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Abstract
Objectives/Methods: Taking into account the impreciseness and subjective-
ness of decision makers (DMs) in complex decision-making situations, the
assessment datum over alternatives given by DMs is consistently vague and
uncertain. In meantime, to evaluate human’s hesitance, the q-rung orthopair
dual hesitant fuzzy sets (q-RODHFSs) are defined which are more accurate for
manipulation real MADM matters. To merge the datum in q-RODHFSs more
precisely, in this research script, some Bonferroni mean (BM) operators in light
of q-RODHFSs datum, which includes arbitrary number of being merged argu-
ments, are developed and examined. Findings: Obviously, the novel defined
operators can produce much accurate results than already existing methods.
Additionally, some important measures of said BM operators are talked about
and all the peculiar cases of them are studied which expresses that the BM
operator is more dominant than others. Eventually, the MADM algorithm is
furnished and the operators are utilized to choose the best alternative under
q-rung orthopair dual hesitant fuzzy numbers (q-RODHFNs). Taking advantage
of the novel operators and constructed algorithm, the developed operators are
utilized in the MADM problems.
Keywords: : Bonferroni mean; Dual BM; q-rung orthopair dual hesitant fuzzy
sets; q-rung orthopair dual hesitant fuzzy weighted Bonferroni mean; q-rung
orthopair dual hesitant fuzzy weighted dual Bonferroni mean

1 INTRODUCTION

Atanassov (1) conferred the concept of intuitionistic fuzzy set (IFS), as an advance form
of fuzzy set (FS) (2) . Every element enclosed in IFS was interpreted with the degree of
membership γ and non-membershipη , and their sum is restricted to 1, inmathematical
form can be labeled as γ +η ≤ 1.The IFS and hesitant fuzzy sets (HFSs) (3) has appealed
many scholars’s consideration since its evolution. Likewise, as an impressive MADM
technique, Pythagorean fuzzy sets (PFSs) (4) has appeared to outline the uncertainty
and fuzziness of the assessment datum. It is also observed that, all the intuitionistic
fuzzy decision-making problems are the special case of Pythagorean fuzzy decision-
making problems, which means that the PFS is more powerful to handle the MADM
problems. Wu and Wei (5) developed few Hamacher aggregation operators under PFSs
environment to amass PFSs datum. Peng et al. (6) constructed a few novel distance
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measures utilizing PFSs information for use in MADM problems. Wei and Wei (7) introduced a variety of cosine similarity
measures for PFSs datum. Yet, practically, there may arise some relationships between more than one arguments, it
is clear that previously studied collective operators are not authentic for such purpose. For the solution of such type
of problems, the Bonferroni mean (BM) operator (8) as a reputed information collecting tool which have capability to
acknowledge the interrelationship of the arguments, have been explored. Liang et al. (9) proposed some BM operators with
PFSs information.Most likely, q-ROFS (10) are continuously expansive for the IFS, PFS and these two are its specific cases. Many
researchers (11–20) (21) developed a varriety of operators to aggregate the information presented q-ROFSs and its application in
MADM. Taking advantage of the classical q-ROFSs, Liu and Liu (22) derived the definition of q-rung orthopair fuzzy linguistic
sets (q-ROFLSs) and developed a few power BMaggregation operators for q-ROFLSs datum. Xu et al. (23) illustrated the concept
of the q-rung otrhopair dual hesitant fuzzy set (q-RODHFS) and developed a few q-rung dual hesitant fuzzy HM operators for
MADM.

Tang et al. (24) developed few Pythagorean fuzzy power aggregation operators and illustrated the idea of dual hesitant
Pythagorean fuzzy sets (DHPFSs), as a combination of the PFSs and dual hesitant fuzzy sets (DHFSs) (25,26) (27) also developed
some Hamacher aggregation operators utilizing DHPFSs. Jia et al. (28) developed a wide range of distance measures based on
connection numbers of set pair analysis with dual hesitant fuzzy sets. Wang et al. (29) developed MM operators under DHPFSs
datum. Apparently, there is no exploration led in light of BM operator to fuse q-RODHF information.

In past few years, numerous investigators studied the BM aggregation operators and their applications. The BM operations
have the advantage of considering the relationship between the values being fused, thus the fused results are more reasonable
and accurate. Clearly, DHq-ROFN is a meaningful tool to express evaluation information. BM operations are good to fuse
evaluation information, so it’s worth to develop some BM operators under dual hesitant q-rung orthopair fuzzy environments.
The main novelty and contribution of our manuscript is developing some new BM operators to aggregate the dual hesitant
q-rung orthopair fuzzy information. Evidently, these operators have the following advantages. (1)TheDHq-ROFS can not only
extend the scope of the assessment information to depict more fuzzy information, but also consider the human’s hesitance,
thus it is more useful and reasonable to derive decision-making results. (2) The BM operations can consider the relationship
between fused arguments, obviously, BM operations are more suitable for handling practical MADM problems. Thus, it is
of great significance to propose some new operators based on the dual hesitant q-rung orthopair fuzzy information and BM
operations.

In the following text, we have developed a few BM aggregation operators to intertwine the q-RODHF datum. Furthermore, a
portion of their alluring properties have additionally been considered and the unique instances of every operator is researched.
At last, in light of these effective operators, a decision-making algorithm have been produced and a computative model is
delineated to approve the methodology over some similar investigation with the current methodologies. To do as such, the rest
of text is composed as pursues. Some basic knowledge about q-ROFSs, q-RODHFSs and BM have been reviewed in Section
2. In Section 3, we have talked about the BM and dual BM operators utilizing q-RODHFSs condition and then developed
the q-rung orthopair dual hesitant fuzzy BM(q-RODHFBM) operator, the q-rung orthopair dual hesitant fuzzy weighted BM
(q-RODHFWBM) operator, the q-rung orthopair dual hesitant fuzzy dual BM (q-RODHFDBM) operator and the q-rung
orthopair dual hesitant fuzzy weighted dual BM (q-RODHFWDBM) operator. In Section 4, we will manufacture the MADM
algorithm with q-RODHFNs. In Section 5, we will solve a numerical model for provider choice with q-RODHFNs and gave
some similar investigation. Segment 6, finishes up the discussion with certain comments.

2 Preliminaries

2.1 The q-RUNG ORTHOPAIR FUZZZY SET

The essential concepts and basic knowledge of q-rung orthopair fuzzy sets (q-ROFSs) (10) are quickly evaluated as pursues.
Definition 2.1. (10) Let χ be a universal set. A q-ROFS is an item owns the structure

O = {⟨x,(γo(x),ηo(x))⟩ | x ∈ χ} (1)

where the mapping γo(x) : χ → [0,1] characterizes the membership degree and the mapping ηo(x) : χ → [0,1] characterizes
the non-membership degree of the component x ∈ χ to O, respectively, and, for each x ∈ χ , it satisfies

(γo(x))q +(ηo(x))q ≤ 1, q ≥ 1 (2)

The level of indeterminacy is described as:

πo(x) = q
√
(γo(x))q +(ηo(x))q − (γo(x))q(ηo(x))q.
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Generally, written as o = (γ ,η) a q-ROFN.
Definition 2.2. (10) Let o = (γ,η) be a q-ROFN, the score and acuracy function has the form:

L(o) =
1
2
(1+ γq −ηq), L(o) ∈ [0,1]. (3)

T (o) = γq +ηq, T (o) ∈ [0,1]. (4)

to analyze the level of accuracy of the q-ROFN o = (γ,η) The bigger the value of T (o), the more the level of accuracy of the
q-ROFN o is.

Now we describe the comparison rule between two q-ROFNs as pursues:
Definition 2.4. (10) Let o1 = (γ1,η1) and o2 = (γ2,η2) be two q-ROFNs, L(o1) =

1
2 (1+γq

1 −ηq
1 ) and L(o2) =

1
2 (1+γq

2 −ηq
2 )

be score values of o1 and o2, respectively, and let T (o1) = γq
1 +ηq

1 and T (o2) = γq
2 +ηq

2 be the accuracy degrees of o1 and o2,
respectively, then if L(o1)< L(o2), then o1 ≺ o2; if L(o1) = L(o2), then (1) if T (o1) = T (o2), then o1 = o2;(2) if T (o1)< T (o2),
then o1 ≺ o2.

