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Abstract
Objectives: Climate change is a major issue the mankind is facing in the
present scenario. This is a consequence of global warming that result in the
change in temperature and rainfall over a long period of time. In this work, we
analyze the fractional mathematical model projecting pluviculture. The Caputo
fractional derivative is incorporated for better analysis of this event. Also, we
discuss the boundedness, existence and uniqueness of the solutions of the
proposed system. Sufficient conditions required for existence of asymptotic
stability are discussed. Method: We have used the generalized Adams-
Bashforth-Moulton predictor-corrector technique to solve the pluviculture
model. It is the linear multistep implicit method used to solve the system
of equations. Findings: It is established that, the intensity of precipitation is
enhanced by introducing the aerosols to the water vapor. The incorporation of
the fractional derivatives strengthens the model in a more realistic way. The
influence of some parameters and fractional derivative on the rain making
process are numerically analyzed. Novelty: The incorporation of Caputo
fractional derivative to the pluviculture model along with the two kinds of
aerosols is the novel in the model.
Keywords: Pluviculture; Aerosol; Caputo fractional derivative;
AdamsBashforthMoulton technique Mathematics Subject Classification:
26A33; 92D30

1 Introduction
Rainmaking, also known as pluviculture, is the method of inducing precipitation
artificially. This is done to stave off drought and to save Earth from wider global
warming. This can be achieved using rockets or airplanes to sow to the clouds along
with the catalysts like silver iodide, (1) dry ice and salt powder, to increase precipitation
and mitigate farmland drought. The concept of ”pluviculture,” or the artificial rain
creations, has long history, both ancient and modern. Especially during the 19th and
20th centuries, it has excited the mind’s eye and brought forth enormous rainmaking
techniques. Rain making is a prime and complex phenomenon in the environment.
Several physicochemical processes such as agglomeration, nucleation, condensation
and so on are involved in this process. (2,3) Firstly, water vapors are converted to cloud
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droplets of small size by condensation and nucleation processes. Then, the small droplets randomly move inside the cloud,
stick and collide to each other and forms large size cloud drops. Further, the cloud droplets of large size are converted into
rain droplets by the process of agglomeration and nucleation. Aerosols has the vital role in this process which in turn enhances
the precipitation. Aerosols refer to the tiny specks which are in solid or liquid state having the diameters in the range 10−9 to
10−4 m.They originate from anthropogenic springs and also created in the nature by transformation of gas into particles due to
several chemical reactions. The key components of aerosols are sodium chloride, gritty particles, nitrate, crustal elements and
biogenic organic molecules like spores, fragments of the plant and pollen.

Some theoretical and as laboratory experiments are carried out and seen that aerosols play the role of Cloud Condensation
Nuclei (CCN), surrounding to which the cloud droplets generates. (4–8) Some studies show the analysis of the deletion of dusty
particles of gaseous state from environment by bearing the synergy of these particles with the cloud drops. It is notable from the
above studies that, the rain andwind play themajor role in deletion of pollutants present in the local regional environment. (9–11)
Some studies show the role of aerosols in the regional environment for inducing artificial rain. (12–14) In particular, Misra et
al. (15) proposed the mathematical model for the artificial precipitation by presuming that two types of aerosols are instigated
to environment where water vapors generates in an uninterrupted manner. Aerosols of first kind when associated with water
vapors converts to cloud drops. The aerosols of second kind collide with the cloud drops and transform them to raindrops
which finally leads to precipitation.

The development and use of fractional calculus has proven to be an useful tool. The Caputo, Grü nwald Letnikov,
Riemann-Liouville, Atangana-Baleanu, Jumarie, Caputo-Fabrizio are few among the fractional derivatives that are gaining
their importance among researchers to replicate real world problems. Over the years, theories of these derivatives have been
developed to a great extent. (16,17) Applications of Caputo-Fabrizio fractional and Atangana-Baleanu derivative can be found
in. (18–23) Many phenomena of mathematical biology (24–26) and their interdisciplinary fields (27–30) have been studied in a better
way by using these fractional derivatives.

