the errors giving the freedom to the user to choose a preferred operating
point. The Detection Cost Function (DCF) was first presented in the NIST-SRE challenge that determines the overall cost for
both errors (11). The weighted aggregate of probabilities of FP and FN given as

Cdc f =CMD × p(MD/T )× p(A1)+CFA × p(FA/T )× p(A2) (55)

Where, p(A2) = 1− p(A1). Here, CMD is the relative cost of MD, CFA is the relative cost of FA, p(A1)and p(A2) are prior
probabilities. The normalization of Cdc f by a-priori cost Cde f ault yields a more specific metric, Cnorm. The Cde f ault is calculated
by fixing all trials to the same speakers or different speakers whichever is less.

Cde f ault = minCFN p(A1) ,CFP p(A2) (56)

∴Cnorm =Cdc f /Cde f ault (57)

Irrespective of the threshold, the cost is calculated from hard decisions and the threshold is chosen for the value ofminDCF (15).
Thus, the min DCF is computed as

minCdc f = minhCFN p(FN ∨T,d) p(A1)+CFP p(FP∨T,d) p(A2) (58)

Furthermore, the Constellation plots are a better choice in case similar scores appear overlapping or closer on the DET
graph (106). The constellation plot utilizes chosen pairs of operating points in a 2D. Another popular metric, the EER gives a
point of convergence where FP and FN are the same and ideally must be as low as possible (8). Additionally, the visualization of
plots sometimes makes decision-making easier with plots like Detection Error Tradeoff (DET). It is an option in place of ROC
curves. The minimum DCF and EER are drawn on the DET curve [15, 117] (15).

8 Recent Trends and Future Perspectives
Currently, there is an immediate demand to have transparent methods in order to evaluate spoofing attacks. This task isn’t easy
as it may seem, as a couple of parameters need to be considered while developing anti-spoofing techniques. Addressing only a
single anti-spoofing method won’t be enough as the atrocity of attack type and data acquiring environments also influence the
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performance. So a countermeasure that resumes its operation while the first one failed, might provide two-step authentication
to ASV systems. With advancements in speaker recognition and verification, potential algorithms are being developed where
the conventional features are no longer required and are replaced with deep features sometimes. The end-to-end DNN systems
have gainedmomentum recently due to their low EER in contrast to the state-of-the-art GMM techniques.Thus there have been
instanceswhere fusion-based algorithms have been reported leading to 0%EER aswell. To conclude, it is certainly time straining
and difficult to bring out novelty in order to get low EER yet with proper literature review, the tasks level of complication may
be reduced. Moreover, the developments in building stronger ASV system extends protection to our current speech biometric
systems.

8.1 Acoustic conditions of the speaker

The impact of the acoustic environment such as background noise, reverberated speech, and effects due to windowing and
overlapping speech frames influences outcome of the ASV framework. These conditions need to be incorporated prior to
developing an ASV system for eluding FRR due to contaminated speech which may be from the natural environment. Hence,
either speech filtering must be performed or a noise-resistant feature set and decision-making algorithms needs to be re-
engineered to foster a better ASV system.

8.2 Traits of the speaker

Selecting a dataset does not involve listening to every speaker’s voice but rather a significant amount of samples with variation
in attack types is enough for building a generic anti-spoofing ASV framework. Yet, sometimes the machine learning system
is unable to capture the speaker-specific information and performs badly by not reaching convergence. This happens when
speaking rate, speaker’s style, and accent are ruled out as possibilities that could hamper the ASV’s performance. According to
the author’s knowledge, not much work has been carried in developing systems adapting according to speaker’s traits.

8.3 Demand for unsupervised data and training

The requirement for unknown test data and hence the unsupervised training is both challenging and demanding. Since, the
ASV Spoof 2017 challenge, test samples for unknown attacks have been considered. Hence, some form of unsupervised learning
mechanism that helps capture the generality over the unlabelled data and equally detect the unknown attack needs to be
explored. Ultimately, the sole aim of researchers must be tomake quick amendments in the already trainedmodel (if necessary)
and also for the algorithms to continuously learn from their ideal role models that are “the humans”.

