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Abstract

Objective/Aim: To generate a fixed point theorem in probabilistic 2-metric
space. Method: By employing strong semi compatible mappings and sub
sequentially continuous mappings. Findings: Generated unique common
fixed point theorem and substantiated with appropriate example. Nov-
elty/Improvement: The concepts of strong semi compatible mappings and
sub sequentially continuous mappings are weaker than existing conditions like
weakly compatible mappings which generalizes the theorem of V. K. Gupta, Ari-
hant Jain and Rajesh kumar.

Keywords: Strong semi compatible; sub sequentially continuous; Probabilistic
2metric space; conditional semi compatible; conditional compatible

1 Introduction

The analysis is main branch of mathematics, one of its main ingredient is to give
the solution of problems in all fields which is based on fixed points theory. This
turned way to extraction of fixed point theorems with minimal effort. Menger (")
made ground stone to generate probabilistic concept for the distance, resulting several
theorems. After words many generalizations of commuting mappings came into the
fixed point theory®. The major achievement was the introduction of compatibility
concept in Menger space by Mishra ), resulting the flood of many fixed point theorems
established. Some more results were obtained on this area by Martinez et.al®. In
this connection searching of fixed points theorems led to the arrival of the concepts
of continuity, reciprocal continuity, sub sequential continuity, semi compatibility,
conditional semi compatibility and strong semi compatibility in Menger space like in .
These concepts have been extended to generate some more results like in (). Chauhan )
introduced the notion of occasionally weakly compatible maps in megner space. In
this context many researchers are focusing on the existence of fixed point theorems
and their applications in different ways®). Mukesh Kumar Jain and Mohammad Saeed
Khan ) coined the new concept strong semi compatible mappings and obtained some
results in metric space. Ravindra K. Bisht and Naseer Shahazad !?) used the concept
of faintly compatible and extracted some more fixed point theorems in metric space.
V.K. Gupta, Arihant jain and Rajesh kumar ) presented some results on probabilistic
2- metric space by applying weakly compatible mappings. Recently some results in
probabilistic 2- metric were obtained by using faintly compatible and reciprocally
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continuous, sub sequentially continuous and semi compatible mappings in Menger space !>'4). Further some more theorems
witnessed like !> on C-class functions on an intuitionistic menger space and also functional spaces by A. M. Zidan et.al. 19

2 Materials and Methods

2.1 Definition(")

F : R — RTis a distribution function if

1. Non- decreasing

2. Continuous from left
3. Inf{F(t):t€R}=0
4. Sup {F(t):t€R} =1.

Representing the collection of all distributive functions as Dy.

2.1.1 Example
Special distributive function H is defined by

Lx>1
H(x):{ 0,x < 1.

2.2 Definition(

An ordered pair (X, F) is known as probabilistic 2-metric space (2-PM space) where X # ¢is an arbitrary set and F is
mapping withF : X x X x X — Dy here Dy is the set of all distribution functions, where the function F takes the value at
(a,b,c) € X x X x X is denoted by F, ;, . satisfying

Fa,h,c(o) =0

Vb, ¢ € Xb # ¢,3a € X with F, . (t5) < 1 such thatzy >0

Fape (t¢) =1Vty >Owhena=borb=corc=a

Fape(tg) = Fica(ty) = Feap (19)

Fa,b,c (tu) = Fb,c,a (tv) = Fc,a,b (tw) =1 then Fa,b,c (tu +6+ tw) =1

Va,b,c € X and t,,,t, > 0.

2.3 Definition"
The mapping t: [0, 1]*> => [0, 1] is called t-norm if
t(a,1,1) = 2,£(0,0,0) = 0
t(a,b,c) = t(b,c,a) =t(c,a,b)
t(ay,b1,c1) > t(az,ba,c2) fora; > az,by > ba,c1 > 2

t(t(a,b,w),p,q) = t(a,t(b,w,p),q) = t(a,b,t(w,p,q))
Ya,b,c,p,q,w,a;,b;,b; € X fori=1,2.