Fromabove, itmay be pointed out that chemical and physical properties of the natural atmospheric aerosols aremuch studied
but the study of the use of aerosols in making precipitation is given a little attention. Especially the combination of two kinds of
drops (big and small) and two kinds of aerosols is given even less attention. Also, the pluviculturemodel with the fractional order
is nowhere discussed. Hence, keeping all these in view, in the present work, we have proposed a mathematical model including
the two kinds of aerosols in the atmosphere leading to the precipitation incorporating the Caputo fractional derivative which is
the novel in the model. In the modeling procedure, we have assumed that the water vapors are formed naturally in the air. But,
in order to result in the precipitation, they are not condensed in the required proportion so as to form the cloud droplets which
is necessary for rainfall. By introducing the combination of two kinds of aerosols in the atmosphere, the cloud droplets are
formed which are of different sizes from the water vapor through the processes of agglomeration, nucleation, and condensation
and so on, consequently these changes to water drops which finally leads to precipitation.

2 Some Essential Theorems
In the presentwork, we have used theCaputo fractional derivatives as it supports the integer order initial condition.Wehave also
gone over certain theorems which is utilised to ascertain the stability of equilibrium locations.The Caputo fractional derivative
is denoted by a capital letter with an upper-left index CD.

Definition 2.1 (16) (Caputo Fractional Derivative) Suppose g(t) is k times continuously differentiable function and g(k)(t) is
integrable in [t0,T ]. For g(t), The fractional derivative of the order α established by Caputo sense is

C
t0 Dα

t g(t) =
1

Γ(k−α)

∫ t

t0

g(k)(τ)
(t − τ)α+1−k dτ

where Γ(.) refers to Gamma function, t > a and k is the positive integer with the property that k−1 < α < k.
Lemma 1 (31) Consider the system

C
t0Dα

t v(t) = g(t,v), t > t0 (1)

choosing the initial condition as v(t0), where 0 < α ≤ 1 and g : (t0,∞ )×Ω → Rn,Ω ∈ Rn. When g(t,v) holds the locally
Lipchitz conditions concerning to v, Eq. 1 has a unique solution on (t0,∞ )×Ω.

Lemma 2 (29) We assume that g(t) is the continuous function on (t0,∞ ) satisfying
C
t0Dα

t g(t)≤−λg(t)+ξ ,g(t0) = ft0
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here 0 < α ≤ 1, (λ ,ξ ) ∈ R2 and λ ̸= 0. Consider t0 ≥ 0 as the initial time. Now,

g(t)≤
(

g(t0)−
ξ
λ

)
Eα − [λ (t − t0)α ]+

ξ
λ

3 Model Formulation
Motivated by the mathematical models concerning the artificial precipitation process, here, we have analyzed the fractional
pluviculture model with the aid of the Caputo fractional order derivative. The pluviculture model is ruled by six interacting
variables viz. densities of water vapor (CV ), densities of small size cloud droplets (CSD), densities of large size cloud droplets
(CLD), densities of rain drops (CR) and concentrations of the first and second type aerosolsC1 andC2 respectively.

Ct0Dα
t CV = JV −β0CV −β1CVC1

C
t0 Dα

t CSD = δSCV −δS0CSD +ψβ1CVC1 −δS1CSDC2
C
t0 Dα

t CLD = δLCSD −δL0CLD +δS1CSDC2 −δL1CLDC2
c
t0 Dα

t CR = γCLD − γ0CR +ξ δL1CLDC2
0
t0 Dα

t C1 = J1 −µ1C1 −β1CVC1
C
t0 Dα

t C2 = J2 −µ2C2 −δS1CSDC2 −δL1CLDC2 −δRCRC2

(2)

with initial conditionCV (t0)> 0, CSD(t0)> 0, CLD(t0)> 0, CR(t0)> 0, C1(t0)> 0, C2(t0)> 0 where t0 is the initial time. All
the parameters JV , β0, β1, δS,δS0 , ψ, δS1 , δL, δL0 , δL1 , γ, γ0, ξ , J1, J2, µ1, µ2, δR are non-negative.

In the projected model 2, the phase of the water vapors are generated in the continuous basis at the rate JV (the net rate of
change in the density of the water vapor is presumed to be a constant). The conductive aerosols of the first kind and the second
kind are introduced continuously to the environment at the rates J1 and J2 respectively.The constant terms β0, δS0 , δL0 , γ0, µ1
and µ2 denote the coefficients of natural reduction rate ofCV , CSD, CLD, CR,C1 andC2 respectively.