8.4 Language independent anti-spoofing ASV

The demand for making the system capable is unending as we desire the machines to be exactly like us but simply without the
physiological aspect. Similarly, the speaker’s language should not be glitch anymore, in order to verify his identity. Imagine a
scenario where a speaker needs access to his bank account ( of course speech-based authentication) but has suspicions that an
attacker is keeping awatch over him, so hemight change his language to get accesswithout the attacker being able to impersonate
or record or take some action. Sounds like a three-level authentication scenario.

8.5 Lack of exploring human-based features and Universal anti-spoofing techniques

The studies conducted to date consider single features are several dissimilar features along with their fused versions. There is
a need to develop features that are interdependent and influenced by the human speech production mechanism. So a chain
of features that are highly similar to humans may act as mediator trait in feature engineering. Additionally while developing
anti-spoofing systems, the focus should be on building algorithms that consider all attacks along with noisy real environments
to obtain a universal measure. Diversity is surely expected to reach standardization and avoid biasing issues.

8.6 Lack of grading in database development

The databases available so far do not indulge in variation of environments like noisy places and different attacks in addition.
For instance, ASV Spoof 2015 challenge only has a synthetic speech from TTS and VC frameworks while the ASV Spoof 2019
dataset has replay speech in addition toVCandTTS speech. Yet again, if datasets are recordedwith clean andnoiseless scenarios,
there is a huge possibility the system is most likely to fail for unknown attacks with unknown noises in the test speech.
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8.7 Short utterance testing and Text-dependent systems

The real-time instances involve smaller utterances and if the system has fixed the length of samples for authentication, it
becomes vulnerable besides facing performance degradation. A user’s voice must be unique and differentiable causing the
fixed-length systems to fail. Furthermore, current ongoing researches are based on text-independent systems which are the
right fit for surveillance applications. Conversely, the text-dependent ASVs are yet to reach an established stage with their usage
in authentication scenarios.
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10 Conclusion
This article gives a broad view of speech based spoofing attacks and anti-spoofing measures. Most recent and state-of-the-art
feature representation and patternmatching techniques employed for building countermeasures are also discussed in this article
along with their critical analysis. The score normalization techniques and evaluation metrics used to judge performance of the
anti-spoofing system are mentioned as well. To support the anti-spoofing system, the dedicated spoofing datasets, their traits
and limitations are also described in this article.

The studies relating to evaluation of ASV systems exposed to spoofing attacks have increased lately. But it has also been quite
difficult and challenging to reconstruct the unbiased and unfeigned attack scenarios for building spoofing datasets. Moreover,
the spoofing attack samples are generated in controlled environments and thus it is rare or impossible to assemble datasets
with diverse characteristics. Additionally, in the real-attack conditions, the type of attack is certainly unknown and so there
is a need to develop systems that work without any constraints. Hence, there are few open-ended queries in this decade-old
anti-spoofing research, such as what are problems in the counter-measures developed so far?; what are the future directives that
would contribute in improving the anti-spoofing frameworks?; and lastly, where to begin with in order to make a difference in
this domain?

Before long, the most obvious part to begin with is evaluating the speech based attacks. This issue is not a candid task
but in fact more demanding in terms of acquiring knowledge about newer irregularities involved while building the spoofing
techniques. Furthermore, it may be rightful to say there is no such algorithm that can be considered as the best as not one but
fusion of best algorithms may be capable to perform equally well for all spoofing attacks. Thus, the development of alternative
counter-measures to the ones proposed by the researchers is the need of the hour. Last but not the least, developments of refined
spoof detection schemes have led to deeper possibilities in terms of research as the need to prevent such attacks is even more
crucial now. This opens up opportunities for fostering reliable spoof detection algorithms.
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