Definition 2.5. (10) Let o1 = (γ1,η1),o2 = (γ2,η2) and o = (γ,η) be three q-ROFNs, and some basic operations on them
are defined as follows:

• o1 ⊕o2 = ( q
√
(γ1)q +(γ2)q − (γ1)q(γ2)q,η1η2);

• o1 ⊗o2 = (γ1γ2,
q
√

(η1)q +(η2)q − (η1)q(η2)q);
• λo = ( q

√
1− (1− γq)λ ,ηλ ),λ > 0;

• (o)λ = (γλ , q
√

1− (1−ηq)λ ),λ > 0
• o = (η ,γ).

2.2 The q-RUNG ORTHOPAIR DUAL HESITANT FUZZZY SET

In the light of q-ROFSs (10) and dual hesitant fuzzy sets (25), (26) Xu et al. (23) introduced the idea and primary operations of the
q-rung orthopair dual hesitant fuzzy sets (q-RODHFSs).

Definition 2.6. (23) For any universal set χ , a q-rung orthopair dual hesitant fuzzy set (q-RODHFS) on χ is given as:

D = (⟨x,hO(x),gO(x)⟩|x ∈ χ) (5)

Where hO(x) = ∪ρ∈hO{ρ} and gO(x) = ∪κ∈gO{κ} are two objects, also 0 ≤ hO(x),gO(x) ≤ 1, telling the membership
(favorable) degrees and non-membership (unfavorable) degrees of the element x ∈ χ to the set D respectively, with the criteria:

∪ρ∈h(max(ρ))q +∪κ∈g(max(κ))q ≤ 1

Where ρ ∈ ho(x),κ ∈ go(x) for all x ∈ χ . Instantly, the pair d(x) = (ho(x),go(x)) is called a q-rung orthopair dual hesitant
fuzzy number (q-RODHFN) simply written as d = (h,g), with the criteria: ρ ∈ h,κ ∈ g,0 ≤ ρ,κ ≤ 1 and ∪ρ∈h(max(ρ))q +
∪κ∈g(max(κ))q ≤ 1.

Moreover, the relationship among q-RODHFNs could be communicated as:
Definition 2.7. (23) For a q-RODHFN d = (ho,go), the score and accuracy functions are given as S(d) = 1

2 (1+
1
#h ∑ρ∈h ρq−

1
#g ∑κ∈g κq) and T (d) = ( 1

♯h ∑ρ∈hρq + 1
♯g ∑κ∈gκq) , where ♯h and ♯g are the numbers of the elements in h and g respectively,

then, Let di = (hi,gi)(i = 1,2) be any two q-RODHFNs, we have these comparison rules: if S(d1) > S(d2), then d1 ≻ d2; if
S(d1) = S(d2), then: (1) if T (d1) = T (d2), then d1 = d2;(2) if T (d1)> T (d2), then d1 ≻ d2.

Definition 2.8. (23) Let d1 = (h1,g1),d2 = (h2,g2) and d = (h,g) be three q-RODHFNs, then, the basic working rules on
the q-RODHFNs are defined as:

d1 ⊕d2 =Uρ1∈h1,κ1∈g1,ρ2∈h2,κ2∈g2

{{
q
√

(ρ1)
q +(ρ2)

q − (ρ1)
q (ρ2)

q
}
,{κ1κ2}

}

d1 ⊗d2 = Uρ1∈h1,κ1∈g1,ρ2∈h2,κ2∈g2

{
{ρ1ρ2} ,

{
q
√
(κ1)

q +(κ2)
q − (κ1)

q (κ2)
q
}}
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λd =Uρ∈h,K∈g

{{
q
√

1− (1−ρq)λ
}
,
{

κλ
}}

,λ > 0

dλ =Uρ∈h,K∈g

{{
ρλ
}
,

{
q
√

1− (1−κq)λ
}}

,λ > 0

2.3 BM OPERATORS

Bonferroni (8) proposed the Bonferroni mean (BM) operator.
Definition 2.9. (8) Suppose s, t ≥ 0, and bi(i = 1,2, . . . ,τ) be nonnegative real numbers. If

BMs,t (b1,b2, . . . ,bτ) =

 1
τ(τ −1)

τ

∑
i, j=1
i ̸= j

bs
i b

t
j


1

s+ t
(6)

Then we called BMs,t the Bonferroni mean (BM) operator.

2.4 The q-RODHFBM OPERATOR

This segment stretches out BM and to fuse the q-RODHFNs, we will introduce the q-rung orthopair dual hesitant fuzzy
Bonferroni mean (q-RODHFBM) operator, besides, some valuable properties of q-RODHFBM operator are talked about.

Definition 2.10. Let d j = (h j,g j)( j = 1,2, . . . ,τ) be an assortment of q-RODHFNs. The q-rung orthopair dual hesitant
fuzzy Bonferroni mean (q-RODHFBM) can be composed as:

q−RO DHFBMs,t (d1,d2, . . . ,dτ) =

(
1

τ(τ −1)

(
⊕τ

i ̸= j
(
ds

i ⊗dt
j
))) 1

s+ t (7)

Theorem1. Let d j = (h j,g j)( j = 1,2, . . . ,τ) be a list of q-RODHFNs.We can intertwine all the q-RODHFNs datum by utilizing
the q-RODHFBM operator, the intertwined outcomes can be communicated in Eq.8, as pursues.

q−RODHFBMs,t(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(ds
i ⊗dt

j)))

1
s+ t

=Uρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j


Cq

√√√√√√√1−∏τ
i, j=1

(
1−
(

ρS
i ρ t

j

)q) 1
τ(τ −1)


1

s+ t

q

√√√√√√√√√√√√√√
1−

1−

∏τ
i, j = 1
i ̸= j

(
1−
(
1−κq

i

)s
(

1−κq
j

)t
)

1
τ(τ −1)



1
s+ t



(8)

Proof. The proof is simple and obvious from definition (2.8).
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Example 2.1. Let d1 = {{0.3,0.4},{0.5}},d2 = {{0.7},{0.1,0.2,0.6}}, and d3 = {{0.6},{0.3}} be three q-RODHFNs,
and let s = 1, t = 1 and q = 3 then according to Eq.8, we have

q−RODHFBMs,t(d1,d2, . . . ,dτ) = ( 1
τ(τ−1) (⊕

τ
i, j=1
i ̸= j

(ds
i ⊗dt

j)))
1

s+t

Uρi∈hi,ρ j∈h j ,ki∈gi,κ j∈g j


q

√√√√1−∏τ
i, j=1

(
1−
(

1−ρs
i ρ t

j

)q) 1
τ(τ−1)

) 1
s+t

q

√√√√√√√√1−

1−∏τ
i, j = 1
i ̸= j

(
1−
(
1−κq

i

)s
(

1−κq
j

)t
) 1

τ(τ−1)


1

s+t


ρ1 = q−RODHFBM1,1(0.3,0.7,0.6) =
(

1
3(3−1)

(
⊗3

i, j=1

(
d1

i ⊗d1
j

))) 1
1+1

=

(
3

√
1−∏3

i, j=1

(
1− (1−ρiρ j)

3
) 1

3(3−1)

) 1
2

= 0.5585

κ1 = q−RODHFBM1,1(0.5,0.1,0.3)

=
3

√√√√√1−

(
1−∏3

i, j=1

(
1−
(
1−κ3

i

)1
(

1−κ3
j

)1
) 1

3(3−1)
) 1

2

= 0.3559

The fused outcomes of the membership function ρ , are displayed as below.
Similarly, we can find ρ2=q-RODHFBM(0.4, 0.7, 0.6)=0.8013, and ρ = {0.5585,0.8013}. For the unfavorable (non-

membership) function κ , the fused outcomes are displayed as. Alike, the values of κ2, and κ3, are κ2= q-RODHFBM (0.5,
0.2, 0.3)=0.3557, κ3 = q-RODHFBM(0.5, 0.6, 0.3)=0.4911, so we can find κ = {0.3559,0.3557,0.4911}. Therefore,

q−RODHFBM(d1,d2,d3) = {{0.5585,0.8013},{0.3559,0.3557,0.4911}}

By adjusting the estimations of parameter s, t and q, some unique instances of q-RODHFBM operator are discussed as pursues.
(1) For parameter q, there arise the accompanying exceptional cases
Remark 1.When q = 1, the q-RODHFBM operator will turn to dual hesitant fuzzy BM (DHFBM) operator given as:

DHFBMs,t(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(ds
i ⊗dt

j)))

1
s+ t

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {(1−∏τ
i, j=1
i ̸= j

(1−ρs
i ρ t

j)

1
τ(τ −1) )

1
s+ t ,

1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κi)
s(1−κ j)

t)

1
τ(τ −1) )