The coefficients δS ≥ 0, δL > 0 and r > 0 denote the rate of natural genesis of small size cloud drops from the water vapor,
cloud drops of large size from cloud drops of small size and then to rain drops from the cloud drops of large size. Hence, clearly
it can be noted that δS ≤ β0, δL < δS0 and r < δL0 .The termsψ and ξ are the positive proportionality constants.The coefficients
β1, δS1 , δL1 and δR denote the rate of conversion between the water vapor phase and first kind aerosol, cloud drops of small
size and second kind aerosol, cloud drops of large size and second kind aerosol and rain drops and the second kind aerosol
respectively.

4 Existence of the solutions
Theexistence of the solutions for the pluviculturemodel 2 is demonstrated using the Fixed-PointTheorem in this Section.There
are no precise algorithms or approaches for evaluating the exact solutions since the model is complex and non-local. However,
the existence is guaranteed if certain conditions are met. The system 2 can be rewritten as:

C
t0Dα

t [CV (t)] = P1 (t,CV )
C
t0Dα

t [CSD(t)] = P2 (t,CSD)
C
t0Dα

t [CLD(t)] = P3 (t,CLD)
C
t0Dα

t [CR(t)] = P4 (t,CR)
C
t0Dα

t [C1(t)] = P5 (t,C1)
C
t0Dα

t [C2(t)] = P6 (t,C2)

(3)

he above system can be transformed into Volterra type integral equation as:

CV (t)−CV (0) =
1

Γ(α)

∫ t

0
P1 (τ,CV (τ))(t − τ)α−1dτ

CSD (t)−CSD (0) =
1

Γ(α)

∫ t

0
P2 (τ,CSD (τ))(t − τ)α−1dτ (4)
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CLD (t)−CLD (0) =
1

Γ(α)

∫ t

0
P3 (τ,CLD (τ))(t − τ)α−1dτ

CR (t)−CR (0) =
1

Γ(α)

∫ t

0
P4 (τ,CR (τ))(t − τ)α−1dτ

C1 (t)−C1 (0) =
1

Γ(α)

∫ t

0
P5 (τ,C1 (τ))(t − τ)α−1dτ

C2 (t)−C2 (0) =
1

Γ(α)

∫ t

0
P6 (τ,C2 (τ))(t − τ)α−1dτ

Theorem 4. 1 In the region η × [t0,T ], where
η =

{
(CV ,CSD,CLD,CR,C1,C2) ∈ R6 : max{|CV| , |CSD| , |CLD| , |CR| , |C1| , |C2|} ≤ P

}
and T <+∞, the Lipschitz condition holds good and contraction occurs by the kernel if P1 if 0 ≤ β0 +β1P < 1.

Proof: We consider the two functionsCV (t) and
−
CV (t) such as:

||P1 (t,CV )−P1
(
t,C̄V

)
||= ||JV −β0CV −β1C1CV − JV +β0C̄V +β1C̄1C̄V || (5)

≤ (β0 +β1P) ||CV (t)−C̄V (t)∥∥∥P1 (t,CV )−P1
(
t,C̄V

)∥∥= χ1||CV (t)−C̄V (t)∥

where χ1 = β0 +β1P implies that,
The Lipschitz condition is met for P1 and if 0 ≤ χ1 < 1, then P1 follows contraction. Similarly, it can be shown and illustrated

in the other equations as follows: ∥∥P2 (t,CSD)−P2
(
t,C̄SD

)∥∥≤ χ2||CSD(t)−C̄SD(t)∥∥∥P3 (t,CLD)−P3
(
t,C̄LD

)∥∥≤ χ3||CLD(t)−C̄LD(t)∥∥∥P4 (t,CR)−P4
(
t,C̄R

)∥∥≤ χ4||CR(t)−C̄R(t)∥∥∥P5 (t,C1)−P5
(
t,C̄1

)∥∥≤ χ5||C1(t)−C̄1(t)∥∥∥P6 (t,C2)−P6
(
t,C̄2

)∥∥≤ χ6||C2(t)−C̄2(t)∥

(6)

Where χ2 = (δS0 +δS1P), χ3 = (δL0 +δL1P), χ4 = γ0, χ5 = (µ1 +β1P) and χ6 = µ2 +(δS1 +δL1 +δR)P. Pi, i = 2,3,4,5,6
are the contraction if 0 < χi < 1, i = 2,3,4,5,6. Using system 4, the recursive form can now be written as:

κ1,n (t) =CVn (t)−CVn−1 (t) =
1

Γ(α)

∫ t

0

(
P1

(
τ,CVn−1

)
−P1

(
τ, CVn−2

))
(t − τ)α−1dτ

κ2,n (t) =CSDn (t)−CSDn−1 (t) =
1

Γ(α)

∫ t

0

(
P2

(
τ,CSDn−1

)
−P2

(
τ, CSDn−2

))
(t − τ)α−1dτ

κ3,n (t) =CLDn (t)−CLDn−1 (t) =
1

Γ(α)

∫ t

0

(
P3

(
τ,CLDn−1

)
−P3

(
τ, CLDn−2

))
(t − τ)α−1dτ

κ4,n (t) =CRn (t)−CRn−1 (t) =
1

Γ(α)

∫ t

0

(
P4

(
τ,CRn−1

)
−P4

(
τ, CRn−2

))
(t − τ)α−1dτ
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κ5,n (t) =C1n (t)−C1n−1 (t) =
1

Γ(α)

∫ t

0

(
P5

(
τ,C1n−1

)
−P5

(
τ, C1n−2

))
(t − τ)α−1dτ

κ6,n (t) =C2n (t)−C2n−1 (t) =
1

Γ(α)

∫ t

0

(
P6

(
τ,C2n−1

)
−P6

(
τ, C2n−2

))
(t − τ)α−1dτ (7)

The prerequisites are:CV 0(t) =CV (0), CSD0(t) =CSD(0), CLD0(t) =CLD(0), CR0(t) =CR(0),C10(t) =C1(0), C20(t) =C2(0).
By applying the norm to the first equation 7, we get
i

||κ1,n(t)||= ||CVn(t)−CVn−1(t)||= || 1
Γ(α)

∫ t

0

(
P1

(
τ,CVn−1

)
−P1

(
τ,CVn−2

))
(t − τ)α−1dτ||

≤ 1
Γ(α)

∫ t

0

∥∥(P1
(
τ,CVn−1

)
−P1

(
τ,CVn−2

))
(t − τ)α−1dτ

∥∥ (8)

Using Lipchitz condition 5, we obtain

||κ1,n(t)|| ≤
1

Γ(α)
χ1

∫ t

0
||κ1,n−1(τ)dτ|| (9)

Similarly,

||κ2,n(t)|| ≤
1

Γ(α)
χ2

∫ t

0
||κ2,n−1(τ)dτ||

||κ3,n(t)|| ≤
1

Γ(α)
χ3

∫ t

0
||κ3,n−1(τ)dτ||

||κ4,n(t)|| ≤
1

Γ(α)
χ4

∫ t

0
||κ4,n−1(τ)dτ||

||κ5,n(t)|| ≤
1

Γ(α)
χ5

∫ t

0
||κ5,n−1(τ)dτ||

||κ6,n(t)|| ≤
1

Γ(α)
χ6

∫ t

0
||κ6,n−1(τ)dτ||

(10)

Now, it can be written as
CV n(t) = ∑n

i=1κ1,i, CSDn(t) = ∑n
i=1κ2,i, CLDn(t) = ∑n

i=1κ3,i.
CRn(t) = ∑n

i=1κ4,i, C1n(t) = ∑n
i=1κ5,i, C2n(t) = ∑n

i=1κ6,i.
The aboveTheorem will be used to illustrate the proceedingTheorem.
Theorem 4. 2 The solution of the pluviculture model 2 exists and will be unique, if we acquire some tα such that

1
Γ(α)χitα < 1,

for i=1,2,3,4,5,6.
Proof: Applying equation 9 and 10 recursively, we have

∥κ1,i(t)∥ ≤ ||CVn (t0) ||
(

1
Γ(α)

χ1t
)n

∥κ2,i(t)∥ ≤ ∥CSDn (t0)∥
(

1
Γ(α)

χ2t
)n

∥κ3,i(t)∥ ≤ ∥CLDn (t0)∥
(

1
Γ(α)

χ3t
)n

∥κ4,i(t)∥ ≤ ∥CRn (t0)∥
(

1
Γ(α)

χ4t
)n

∥∥κ5,i(t)
∥∥≤ ∥C1n (t0)∥

(
1

Γ(α)
χ5t

)n

∥∥κ6,i(t)
∥∥≤ ∥C2n (t0)∥

(
1

Γ(α)
χ6t

)n

(11)
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As a result, the existence and continuity are established. To illustrate that the relation 11 formulate the solution for 2, we assume
the following:

CV (t)−CV (t0) =CV n(t)−ϖ1n(t)
CSD(t)−CSD(t0) =CSDn(t)−ϖ2n(t)
CLD(t)−CLD(t0) =CLDn(t)−ϖ3n(t)
CR(t)−CR(t0) =CRn(t)−ϖ4n(t)
C1(t)−C1(t0) =C1n(t)−ϖ5n(t)
C2(t)−C2(t0) =C2n(t)−ϖ6n(t)

In order to achieve the desired outcomes, we set
||ϖ1n(t)||= || 1

Γ(α)

∫ t
0
(
P1 (τ,CV )−P1

(
τ,CVn−1

))
dτ||

This yields

||ϖ1n(t)|| ≤
1

Γ(α)
χ1||CV −CVn−1 ||t. (12)

Continuing the same procedure recursively, we get

||ϖ1n(t)|| ≤
(

1
Γ(α)

χ1t
)n+1

P. (13)

At tα , we have
||ϖ1n(t)|| ≤

(
1

Γ(α)χ1t
)n+1

P.

From equation 13, it results that as n tends to ∞, ||ϖ1n(t)|| tends to 0. In the same way, it may be demonstrated that
||ϖ2n(t)||, ||ϖ3n(t)||, ||ϖ4n(t)||, ||ϖ5n(t)||, ||ϖ6n(t)|| tends to 0. Hence the proof.

We will now demonstrate the uniqueness of the solution of the system 2. Suppose that there is a different set of solution of
the system 2, namely ĈV , ĈSD, ĈLD, ĈR, Ĉ1, Ĉ2. Then, from the first equation of 4 we write

CV (t)−ĈV (t) = 1
Γ(α)

∫ t
0(P1(t,CV )−P1(t,ĈV ))dτ

Using the norm, the equation above becomes:

||CV (t)−ĈV (t)||=
(1−α)

Γ(α)

∫ t

0

∥∥(P1 (t,CV )−P1
(
t,ĈV

))
dτ

∥∥ (14)

By applying the Lipschitz condition, we get
||CV (t)−ĈV (t)|| ≤ 1

Γ(α)χt||CV −ĈV ||
This results in,
||CV (t)−ĈV (t)||

(
1− 1

Γ(α)χt
)
≤ 0

Since (1− 1
Γ(α)χ1t)> 0, we must have ||CV (t)−ĈV (t)||= 0.. This impliesCV (t) = ĈV (t).

5 Boundedness
Here, we establish the boundedness of the solutions of the system 2.

Theorem 5. 1 The solutions of the pluviculture model 2 are uniformly bounded.
Proof. Let,C(t) =CV (t)+CSD(t)+CLD(t)+CR(t)+C1(t)+C2(t)
Taking the fractional Caputo derivative, we obtain

C
t0 Dα

t C (t)+µ1C (t) = C
t0Dα

t [CV (t)+CSD(t)+CLD(t)+CR(t)+C1(t)+C2(t)]
+µ1[CV (t)+CSD(t)+CLD(t)+CR(t)+C1(t)+C2(t)]
= JV −β0CV −β1CVC1 +δSCV −δS0CSD +ψβ1CVC1 −δS1CSDC2 (15)
+δLCSD −δL0CLD +δS1CSDC2 −δL1CLDC2 + γCLD − γ0CR +ξ δL1CLDC2
+J1 −µ1C1 −β1CVC1 + J2 −µ2C2 −δS1CSDC2 −δL1CLDC2 −δRCRC2
+µ1[CV (t)+CSD(t)+CLD(t)+CR(t)+C1(t)+C2(t)]
≤ JV +δSCV +ψβ1CVC1 +δLCSD + γCLD +ξ δL1CLDC2
+J1 + J2 +µ1[CV (t)+CSD(t)+CLD(t)+CR(t)+C2(t)]
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The solution exists and is unique in

η = {(CV , CSD, CLD, CR, C1, C2) : max{(CV | ,(CSD| ,(CLD| , (CR| , (C1| , (C2|} ≤ P}

The above inequality yields,
C
t0Dα

t C(t)+µ1C(t)≤ JV + J1 + J2 +P(δS +ψβ1P+δL + γ +ξ δL1 +5µ1)
By the lemma 2, we get

C
t0 Dα

t C (t)≤
(

C (t0)−
1
µ1

(JV + J1 + J2 +P(δS +ψβ1P+δL + γ +ξ δL1 +5µ1))

)
Eα

(
−θ(t − t0)