1
s+ t }

(9)
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Remark 2. When q = 2, the q-RODHFBM operator will turn into dual hesitant Pythagorean fuzzy BM (DHPFBM) operator
given as:

DHFBMs,t(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(ds
i ⊗dt

j)))

1
s+ t

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {(

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (ρs
i ρ t

j)
2)

1
τ(τ −1) )

1
s+ t ,

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κ2
i )

s(1−κ2
j )

t)

1
τ(τ −1) )

1
s+ t }

(10)

(2) For parameter s and t, now we discuss these important cases.
Remark 3. When t → 0, then the q-RODHFBM will turn into the q-rung orthopair dual hesitant fuzzy arithmetic mean

(q-RODHFAM) as shown below:

q−RODHFAMs,0(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(ds
i ⊗d0

j )))

1
s+ t

= ∪ρi∈hi,κi∈gi{(
q

√√√√
1−∏τ

i=1(1− (ρs
i )

q)

1
τ )

1
s ,

q

√√√√
1− (1−∏τ

i=1(1− (1−κq
i )

s)

1
τ )

1
s }

(11)

Remark 4. If s = 2 and t → 0, then the q-RODHFBM will turn to the q-rung orthopair dual hesitant fuzzy square mean (q-
RODHFSM) as shown below:

q−RODHFAM2,0(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(d2
i ⊗d0

j )))

1
2+0

= ∪ρi∈hi,κi∈gi{(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (ρ2
i )

q)

1
τ )

1
2 , q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κq
i )

2)

1
τ )

1
2 }

(12)

Remark 5. If s = 1 and t → 0, then the q-RODHFBM will turn into the q-rung orthopair dual hesitant fuzzy geometric mean
(q-RODHFGM) operator as shown below:

q−RODHFAM1,0(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(d1
i ⊗d0

j )))

1
1

= ∪ρi∈hi,κi∈gi{
q

√
1−∏τ

i=1(1− (ρi)q)

1
τ ,

q

√
(∏τ

i=1(κi)q)

1
τ }

(13)
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Remark 6.When s = t = 1, then the q-RODHFBM will turn into the q-rung orthopair dual hesitant fuzzy interrelated square
mean (q-RODHFISM) operator as shown below

q−RODHFAM1,1(d1,d2, . . . ,dτ) = (
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(d1
i ⊗d1

j )))

1
2

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j{(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (ρiρ j)q)

1
τ(τ −1) )

1
2 ,

q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κq
i )(1−κq

j ))

1
τ(τ −1) )

1
2 }

(14)

2.5 THE q-RODHFWBM OPERATOR

To get better results in MADM, it’s good to take weighted attributes. In this segment we will introduce the q-rung orthopair
dual hesitant fuzzy weighted Bonferroni mean (q-RODHFWBM) operator by this way.

Definition 2.11. Let d j = (h j,g j)( j = 1,2, . . . ,τ) be an assortment of q-RODHFNs with the weight vector w =
(w1,w2, . . . ,wτ)

T , there by satisfying wi ∈ [0,1] and ∑τ
i=1wi = 1. If

q−RODHFWBMs,t
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(
τ

⊕i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t))

1
s+ t s, t > 0 (15)

Then we say q−RODHFWBMs,t
τ the q-rung orthopair dual hesitant fuzzy weighted Bonferroni mean operator.

Theorem2. Let d j = (h j,g j)( j = 1,2, . . . ,τ) be an assortment of q-RODHFNs.The outcome value by using q-RODHFWBM
operators is again a q-RODHFN, as shown below.

q−RODHFWBMs,t
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(
τ

⊕i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t))

1
s+ t

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)

1
τ(τ −1) )

1
s+ t ,

q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κwiq
i )s(1−κw jq

j )t)

1
τ(τ −1) )

1
s+ t }

(16)

Proof. According to definition (2.8), we can obtain the following identities

widi = ∪ρi∈hi,κi∈gi{{
q
√

1− (1−ρq
i )

wi},{κwi
i }}

w jd j = ∪ρ j∈h j ,κ j∈g j{{ q
√

1− (1−ρq
j )

w j},{κw j
j }}

(widi)
s = ∪ρi∈hi,κi∈gi{{(

q
√

1− (1−ρq
i )

wi)s},{ q
√

1− (1−κwiq
i )s}}

(w jd j)
t = ∪ρ j∈h j ,κ j∈g j{{( q

√
1− (1−ρq

j )
w j)t},{ q

√
1− (1−κw jq

j )t}}
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(widi)
s ⊗ (w jd j)

t = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{( q
√

1− (1−ρq
i )

wi)s( q
√

1− (1−ρq
j )

w j)t , q
√

1− (1−κwiq
i )s(1−κw jq

j )t}
⊕τ

i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√
1−∏τ

i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t),

q

√
∏τ

i, j=1
i ̸= j

(1− (1−κwiq
i )s(1−κw jq

j )t)}
1

τ(τ−1) (⊕
τ
i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√
1−∏τ

i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) ,

( q

√
∏τ

i, j=1
i ̸= j

(1− (1−κwiq
i )s(1−κw jq

j )t))
1

τ(τ−1) }

(
1

τ(τ −1)
(⊕τ

i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t))

1
s+ t = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)

1
τ(τ −1) )

1
s+ t ,

q

√
1− (1−∏τ

i, j=1
i ̸= j

(1− (1−κwiq
i )s(1−κw jq

j )t)

1
τ(τ −1) )

1
s+ t }

(17)

Hence, Eq.16 is preserved.
Now, we must prove that Eq.16 is a q-RODHFN. For this we should prove these two criteria:

1. 0 ≤ ρ,κ ≤ 1
2. ∪ρ∈h(max(ρ))q +∪κ∈g(max(κ))q ≤ 1.

Let

ρ = ( q

√√√√√1−
τ

∏
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) )
1

s+t ,

κ = q

√√√√√1− (1−
τ

∏
i, j=1
i ̸= j

(1− (1−κwiq
i )s(1−κw jq

j )t)
1

τ(τ−1) )
1

s+t

Proo f :1. Since 0 ≤ ρ j ≤ 1, we get 0 ≤ (1−ρq
j )

w j ≤ 1 and

0 ≤ 1−
τ

∏
i, j=1
i ̸= j

(1− (1− (1−ρq
j )

w j)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) ≤ 1
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Then,

0 ≤ ( q

√√√√√1−
τ

∏
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) )
1

s+t ≤ 1

That means 0 ≤ ρ ≤ 1, on same lines, we can find 0 ≤ κ ≤ 1. Hence 1. is preserved.
For (max(ρ))q +(max(κ))q ≤ 1, we have this expression

∪ρ∈h(max(ρ))q +∪κ∈g(max(κ))q

= (1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) )
1

s+t

+1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κwiq
i )s(1−κw jq

j )t)
1

τ(τ−1) )
1

s+t

≤ (1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) )
1

s+t

+1− (1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s(1− (1−ρq
j )

w j)t)
1

τ(τ−1) )
1

s+t = 1

So 2. is preserved also.
Example 2.2. Let d1 = {{0.3,0.4},{0.5}},d2 = {{0.7},{0.1,0.2,0.6}}, and d3 = {{0.6},{0.3}} be three q-RODHFNs,

and let s = 1, t = 1 and q = 3 then using Eq.(16), we get for the membership (favorable) function ρ , the final outcomes are
given as below.