α)
+ 1

µ1
(JV + J1 + J2 +P(δS +ψβ1P+δL + γ +ξ δL1 +5µ1))→ JV + J1 + J2 +P(δS +ψβ1P+δL + γ +ξ δL1 +5µ1), t → ∞

Therefore, all the solution of the system 2 that initiates in η remained bounded in

Ξ = ((CV , CSD, CLD, CR, C1, C2) ∈ η |C (t)≤ JV + J1 + J2 +P (δS +ψβ1P+δL + γ +ξ δL1 +5 µ1)+ ε, ε > 0}

6 Existence of the Points of Equilibrium and the Stability
The system 2 has the following set of interesting points of equilibrium. The criteria for the stability of the set of equilibrium
points have been discussed here. The Jacobian matrix of the pluviculture model 2 is

J (CV ,CSD,CLD,CR,C1,C2) =


J11 J12 J13 J14 J15 J16
J21 J22 J23 J24 J25 J26
J31 J32 J33 J34 J35 J36
J41 J42 J43 J44 J45 J46
J51 J52 J53 J54 J55 J56
J61 J62 J63 J64 J65 J66


where

J11 =−β0 −C1β1, J12 = 0, J13 = 0, J14 = 0, J15 =CV β1, J16 = 0,

J21 =C1ψβ1 +δS, J22 =−δS0 −C2δS1 , J23 = 0, J24 = 0, J25 =CV ψβ1, J26 =−CSDδS1 ,

J31 = 0, J32 = δL +C2δS1 , J33 =−δL0 −C2δL1 , J34 = 0, J35 = 0, J36 =−CLDδL1 +CSDδS1 ,

J41 = 0, J42 = 0, J43 = γ +C2ξ δL1 , J44 =−γ0, J45 = 0, J46 =CLDξ δL1 ,

J51 =−C1β1, J52 = 0, J53 = 0, J54 = 0, J55 =−CV β1 −µ1, J56 = 0,

J61 = 0, J62 =−C2δS1 , J63 =−C2δL1 , J64 =−C2δR, J65 = 0,

J66 =−CLDδL1 −CRδR −CSDδS1 −µ2.
Equilibrium points of the pluviculture model 2 is discussed below:

1. Axial equilibrium point is E=
(

JV
β0
,0,0,0,0,0

)
.
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Theorem 6.1 Axial equilibrium point E always exists and is always stable.
Proof. At E , Jacobian matrix J of system 2 has the eigenvalues:

λ11 =−β0, λ12 =−δL0 , λ13 =−δS0 , λ14 =−γ0, λ15 =−(
JV β1 +β0µ1

β0
), λ16 =−µ2.

Since all the above eigen values are negative, the axial equilibrium point E is always stable.
2. Aerosol free equilibrium point is \widetilde Ẽ=

(
C̃V ,C̃SD,C̃LD,C̃R,0,0

)
Theorem 6.2 Aerosol free equilibrium point Ẽ always exists and is always stable.
Proof. At Ẽ , Jacobian matrix J of system 2 has the eigenvalues:

λ11 =−β0, λ12 =−δL0 , λ13 =−δS0 , λ14 =−γ0, λ15 =−
(

JV β1 +β0µ1

β0

)
,

λ16 =−(
JV δS(γδLδR + γ0(δLδL1 +δL0 δS1))+β0δL0δS0γ0µ2

β0δL0δS0 γ0
).

Since all the above eigen values are negative, the aerosol free equilibrium point Ẽ is always stable.

7 Numerical Method

In the present section, we have presented the generalized Adams-Bashforth-Moulton technique (32) to solve the pluviculture
model 2.

Consider,
CDα

t x(t) = ϕ(t,x(t)), 0 ≤ t ≤ T x(m)(0) = x(m)
0 , m = 0,1,2,3, ....,ν ..,ν = ⌈α⌉.