Alike, we can find ρ2=q-RODHFBM(0.4, 0.7, 0.6)=0.4173, and ρ = {0.4032,0.4173}. For the non-membership
(unfavorable) function κ , the final results are shown here. Alike, the results of κ2, and κ3, are κ2= q-RODHFBM (0.5, 0.2,
0.3)=0.4569, κ3 = q-RODHFBM(0.5, 0.6, 0.3)=0.5970, so we have κ = {0.6799,0.4569,0.5970}. Therefore,

q−RODHFBM(d1,d2,d3) = {{0.4032,0.4173},{0.6799,0.4569,0.5970}}

For some particular values of parameter q, the important cases of q-RODHFWBM operator are discussed here.
1) For parameter q, there exist following important cases
Remark 7.When q = 1, the q-RODHFWBMoperator will turn into dual hesitant fuzzy weighted BM (DHFWBM) operator

as shown below:

DHFWBMs,t
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(⊕τ
i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t))

1
s+ t

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {(1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρi)
wi)s(1− (1−ρ j)

w j)t)

1
τ(τ −1) )

1
s+ t ,

1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κwi
i )s(1−κw j

j )t)

1
τ(τ −1) )

1
s+ t }

(18)
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Remark 8. When q = 2, the q-RODHFWBM operator will turn into dual hesitant Pythagorean fuzzy weighted BM
(DHPFWBM) as shown below:

DHPFWBMs,t
w (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(⊕τ
i, j=1
i ̸= j

(widi)
s ⊗ (w jd j)

t))

1
s+ t

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {(

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρ2
i )

wi)s(1− (1−ρ2
j )

w j)t)

1
τ(τ −1) )

1
s+ t ,

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κ2wi
i )s(1−κ2w j

j )t)

1
τ(τ −1) )

1
s+ t }

(19)

2) For parameter s and t, there exist some important cases.
Remark 9. When t → 0, the q-RODHFWBM will turn into the q-rung orthopair dual hesitant fuzzy weighted arithmetic

mean (q-RODHFWAM) as shown below:

q−RODHFWAMs,0
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(⊕τ
i, j=1
i ̸= j

(widi)
s))

1
s

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)s)

1
τ )

1
s ,

q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κwiq
i )s)

1
τ )

1
s }

(20)

Remark 10. If s = 2 and t → 0, the q-RODHFWBM will turn into the q-rung orthopair dual hesitant fuzzy weighted square
mean (q-RODHFWSM) as shown below:

q−RODHFWSM2,0
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(⊕τ
i, j=1
i ̸= j

(widi)
2 ⊗ (w jd j)

0))

1
2

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)2)

1
τ )

1
2 ,

q

√√√√1− (1−
τ

∏i, j=1
i ̸= j

(1− (1−κwiq
i )2)

1
τ )

1
2 }

(21)

https://www.indjst.org/ 591

https://www.indjst.org/


Ayub & Malik / Indian Journal of Science and Technology 2021;14(6):582–603

Remark 11. If s = 1 and t → 0, the q-RODHFWBMwill turn into the q-rung orthopair dual hesitant fuzzy weighted geometric
mean (q-RODHFWGM) operator as shown below:

q−RODHFWA1,0
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(⊕τ
i, j=1
i ̸= j

(widi)
1 ⊗ (w jd j)

0))

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {
q

√√√√√1−∏τ
i, j=1
i ̸= j

((1−ρq
i )

wi)

1
τ ,

q

√√√√√∏τ
i, j=1
i ̸= j

(κwiq
i )

1
τ }

(22)

Remark 12. When s = 1 and t = 1, the q-RODHFWBM will turn into the q-rung orthopair dual hesitant fuzzy weighted
interrelated square mean (q-RODHFWISM) operator as shown below:

q−RODHFWISM1,1
τ (d1,d2, . . . ,dτ) = (

1
τ(τ −1)

(⊕τ
i, j=1
i ̸= j

(widi)
1 ⊗ (w jd j)

1))

1
2

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−ρq
i )

wi)1(1− (1−ρq
j )

w j)1)

1
τ(τ −1) )

1
2 ,

q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−κwiq
i )1(1−κw jq

j )1)

1
τ(τ −1) )

1
2 }

(23)

2.6 The q-RODHFDBM OPERATOR

Now, we establish the dual BM (DBM) combining both the BM and dual operation.
Definition 2.12. Let s, t ≥ 0 and ai(i = 1,2, . . . ,τ) be an assortment of nonnegative real numbers. If

DBMs,t(a1,a2, . . . ,aτ) =
1

s+ t
(

τ

∏
i, j=1
i ̸= j

(sai + ta j))

1
τ(τ −1) (24)

Then we call DBM s,t the dual BM (DBM) operator.
Now, we shall introduce the DBM operator for q-RODHFNs as follows.
Definition 2.13. Let s, t > 0 and d j = (h j,g j)( j = 1,2, . . . ,τ) be a set of q-RODHFNs. If

q−RODHFDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1
i ̸= j

(sdi ⊕ td j))

1
τ(τ −1) (25)

Then the name q-RODHFDBM s,t stands for the q-rung orthopair dual hesitant fuzzy dual Bonferroni mean operator.
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Theorem 3. Let d j = (h j,g j)( j = 1,2, . . . ,τ) be an assortment of q-RODHFNs.The resulted value by using q-RODHFDBM
operator is again a q-RODHFN where as Eq.26, as shown here.

q−RODHFDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1
i ̸= j

(sdi ⊕ td j))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {
q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρq
i )

s(1−ρq
j )

t)

1
τ(τ −1) )

1
s+ t ,

(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (κs
i κ t

j)
q)

1
τ(τ −1) )

1
s+ t }

(26)

Based on operations (1)-(4) of the q-RODHFNs stated in Section 2, we can drive the following result.
Proof. From definition (2.8), the proof follows easily.
Example 2.3. Let d1 = {{0.3,0.4},{0.5}},d2 = {{0.7},{0.1,0.2,0.6}}, and d3 = {{0.6},{0.3}} be three q-RODHFNs,

and let s = 1, t = 1 and q = 3 then using Eq.(26), we get for the membership (favorable) function ρ , the ultimate outcomes are
as below.

On same lines, we have found ρ2= q-RODHFDBM(0.4, 0.7, 0.6)=0.5743, and ρ = {0.5763,0.5743}. For the non-
membership (unfavorable) function κ , the ultimate outcomes are shown as . Alike, the results of κ2, and κ3, are κ2=q-
RODHFBM (0.5, 0.2, 0.3)=0.3404, κ3 = q-RODHFDBM(0.5, 0.6, 0.3)=0.5745, so we can list κ = {0.3303,0.3404,0.5745}.

Therefore,

q−RODHFBM(d1,d2,d3) = {{0.5763,0.5743},{0.3303,0.3404,0.5745}}

By adjusting the estimations of parameter s, t and q, some unique instances of q-RODHFBM operator are given as pursues.
(1) For parameter q, there arise some important cases
Remark 13. When q = 1, the q-RODHFDBM operator will turn into dual hesitant fuzzy DBM (DHFDBM) operator as

shown below:

DHFDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1i ̸= j
(sdi ⊕ td j))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρq
i )

s(1−ρq
j )

t)

1
τ(τ −1) )

1
s+ t ,

(1−∏τ
i, j=1
i ̸= j

(1− (κs
i κ t

j)
q)

1
τ(τ −1) )

1
s+ t }

(27)
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Remark 14. When q = 2, the q-RODHFDBM operator will turn into dual hesitant Pythagorean fuzzy DBM (DHPFDBM)
which can be presented in ,

DHPFDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1i ̸= j
(sdi ⊕ td j))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρ2
i )

s(1−ρ2
j )

t)

1
τ(τ −1) )

1
s+ t ,

(

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (κs
i κ t

j)
2)

1
τ(τ −1) )

1
s+ t }

(28)

(2) For parameter s and t, there exist these important cases.
Remark 15. If t → 0, then q-RODHFDBM will turn into the q-rung orthopair dual hesitant fuzzy dual arithmetic mean

(q-RODHFDAM) operator as shown below:

q−RODHFDAMs,0(d1,d2, . . . ,dτ) =
1
s
((⊗τ

i=1(sdi))

1
τ(τ −1) )

= ∪ρi∈hi,κi∈gi {
q

√√√√
1− (1−∏τ

i=1(1− (1−ρq
i )

s)

1
τ )

1
s ,(

q

√√√√
1−∏τ

i=1(1− (κs
i )

q)

1
τ )

1
s }

(29)

Remark 16. If s = 2 and t → 0, then the q-RODHFDBM will turn into the q-rung orthopair dual hesitant fuzzy dual square
mean (q-RODHFDSM) as shown below:

q−RODHROFAM2,0(d1,d2, . . . ,dτ) =
1
2
((⊗τ

i=1(sdi))

1
τ(τ −1) )

= ∪ρi∈hi,κi∈gi{
q

√√√√
1− (1−∏τ

i=1(1− (1−ρq
i )

2)

1
τ )

1
2 ,(

q

√√√√
1−∏τ

i=1(1− (κ2
i )

q)

1
τ )

1
2 }

(30)

Remark 17. If s = 1 and t → 0, then the q-RODHFDBMwill turn into the q-rung orthopair dual hesitant fuzzy dual geometric
mean (q-RODHFDGM) operator as shown below:

q−RODHFAM1,0(d1,d2, . . . ,dτ) =
1
1
((⊗τ

i=1(sdi))

1
τ(τ −1) )

= ∪ρi∈hi,κi∈gi,ρ j∈h j{
q

√√√√
∏τ

i=1(ρ
q
i )

1
τ ,

q

√√√√
1−∏τ

i=1(1− (κi)q)

1
τ }

(31)
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Remark 18. If s = 1 and t = 1, then the q-RODHFDBM will turn into the q-rung orthopair dual hesitant fuzzy interrelated
square mean (q-RODHFDISM) operator as shown below:

q−RODHFDISM1,1(d1,d2, . . . ,dτ) =
1
2
(⊗τ

i, j=1
i ̸= j

(di ⊕d j))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {
q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρq
i )(1−ρq

j ))

1
τ(τ −1) )

1
2 ,

(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (κiκ j)q)

1
τ(τ −1) )

1
2 }

(32)

2.7 THE q-RODHFWDBM OPERATOR

In actual MADM, it’s good to assign weights to each attribute. In this segment, we shall explore the q-rung orthopair dual
hesitant fuzzy weighted dual Bonferroni mean (q-RODHFWDBM) operator as pursues.