The corresponding Volterra integral equation may be written as

x(t) = ∑v−1
m=0 x(m)

0
tm

m!
+

1
Γ(α)

∫ t

0
(t − s)α−1ϕ (s,x(s))ds. (16)

In order to integrate 16, Adams-Bashforth Moultan method has been used by Diethelm et al. (33,34). Set h = T
N , tn = nh,

n = 0,1,2, ....,N ∈ Z . Now, the system 2 can be written as:
CV n+1 =CV 0 +

hα

Γ(α+2) [JV −β0CV
p
n+1 −β1CV

p
n+1C1

p
n+1]

+ hα

Γ(α+2)∑n
i=0ai,n+1[JV −β0CV i −β1CV iC1i],

CSDn+1 =CSD0 +
hα

Γ(α+2) [δSCV
p
n+1 −δS0CSD

p
n+1 +ψβ1CV

p
n+1C1

p
n+1 −δS1CSD

p
n+1C2

p
n+1]

+ hα

Γ(α+2)∑n
i=0ai,n+1[δSCV i −δS0CSDi +ψβ1CV iC1i −δS1CSDiC2i],

CLDn+1 =CLD0 +
hα

Γ(α+2) [δLCSD
p
n+1 −δL0CLD

p
n+1 +δS1CSD

p
n+1C2

p
n+1 −δL1CLD

p
n+1C2

p
n+1]

+ hα

Γ(α+2)∑n
i=0ai,n+1[δLCSDi −δL0CLDi +δS1CSDiC2i −δL1CLDiC2i],

CRn+1 =CR0 +
hα

Γ(α+2) [γCLD
p
n+1 − γ0CR

p
n+1 +ξ δL1CLD

p
n+1C2

p
n+1]

+ hα

Γ(α+2)∑n
i=0ai,n+1[γCLDi − γ0CRi +ξ δL1CLDiC2i],

C1n+1 =C10 +
hα

Γ(α+2) [J1 −µ1C1
p
n+1 −β1CV

p
n+1C1

p
n+1]

+ hα

Γ(α+2)∑n
i=0ai,n+1[J1 −µ1C1i −β1CV iC1i],

C2n+1 =C20 +
hα

Γ(α+2) [J2 −µ2C2
p
n+1 −δS1CSD

p
n+1C2

p
n+1 −δL1CLD

p
n+1C2

p
n+1 −δRCR

p
n+1C2

p
n+1]

+
hα

Γ(α +2)

n

∑
i=0

ai,n+1[J2 −µ2C2i −δS1CSDiC2i −δL1CLDiC2i −δRCRiC2i], (17)
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where

Cp
V p

n+1
=CV0 +

hα

Γ(α +1)

n

∑
i=0

bi,n+1 [JV −β0CVi −β1CViC1i ]

CSDp
n+1

=CSD0 +
hα

Γ(α +1)

n

∑
i=0

bi,n+1
[
δSCVi −δS0CSDi +ψβ1CViC1i −δS1CSDiC2i

]
CLDp

n+1
=CLD0 +

hα

Γ(α +1)

n

∑
i=0

bi,n+1
[
δLCSDi −δL0CLDi +δS1CSDiC2i −δL1CLDiC2i

]
CRp

n+1
=CR0 +

hα

Γ(α +1)

n

∑
i=0

bi,n+1 [γCLDi − γ0CRi +ξ δL1CLDiC2i]

Cp
1 nn+1 =C10 +

hα

Γ(α +1)

n

∑
i=0

bi,n+1 [J1 −µ1C1i −β1CViC1i ]

Cp
2p

n+1
=C20 +

hα

Γ(α +1)

n

∑
i=0

bi,n+1 [J2 −µ2C2i −δS1CSDiC2i −δL1CLDiC2i −δRCRiC2i ] ,

(18)

in which

ai,n+1 =

 nα j+1 − (n−α j)(n+1)α j , i = 0,
(n− i+2)α j+1 +(n− i)α j+1 −2(n− i+1)α j+1, 1 ≤ i ≤ n

1, i = n+1

and

bi,n+1 =
hα j

α j

(
(n− i+1)α j − (n− i)α j

)
, 0 ≤ i ≤ n,

with j = 1,2,3,4,5,6.

8 Numerical Simulation
In order to discuss the dynamics of the projected fractional pluviculture model 2, we have used the generalized Adams-
Bashforth-Moulton technique by considering the parametric values as JV ∈ (0,3), β0 = 1, β1 = 0.5, δS = 0.1, δS0 = 1, ψ =
1, δS1 = 0., δL = 0.1, δL0 = 1, δL1 = 0.3, γ = 0.1, γ0 = 0.02, ξ = 1, J1 ∈ (0,3), J2 ∈ (0,3), µ1 = 1, µ2 = 1 and δR = 0.01
with the initial conditions CV = 0.7545, CSD = 0.2422, CLD = 0.0862, CR = 0.4919, C1 = 0.6507 and C2 = 0.8534. For
JV = 0, 1, 2, 3, we can observe the variation inCV , CSD, CLD andCR in Figures 1, 2 and 3 for α = 1, 0.8, 0.5 respectively. As
the natural formation of water vapor (JV ) increases,CV , CSD, CLD andCR also increase. As the fractional value are incorporated,
the increasing trend is retained whereas the net value slightly decrease.