Definition 2.14. Let s, t > 0 and ai(i = 1,2, . . . ,τ) be a set of nonnegative real numbers. If

DBMs,t(a1,a2, . . . ,aτ) =
1

s+ t
(

τ

∏
i, j=1
i ̸= j

(sawi
i + ta

w j
j ))

1
τ(τ −1) (33)

Then we call DBM s,t the dual BM (DBM) operator.
Now, we will establish the DBM operator for q-RODHFNs as follows.
Definition 2.15. Let s, t > 0 and d j = (h j,g j)( j = 1,2, . . . ,τ) be an assortment of q-RODHFNs. If

q−RODHFWDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j ))

1
τ(τ −1) (34)

Then q-RODHFWDBM s,t stands for the q-rung orthopair dual hesitant fuzzy weighted dual Bonferroni mean operator.
Theorem 4. Let s, t > 0 and d j = (h j,g j)( j = 1,2, . . . ,τ) be an assortment of q-RODHFNs. The aggregated result after

utilizing q-RODHFWDBM operators is again a q-RODHFN where as Eq.34, as shown here.

q−RODHFWDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j ))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {
q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)

1
τ(τ −1) )

1
s+ t ,

(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)s(1− (1−κq
j )

w j)t)

1
τ(τ −1) )

1
s+ t }

(35)

https://www.indjst.org/ 595

https://www.indjst.org/


Ayub & Malik / Indian Journal of Science and Technology 2021;14(6):582–603

Proof. From definition (2.8), we can obtain the following identities

dwi
i = ∪ρi∈hi,κi∈gi{ρwi

i , q
√

1− (1−κq
i )

wi}

sdwi
i = ∪ρi∈hi,κi∈gi{

q
√

1− (1−ρwiq
i )s,( q

√
1− (1−κq

i )
wi)s}

d
w j
j = ∪ρ j∈h j ,κ j∈g j{ρw j

j , q
√

1− (1−κq
j )

w j}

td
w j
j = ∪ρ j∈h j ,κ j∈g j{ q

√
1− (1−ρw jq

j )t ,( q
√

1− (1−κq
j )

w j)t}

sdwi
i ⊕ td

w j
j = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q
√

1− (1−ρwiq
i )s(1−ρw jq

j )t ,( q
√

1− (1−κq
i )

wi)s( q
√

1− (1−κq
j )

w j)t}

sd
w j
j ⊕ tdwi

i = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q
√

1− (1−ρw jq
j )s(1−ρwiq

i )t ,( q
√

1− (1−κq
j )

w j)s( q
√

1− (1−κq
i )

wi)t}

⊗τ
i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j ) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√
∏τ

i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t),

q

√
1−∏τ

i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)s(1− (1−κq
j )

w j)t)}

(⊗τ
i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j ))

1
τ(τ−1) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{( q

√
∏τ

i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t))
1

τ(τ−1) ,

q

√
1−∏τ

i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)s(1− (1−κq
j )

w j)t)
1

τ(τ−1) }

1
s+t (⊗

τ
i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j )

1
τ(τ−1) ) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√
1− (1−∏τ

i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)
1

τ(τ−1) )
1

s+t ,

( q

√
1−∏τ

i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)s(1− (1−κq
j )

w j)t)
1

τ(τ−1) )
1

s+t }

Therefore, Eq.36, as shown above.
Hence, Eq.35 is preserved.
Now to show that Eq.35 is a q-RODHFN. It should satisfy these two criteria as follows:

1. 0 ≤ ρ,κ ≤ 1
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2. ∪ρ∈h(max(ρ))q +∪κ∈g(max(κ))q

Let

ρ = q

√
1− (1−∏τ

i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)
1

τ(τ−1) )
1

s+t

κ = ( q

√
1−∏τ

i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)s(1− (1−κq
j )

w j)t)
1

τ(τ−1) )
1

s+t

Proof. Since 0 ≤ ρ j ≤ 1 we get

0 ≤ (1−ρwiq
i )s ≤ 1

0 ≤ ∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)
1

τ(τ−1) ≤ 1

0 ≤ (1−∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)
1

τ(τ−1) )
1

s+t ≤ 1

0 ≤ q

√
1− (1−∏τ

i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)
1

τ(τ−1) )
1

s+t ≤ 1

This states 0 ≤ ρ ≤ 1, alike, one may find 0 ≤ κ ≤ 1. So (1) is preserved.
Now, for (max(ρ j))

q +(max(κ j))
q ≤ 1, we have

∪ρ∈h(max(ρ))q +∪κ∈g(max(κ))q

= 1− (1−∏τ
i, j=1
i ̸= j

(1− (1−maxρwiq
i )s(1−maxρw jq

j )t)
1

τ(τ−1) )
1

s+t

+(1−∏τ
i, j=1
i ̸= j

(1− (1− (1−maxκq
i )

wi)s(1− (1−maxκq
j )

w j)t)
1

τ(τ−1) )
1

s+t

≤ (1−∏τ
i, j=1
i ̸= j

(1− (1− (1−maxκq
i )

wi)s(1− (1−maxκq
j )

w j)t)
1

τ(τ−1) )
1

s+t

1− (1−∏τ
i, j=1
i ̸= j

(1− (1− (1−maxκq
i )

wi)s(1− (1−maxκq
j )

w j)t)
1

τ(τ−1) )
1

s+t

= 1

So (1) is preserved.
By adjusting the estimations of parameter s, t and q, some unique instances of q-RODHFWBM operator are discussed as

pursues.
(1) For some particular values of q, there exist following vital cases.
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Remark 19.When q = 1, the q-RODHFWDBM operator will turn into dual hesitant fuzzy weighted dual Bonferroni mean
(DHFWDBM) operator as shown below:

q−RODHFWDBMs,t(d1,d2, . . . ,dτ) =
1

s+t (⊗
τ
i, j=1i ̸= j

(sdwi
i ⊕ td

w j
j ))

1
τ(τ−1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )s(1−ρw jq

j )t)
1

τ(τ−1) )
1

s+t ,

1−∏τ
i, j = 1
i ̸= j

(
1−
(
1−
(
1−κq

i

)wi
)s
(

1−
(

1−κq
j

)w j
)t
) 1

τ(τ−1)


1

s+t


Remark 20. When q = 2, the q-RODHDFWDBM operator will turn into dual hesitant Pythagorean fuzzy weighted DBM
(DHPFWDBM), as defined

DHFWDBMs,t(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j ))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρ2wi
i )s(1−ρ2w j

j )t)

1
τ(τ −1) )

1
s+ t ,

(

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−κ2
i )

wi)s(1− (1−κ2
j )

w j)t)

1
τ(τ −1) )

1
s+ t }

(38)

(2) For parameter s and t, there exist the following vital cases.
Remark 21. When t → 0, the q-RODHFWDBM will turn into the q-rung orthopair dual hesitant fuzzy weighted dual

arithmetic mean (q-RODHFWDAM) operator as shown below:

1
s+ t

(⊗τ
i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j )

1
τ(τ −1) ) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )s)

1
τ )

1
s ,( q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)s)

1
τ )

1
s }

(39)

Remark 22. When s = 1 and t → 0, the q-RODHFWDBM will turn into the q-rung orthopair dual hesitant fuzzy weighted
dual geometric mean (q-RODHFWDGM) operator as shown below:

1
s+ t

(⊗τ
i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j )

1
τ(τ −1) ) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√√√√√∏τ
i, j=1
i ̸= j

(ρwiq
i )

1
τ ,(

q

√√√√√1−∏τ
i, j=1
i ̸= j

((1−κq
i )

wi)

1
τ )

1
s }

(40)
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Remark 23. When s = 2 and t → 0, the q-RODHFWDBM will turn into the q-rung orthopair dual hesitant fuzzy weighted
dual square mean (q-RODHFWDSM) operator as shown below:

1
s+ t

(⊗τ
i, j=1
i ̸= j

(sdwi
i ⊕ td

w j
j )

1
τ(τ −1) ) = ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j

{ q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )2)

1
τ )

1
2 ,( q

√√√√√1−∏τ
i, j=1
i ̸= j

(1− (1− (1−κq
i )

wi)2)

1
τ )

1
2 }

(41)

Remark 24.When s = 1 and t = 1, the q-RODHFWDBMwill turn into the q-rung orthopair dual hesitant fuzzy weighted dual
interrelated square mean (q-RODHFWDISM) operator as shown below:

q−RODHFWDISM1,1(d1,d2, . . . ,dτ) =
1

s+ t
(⊗τ

i, j=1
i ̸= j

(dwi
i ⊕d

w j
j ))

1
τ(τ −1)

= ∪ρi∈hi,κi∈gi,ρ j∈h j ,κ j∈g j {
q

√√√√√1− (1−∏τ
i, j=1
i ̸= j

(1− (1−ρwiq
i )(1−ρw jq

j ))

1
τ(τ −1) )

1
2 ,

(
q

√√√√√1−∏τ
i, j=1
i ̸= j

(
∮

1− (1− (1−κq
i )

wi)(1− (1−κq
j )

w j))

1
τ(τ −1) )

1
2 }

(42)

Example 2.4. Let d1 = {{0.3,0.4},{0.5}},d2 = {{0.7},{0.1,0.2,0.6}}, and d3 = {{0.6},{0.3}} be three q-RODHFNs, and
let s = 1, t = 1 and q = 3 then utilizing Eq.(35), we have for themembership (favorable) function ρ , the final values are as below.

Alike, we can find ρ2=q-RODHFDWBM(0.4, 0.7, 0.6)=0.9999, and ρ = {0.9287,0.9999}. For the non-membership
(unfavorable) function κ , the ultimate values are shown below. Alike, the results of κ2, and κ3, are κ2=q-RODHFDWBM (0.5,
0.2, 0.3)=0.9980, κ3 = q-RODHFDWBM(0.5, 0.6, 0.3)=0.9856, so we can list κ = {0.9952,0.9980,0.9856}. Therefore,

q−RODHFDWBM(d1,d2,d3) = {{0.9287,0.9999},{0.9952,0.9980,0.9856}}

3 MODELS FOR MADMWITH q-RODHFNs
In the light of the q-RODHFWBM and q-RODHFWDBM operators, we shall furnish the model for MADM with q-
RODHFNs. Let O = {O1,O2, . . . ,Om} be a discrete set of alternatives, and K = {K1,K2, . . . ,Kτ} be collection of attributes,
w = {w1,w2, . . . ,wτ} is the weight vector of the attribute K j( j = 1,2, . . . ,τ) where 0 ≤ w j ≤ 1,∑τ

j=1w j = 1. Suppose that
d = (di j)m×τ = (hi j,gi j)m×τ is the q-rung orthopair fuzzy decision matrix, where hi j set specify the level that the alternative Oi
satisfy the attribute K j given by the decision maker, gi j set specify the level that the alternative Oi doesn’t satisfy the attribute
K j given by the decision maker, ρi j ∈ hi j ⊂ [0,1],κi j ∈ gi j ⊂ [0,1],(ρi j)

2 +(κi j)
2 ≤ 1, i = 1,2, . . . ,m, j = 1,2, . . . ,τ . In the

accompanying, we will utilize the q-RODHFWBM and q-RODHFWDBM operator to the MADM problems for q-RODHFNs.
Step 1 : We take advantage of q-RODHFNs of the matrix Ũ , and utilize q-RODHFWBM operator to acquire di(i =

1,2, . . . ,m) of the alternative Oi.
Step 2 : Determine the scores L(di)(i = 1,2, . . . ,m) of the whole collection of q-RODHFNs di(i = 1,2, . . . ,m) and finally

rank all the alternatives Oi(i = 1,2, . . . ,m) and then choose the exclusively optimal one(s). If the score values of two L(di) and
L(dk) are same, then we shall utilize the accuracy values T (di) and T (dk) of the whole collection of q-RODHFNs and di and
dk, respectively, and then arrange the alternatives Oi and Ok with respect to the accuracy degrees T (di) and T (dk)

Step 3 : Arrange all the alternatives Oi(i = 1,2, . . . ,m)
in descending order and select the optimal one(s) likewise L(di)(i = 1,2, . . . ,m)
Step 4 : End.
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4 Application and Comparative Analysis

4.1 Numerical Example

In this segment, we shall furnish an application to choose green providers in green inventory network the board (GINB) with
q-RODHFNs. There are five possible green providers in GINB Oi(i = 1,2,3,4,5) to decide. The specialists evaluate the five
potential green providers with respect to the following attributes: 1. K1 is the item quality factor; 2. K2 is natural factors; 3. K3
is conveyance factor; 4. K4 is value factor. Five green providers Oi(i = 1,2,3,4,5) are to be classified under q-RODHFNs with
respect to four attributes with weight vector w = (0.4,0.3,0.1,0.2) displayed in Table 1.

Table 1. q-RODHFN decision matrixi(Ũ)

K1 K2 K3 K4

O1 {(0.5,0.6} ,(0.4}} {{0.2,0.3}, {0.4,0.6}} {(0.1,0.4} ,(0.3}} {(0.2,0.4} ,(0.6}}
O2 {{0.7}, {0.2}} {{0.5,0.6,0.8}, {0.2}} {(0.7} ,(0.3,0.4,0.5}} {{0.4}, {0.2,0.3}}
O3 {{0.6,0.8}, {0.5}} {{0.5},{0.1,0.4} {{0.1,0.4,0.5}, {0.2}} {{0.3,0.4,0.5}, {0.4}}
O4 {{0.2}, {0.4}} {{0.4,0.5,0.6}, {0.7}} {{0.2,0.4}, {0.5}} {{0.2}, {0.3,0.6,0.7}}
O5 {{0.4,0.5}, {0.4}} {{0.5,0.6,0.7}, {0.6}} {{0.2,0.3}, {0.5} {{0.1,0.4,0.5}, {0.2}}

In the accompanying, we take the advantage of the operators developed for provider selection in provide network board with
q-rung orthopair dual hesitant fuzzy numbers (q-RODHFNs) datum.

Step 1: We take advantage of the decision datum in matrix Ũ , and the q-RODHFWBM operator to collect the collective
preference values di of the provider in green inventory network the board Oi(i = 1,2,3,4,5). The collective preference values
di of the provider in green inventory network the board Oi(i = 1,2,3,4,5) are listed below

d1 = q−RODHFWBM1,1
w (d11,d12,d13,d14) = ( 1

12{⊕
4
i, j=1
i ̸= j

(widi)
1 ⊗ (w jd j)

1}) 1
2

= ∪ρi∈hi,ρ j∈h j ,κi∈gi,κ j∈g j {( 3

√
1−∏4

i, j=1
i ̸= j

(1− (1− (1−ρ3
i )

wi)(1− (1−ρ3
j )

w j))
1
24 )

1
12 ,

3

√
1− (1−∏4

i, j=1
i ̸= j

(1− (1−κ3wi
i )(1−κ3w j

j ))
1

24 )
1
2 }

= {⟨{0.5,0.6},{0.4}⟩,⟨{0.2,0.3},{0.4,0.6}⟩,⟨{0.1,0.4},{0.3}⟩,⟨{0.2,0.4},{0.6}⟩}

= {{0.1620,0.2031,0.1906,0.2176,0.1876,0.2159,0.2060,0.2279,

0.1782,0.2231,0.2091,0.2378,0.2062,0.2361,0.2255,0.2483},{0.8782,0.8948}}

d2 = q−RODHFWBM1,1
w (d21,d22,d23,d24)

= {⟨{0.7},{0.2}⟩,⟨{0.5,0.6,0.8},{0.2}⟩,⟨{0.7},{0.3,0.4,0.5}⟩,⟨{0.4},{0.2,0.3}⟩}

= {{0.3390,0.3589,0.4077},{0.8011,0.8122,0.8135,0.8246,0.8073,0.8196}}

d3 = q−RODHFWBM1,1
w (d31,d32,d33,d34)

= {⟨{0.6,0.8},{0.5}⟩,⟨{0.5},{0.1,0.4}⟩,⟨{0.1,0.4,0.5},{0.2}⟩,⟨{0.3,0.4,0.5},{0.4}⟩}