For J1 = 0, 1, 2, 3, we can observe the variation inCV , CSD, CLD andCR in Figures 4, 5 and 6 forα = 1, 0.8, 0.5 respectively.
As the rate of entry of first type of aerosols (J1) into the environment increases, the value ofCV starts decreasing since natural
formation of water vapors will be less than that of due to first kind aerosol. Whereas, the values ofCSD, CLD andCR shows the
increasing trend and hence the rainfall is stimulated by this action.

For J2 = 0, 1, 2, 3, we can observe the variation inCSD, CLD andCR in Figures 7, 8 and 9 for α = 1, 0.8, 0.5 respectively.
As the rate of entry of second type of aerosols (J2) into the environment increases, the value ofCSD starts decreasing since the
conversion of small drops into large drops and then to rain drops is more than that of the small drops formation. Hence the
values ofCLD andCR is increased and induces more rainfall in the environment than the previous.

Figures 10, 11 and 12 depicts the global stability ofC1 -CV ,C2 -CSD andC2 -CLD space for α = 1, 0.8 respectively. Solution
paths of system 2 starting in the domain of attraction are attaining equilibrium values herein.

9 Results and Discussion

By considering the previous results and values as that of in (15) along with other predicted values for the new parameters used
in our present model, the dynamics of the model is studied by using generalized Adams-Bashforth-Moulton technique. In the
above reference, only one kind of aerosol is used whereas, we have proposed our model by the aid of two kinds of aerosols
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Fig 1. Variation in the (A)CV , (B)CSD, (C)CLD and (D)CR for different values of JV for α = 1

Fig 2. Variation in the (A)CV , (B)CSD, (C)CLD and (D)CR for different values of JV for α = 0.8
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Fig 3. Variation in the (A)CV , (B)CSD, (C)CLD and (D)CR for different values of JV for α = 0.5

Fig 4. Variation in the (A)CV , (B)CSD, (C)CLD and (D)CR for different values of J1 for α = 1
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Fig 5. Variation in the (A)CV , (B)CSD, (C)CLD and (D)CR for different values of J1 for α = 0.8

Fig 6. Variation in the (A)CV , (B)CSD, (C)CLD and (D)CR for different values of J1 for α = 0.5.
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Fig 7. Variation in the (A)CSD, (B)CLD and (C)CR for different values of J2 for α = 1.

Fig 8. Variation in the (A)CSD, (B)CLD and (C)CR for different values of J2 for α = 0.8
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Fig 9. Variation in the (A)CSD, (B)CLD and (C)CR for different values of J2 for α = 0.5

Fig 10. Global stability inC1 -CV space for (A) α = 1 and (B) α = 0.8.

Fig 11. Global stability inC2 -CSD space for (A) α = 1 and (B) α = 0.8.
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Fig 12. Global stability inC2 -CLD space for (A) α = 1 and (B) α = 0.8.

along with the Caputo fractional derivative. We see that, the results are in good agreement with the previous ones and also
the results are more realistic when the fractional values are incorporated which is discussed in the Section (8). We have also
analyzed the global stability numerically for different fractional values which is not done in the previous works so far. Overall,
the pluviculture model incorporating the fractional derivatives is the novel, and we see the effect of different parameters with
different fractional values which gives the better and realistic representation of our proposed model.

10 Conclusion
A non-linear mathematical approach for pluviculture by introducing particles into the atmosphere is suggested and analyzed
in this study. The effect of fractional order derivative is numerically analyzed and it is established that numerical simulation
strengthens the analytical results of the model. According to the model, rainfall occurs only when the water vapor are
concentrated on the nature, not on a continual basis. In order for water vapor molecules to develop in the atmosphere, they
must be continually generated. According to the study, rainfall is enhanced when the accumulative concentration of favorable
aerosol particles rises. Pluviculture model with the fractional derivatives along with the two kinds of aerosols is the novel of the
model which provides the more realistic representation of the model.The results obtained are more convincing and holds good
with the real world phenomena that can be predicted.
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