= {{0.2671,0.2766,0.2899,0.2754,0.2841,0.3366,

0.3216,0.3135,0.3302,0.3427,0.3487,0.3486,

0.2964,0.2830,0.2909,0.3025,0.3230,0.3370}, {0.8373,0.8653}}
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d4 = q−RODHFWBM1,1
w (d41,d42,d43,d44)

= {⟨{0.2},{0.4}⟩,⟨{0.4,0.5,0.6},{0.7}⟩,⟨{0.2,0.4},{0.5}⟩,⟨{0.2},{0.3,0.6,0.7}⟩}

= {{0.1849,0.1465,0.1667,0.1634,0.1796,0.2974},{0.8373,0.8653}}

d5 = q−RODHFWBM1,1
w (d51,d52,d53,d54)

= {⟨{0.4,0.5},{0.4}⟩,⟨{0.5,0.6,0.7},{0.6}⟩,⟨{0.2,0.3},{0.5}⟩,⟨{0.1,0.4,0.5},{0.2}⟩}

= {{0.2134,0.2721,0.2997,0.3007,0.2705,0.2683,

2535,0 2333,0 2542,0 2743,0 2552,0 2892,

0.2914,0.2769,0.2710,0.2576,0.2609,0.2843,

0.2988,0.3107,0.3125,0.3008,0.2867,0.2734,

0.2171,0.2368,0.2562,0.2370,0.2402,0.2891,

0.2688,0.2635,0.2766,0.2577,0.2788,0.2910},{0.8741}}

Step 2: Find the scores S(Oi)(i = 1,2,3,4,5) of the collective q-rung orthopair dual hesitant fuzzy values Oi(i = 1,2,3,4,5) :

S(O1) = 0.1564, S(O2) = 0.2566,S(O3) = 0.2064,

S(O4) = 0.1953, S(O5) = 0.1759

Step 3: Rank all the providers Oi(i = 1,2,3,4,5) likewise the scores S(Oi)(i = 1,2,3,4,5) of the collective q-rung orthopair
dual hesitant fuzzy numbers: O2 ≻ O3 ≻ O4 ≻ O5 ≻ O1, and thus the most desirable supplier is O2.

Based on the q-RODHFWDBM operator, in order to select the most desirable supplier, we can develop an approach to
multiple attribute decision making problems with q-rung orthopair dual hesitant fuzzy information, which can be described as
following:

Step 1̃ : Aggregate all q-rung orthopair dual hesitant fuzzy value di j( j = 1,2,3,4) by using the dual hesitant q-rung
orthopair fuzzy weighted DBM (q-RODHFWDBM) operator to derive the overall q-rung orthopair dual hesitant fuzzy values
di(i = 1,2,3,4,5) of the supplier Ai.The overall performance values of all the supplier A1 (here, we take q = 3,s=1,t=1) are given
below,

Step 2̃ :Calculate the scores s(Ai)(i= 1,2,3,4,5) of the overall q-rung orthopair dual hesitant fuzzy valuesAi(i= 1,2,3,4,5)
of the supplier Ai:

S(A1) = 0.4297,S(A2) = 0.5378,S(A3) = 0.5021 S(A4) = 0.3839,S(A5) = 0.3839

Step 3̃ : Rank all the suppliers in supply chain management Ai(i = 1,2,3,4,5) in accordance with the scores s(Ai)(i =
1,2,3,4,5) of the overall dual hesitant q-rung orthopair fuzzy values Ai(i = 1,2,3,4,5) by using definition 2.15: A2 ≻ A3 ≻
A5 ≻ A1 ≻ A4, and thus the most desirable supplier is A2. From the above analysis, it is easily seen that although the overall
rating values of the alternatives are same by using two operators respectively.

4.2 Comparative analysis compared with existing magdmmethods

To demonstrate the superiorities of the proposed method, we have compared our method with that (1) developed by Wang
et al.’s (26) based on the dual hesitant fuzzy weighted averaging (DHFWA) operator, (2) presented by Tu et al.’s (27), based on
the dual hesitant fuzzy weighted Bonferroni mean (DHFWBM) operator, (3) putforwarded by Tang (24), based on the dual
hesitant Pythagorean fuzzy Heronian weighted averaging (DHPFHWA) operator, (4) proposed by, Xu et al.’s (23) based on the
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Table 2. Score functions and ranking results..
Methods Score Function s(di)(i = 1, 2, 3, 4,5) Ranking Results
Wang et al.’ (26) method based on the
DHFWA operator

s(A1) = 0.3195,
s(A2) = 0.4117,
s(A3) = 0.3753,
s(A4) = 0.1918,
s(A5) = 0.1189

A2 ≻ A1 ≻ A5 ≻ A3 ≻ A4

Tu et al.’s (27) method based on the
DHFWBM operator

s(A1) = -0.3821,
s(A2) = -0.3186,
s(A3) = -0.3850,
s(A4) = -0.4743,
s(A5) = 0.1189

A2 > A3 > A4 > A1 > A5

Tang et al.’s (24) method based on the
DHPFHWA operator

s(A1) = 0.3142,
s(A2) = 0.3014,
s(A3) = 0.2968,
s(A4) = 0.0268,
s(A5) = 0.1197

A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

Xu et al.’ s (23) method based on theq-
RDHFWHM operator (s = t = 2)

s(A1) = 0.2359,
s(A2) = 0.2187,
s(A3) = 0.1284,
s(A4) = 0.0034,
s(A5) = 0.1198

A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

The proposed method in this paper s(A1) = 0.4297,
s(A2) = 0.5378,
s(A3) = 0.5021,
s(A4) = 0.3839,
s(A5) = 0.3839

A2 ≻ A3 ≻ A5 ≻ A1 ≻ A4

dual hesitant Pythagorean fuzzy Heronian weighted averaging (DHPFHWA) operator. We utilized these methods to solve the
above example, and the score functions and ranking results can be found in Table 2.

First of all, Wang et al.’s (26) and Tu et al.’s (27) methods are based on DHFSs. Tang et al.’s (24) method is based on DHPFSs.
As mentioned above, DHFS and DHPFS are two special cases of q-RDHFS. When q = 1, then q-RDHFS is reduced to DHFS,
and when q = 2, q-RDHFS is reduced to DHPFS. Evidently, q-RDHFS is more general and can describe a greater information
range and process more information in the process of MAGDM. For instance, if an attribute value provided by DMs is {{0.1,
0.2, 0.6, 0.7}, {0.1, 0.4, 0.5}}, then obviously, the pair {{0.1, 0.2, 0.6, 0.7}, {0.1, 0.4, 0.5}} is not valid for DHFSs and DHPFSs.
Thus, our method is more general, powerful, and can process more information in MAGDM.Wang et al.’s (26) method is based
on the simple weighted averaging operator. The drawback of this methods is that it does not consider the interrelationship
between arguments. In other words, they assume all attributes are independent, which is not correct to some extent. In the
abovementioned example, when choosing the most appropriate supplier, we need to consider not only the attribute values of
each supplier but also the correlation between these attributes. Thus,Wang et al.’s (26) method is not suitable for dealing with
this problem. As our method has the ability to capture variable correlations, it is more reasonable thanWang et al.’s method for
addressing this problem. Xu et al.’s (23) is based on HM. Tu et al.’s (27) and our methods based on Bonferroni mean (BM). The
prominent characteristic of BM and HM is that both can consider the interrelationship between arguments. Therefore, all the
three can process the interrelationship among attribute values. However, Xu et al.’s (23) method and ours are better than Tu et
al.’s (27) method. In addition, as Tu et al.’s (27) is a special case of our method (when q = 1), our method is more general, scientific,
and applicable than Tu et al.’s (27) method.

5 Conclusion
In this article, we have examined the MADM problems under q-RODHFNs. we have utilized the BM operator and established
some BM aggregation operators with q-RODHFNs. We have developed (q-RODHFBM) operator, (q-RODHFWBM) operator,
DBM operator, (q-RODHFDBM) operator and (q-RODHFWDBM) operator. Also, the important merits of the examined
operators are talked about. Furthermore, we have endorsed q-RODHFWBM and q-RODHFWDBM operators to construct
decision-making steps to handle the q-rung orthopair dual hesitant fuzzy MADM problems. Finally, we take a solid example
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for examining the green provider selection to exhibit our established model and to assert its efficiency and objectiveness. We
have compared our results with q-RODHFWHMand q-RODHFWGHMoperators, despite the fact that the results areminimal
extraordinary and the ideal option is not changed. However, the q-RODHFWHMand q-RODHFWGHMoperators just include
the interrelationship of two arbitrary numbers but our introduced operators can include the interrelationship of any number
arbitrary arguments, that indicates our establishedmethod ismore decisive to handle theMADMproblems. In the forthcoming,
we will maintain our study about the MADM issues with the application and expansion of the presented operators to other
realm.

References
1) Atanassov KT. Intuitionistic fuzzy sets. In: Intuitionistic fuzzy sets 1999. Heidelberg. Physica. ;p. 1–137.
2) Zadeh LA. Fuzzy sets. Information and Control. 1965;8:338–353. Available from: https://dx.doi.org/10.1016/s0019-9958(65)90241-x.
3) Torra V. Hesitant fuzzy sets. International Journal of Intelligent Systems. 2010;25(6). Available from: https://dx.doi.org/10.1002/int.20418.
4) Peng X, Yang Y. Some results for Pythagorean fuzzy sets. International Journal of Intelligent Systems. 2015;30(11):991–1029.
5) Wei GW. Pythagorean fuzzy Hamacher power aggregation operators in multiple attribute decisionmaking. Fundamenta Informaticae. 2019;166(1):57–85.
6) Peng X, Yuan H, Yang Y. Pythagorean fuzzy information measures and their applications. International Journal of Intelligent Systems. 2017;32(10):991–

1029.
7) Wei G. Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making. Informatica. 2017;28(3):547–564.
8) Bonferroni C. Sulle medie multiple di potenze. Bollettino dell’Unione Matematica Italiana. 1950;5(3-4):267–270.
9) Liang D, Darko AP, Xu Z. Pythagorean Fuzzy Partitioned Geometric Bonferroni Mean and Its Application to Multi-criteria Group Decision Making with

Grey Relational Analysis. International Journal of Fuzzy Systems. 2019;21(1):115–128. Available from: https://dx.doi.org/10.1007/s40815-018-0544-x.
10) Yager RR. Generalized Orthopair Fuzzy Sets. IEEE Transactions on Fuzzy Systems. 2017;25(5):1222–1230. Available from: https://dx.doi.org/10.1109/

tfuzz.2016.2604005.
11) Liu P, Wang P. Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making. International Journal of

Intelligent Systems. 2018;33(2):259–280.
12) Liu P, Chen SM, Wang P. Multiple-attribute group decision-making based on q-rung orthopair fuzzy power maclaurin symmetric mean operators. IEEE

Transactions on Systems, Man, and Cybernetics: Systems. 2018.
13) Liu P, Wang P. Multiple-attribute decision-making based on Archimedean Bonferroni Operators of q-rung orthopair fuzzy numbers. IEEE Transactions

on Fuzzy systems. 2018;27(5):834–848.
14) Wang P, Wang J, Wei G, Wei C. Similarity Measures of q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications. Mathematics.

2019;7(4). Available from: https://dx.doi.org/10.3390/math7040340.
15) Peng X, Dai J, Garg H. Exponential operation and aggregation operator for q-rung orthopair fuzzy set and their decision-making method with a new

score function. International Journal of Intelligent Systems. 2018;33(11):2255–2282. Available from: https://dx.doi.org/10.1002/int.22028.
16) Wei G, Gao H, Wei Y. Some q-rung orthopair fuzzy Heronian mean operators in multiple attribute decision making. International Journal of Intelligent

Systems. 2018;33(7):1426–1458.
17) Wang J, Wei G, Lu J, Alsaadi FE, Hayat T, Wei C, et al. Some q-rung orthopair fuzzy Hamy mean operators in multiple attribute decision-making and

their application to enterprise resource planning systems selection. International Journal of Intelligent Systems. 2019;34(10):2429–2458.
18) Liu P, Liu P, Wang P, Zhu B. An Extended Multiple Attribute Group Decision Making Method Based on q-Rung Orthopair Fuzzy Numbers. IEEE Access.

2019;7. Available from: https://dx.doi.org/10.1109/access.2019.2951357.
19) Liu P,Wang Y. Multiple attribute decisionmaking based on q-rung orthopair fuzzy generalizedMaclaurin symmeticmean operators. Information Sciences.

2020;518:181–210. Available from: https://dx.doi.org/10.1016/j.ins.2020.01.013.
20) Liu P, Ali Z, Mahmood T. AMethod to Multi-Attribute Group Decision-Making Problem with Complex q-Rung Orthopair Linguistic Information Based

on Heronian Mean Operators. International Journal of Computational Intelligence Systems. 2019;2019:1465–1496. Available from: https://dx.doi.org/10.
2991/ijcis.d.191030.002.

21) Liu P, Liu W. Multiple-attribute group decision-making method of linguisticq-rung orthopair fuzzy power Muirhead mean operators based on entropy
weight. International Journal of Intelligent Systems. 2019;34(8):1755–1794. Available from: https://dx.doi.org/10.1002/int.22114.

22) Liu P, LiuW. Multiple-attribute group decision-making based on power Bonferroni operators of linguistic q-rung orthopair fuzzy numbers. International
Journal of Intelligent Systems. 2019;34(4):652–689.

23) Xu Y, Shang X, Wang J, Wu W, Huang H. Some q-rung dual hesitant fuzzy Heronian mean operators with their application to multiple attribute group
decision-making. Symmetry. 2018;10(10):472.

24) Tang M, Wang J, Lu J, Wei G, Wei C, Wei Y. Dual Hesitant Pythagorean Fuzzy Heronian Mean Operators in Multiple Attribute Decision Making.
Mathematics. 2019;7(4):344–344. Available from: https://dx.doi.org/10.3390/math7040344.

25) Zhu B, Xu Z, Xia M. Dual Hesitant Fuzzy Sets. Journal of Applied Mathematics. 2012;2012:1–13. Available from: https://dx.doi.org/10.1155/2012/879629.
26) Wang H, Zhao X, Wei G. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. Journal of Intelligent & Fuzzy Systems.

2014;26(5):2281–2290.
27) Tu NH, Wang CY, Zhou XQ, Tao SD. Dual hesitant fuzzy aggregation operators based on Bonferroni means and their applications to multiple attribute

decision making. Annl Fuzzy Math Inform. 2017;14:265–278.
28) Liu JB, Malik MA, Ayub N, Siddiqui HMA. Distance Measures for Multiple-Attributes Decision-Making Based on Connection Numbers of Set Pair

Analysis With Dual Hesitant Fuzzy Sets. IEEE Access. 2020;8:9172–9184. Available from: https://dx.doi.org/10.1109/access.2019.2963484.
29) Wang J, Wang G, Wei C, Wei Y. Similarity Measures of q-Rung Orthopair Fuzzy Sets Based on Cosine Function and Their Applications. Mathematics.

2019;7. Available from: https://dx.doi.org/10.3390/math7040340.

https://www.indjst.org/ 603

https://dx.doi.org/10.1016/s0019-9958(65)90241-x
https://dx.doi.org/10.1002/int.20418
https://dx.doi.org/10.1007/s40815-018-0544-x
https://dx.doi.org/10.1109/tfuzz.2016.2604005
https://dx.doi.org/10.1109/tfuzz.2016.2604005
https://dx.doi.org/10.3390/math7040340
https://dx.doi.org/10.1002/int.22028
https://dx.doi.org/10.1109/access.2019.2951357
https://dx.doi.org/10.1016/j.ins.2020.01.013
https://dx.doi.org/10.2991/ijcis.d.191030.002
https://dx.doi.org/10.2991/ijcis.d.191030.002
https://dx.doi.org/10.1002/int.22114
https://dx.doi.org/10.3390/math7040344
https://dx.doi.org/10.1155/2012/879629
https://dx.doi.org/10.1109/access.2019.2963484
https://dx.doi.org/10.3390/math7040340
https://www.indjst.org/

	INTRODUCTION
	Preliminaries
	2.1 The q-RUNG ORTHOPAIR FUZZZY SET
	2.2 The q-RUNG ORTHOPAIR DUAL HESITANT FUZZZY SET
	2.3 BM OPERATORS
	2.4 The q-RODHFBM OPERATOR
	2.5 THE q-RODHFWBM OPERATOR
	2.6 The q-RODHFDBM OPERATOR
	2.7 THE q-RODHFWDBM OPERATOR

	MODELS FOR MADM WITH q-RODHFNs
	Application and Comparative Analysis
	4.1 Numerical Example
	4.2 Comparative analysis compared with existing magdm methods 

	Conclusion