2.3.1 Example
Let 7(x,y,z) = min{x,y,z} defines a t-norm.
2.4 Definition!"

A 2-Menger space is (X, E t) formed by (X, F) and t where (X, F) is a 2-PM space and ’#’ is a t-norm having:
Fa,b,c (tu +t+ tw) >t (Fa,b,d (tu)m Fa,d,c (tv) 7Fd,b,c (tw)) Va,b,c,d € Xandtmtv,tw > 0.
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2.4.1 Example
Consider (X, d) be any metric space and #; is a t-norm for each #; € [0, 1] , define

L~ 1 >0

I
Fa,ﬁ,a (tl) = { t1+d(()a;[13>: 1

Va, B, in X and fixed a,t; > 0.
Then (X, E t) forms a 2-PM space.
2.5 Definition(12)

A sequence in {a,)in (X, E t) converges to 3 if lim, . Fy,, g o(t) = 1 forall t > 0.

2.6 Definition(12)

A sequence in {ay,)in (X, E t) is cauchy if lim, o Fy,,am,a(t) = 1 forall t > 0.

2.7 Definition(®

A 2-Menger space is (X, E t) is complete if every cauchy sequence converges in X.

2.8 Definition 41

Self-mappings P, S in (X, E t) is termed as compatible if lim,,_. Fpsy, spy,.«(B) = 1Va € X and 8 > 0.

2.9 Definition(1")

Self-mappings P, S in (X, E t) are weakly compatible if they are commuting at every coincidence point.

2.10 Definition(®

«

The self -mappings P and S are conditionally semi compatible if whenever the sequences (x,)satisfying
{{xy) : limy, 0 Px,, = lim,, 00 Sx,, } # O,then there exists another sequence (¢,)€ X with lim,_,e Pt, = lim, e St,, = ufor
some u € Xsuch that lim,_,. Fpsy,,su,a(f) = 1 and lim,_,e Fspy, pu, a(f) =1 VacXVaecXandf >0

2.11 Definition®

“The self -mappings P and S are strongly semi compatible if P and S are conditionally semi compatible and P and S commute
on a nonempty subset of the set of coincidence points, whenever the set of coincidence points is non-empty. ”

2.11.1 Example
. . - ratapy >0
Consider X = R, d is usual metric in X and define Fj, g , (t1) = { ’1+d(()“f)_ {
Va, B in X and fixed a, t;>0.
Define mappings C,D: X ->XasC(x) =¢* Vx€ Rand D(x) = e~V eR
Choose a sequence (t,,) = 1 — 1 \m > 1. Then
11

C(lm)ZC<1—> =e¢'"m - eand

m
11 2

D(tm):D 1—— :e(li%) — easm — oo,
m

Implies { (t;n) :1imy—se0 Ctyy = limyy—yo0 Dl } # 2.
Then there exists another sequence (f,,,) = % Vm > 1 Then

3 3
C(Im) =C (5”1) =e5m — 1

2
D(tm):D<3) :e(Sim) —lasm— oo
Sm

Further
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2 32
CD(ty)=C (e(i?ﬂ) ) :ee(S'") — eand

2
eSm >
— e and also

DC (ty) =D (e%> = e<
CD(ty) = e=D(1),DC (ty,) = e =C(1) as m — oo.
Therefore lim Fepy, p(1),a(B) =1 and lim Fpc,, c(1)a(B) =1

Ya€ X and § > 0.

As a result the pair (C, D) is conditional semi compatible more over at t =0, C(0) = D(0) = 1,CD(0) =C(1) =e=D(1) =
DC(0)

implies that the pair (C, D) is strong semi compatible.

2.11.2 Example
Strong semi compatible pair (C, D) of self-mappings do not have to be weakly compatible. Take (X, R) and d denotes the
distance on X and for each #; € [0, 1]
— 11 >0
Va, B in X and fixed a,t; > 0.
define mapping C,D : X — X as
C(x) =e* VYx€Rand D(x) = > VYxeR.
choose a sequence (t,,) =1—2  Vm> 1.

5

Then C(ty) =C(1—2) = Al0) e

2
and D (t,,) =D (1 — %) =20-3) & €%, asm — oo,
Implies { ((t;n) : limy, 00 Ctyyy = limyy o0 Dty } 7 0.

Then there exists another sequence (t,,) = 2 Vm > 1'Then

Clty)=C (i) — 2 S,

2 2

D(ty)=D <> —2(3) S 1asm—s oo,
m

And also

CD (t,,) — ¢ = D(1),

DC (1) = € =C(1) as m — oo,

This gives lirn,,_m FCDtn,D(l),Ot (ﬁ) =1 and limn_m FDCtn.C(U, a(ﬁ) =1

Ya€ X and > 0.

As a result the pair (C, D) is conditional semi compatible more over at t = 0, C(0) = D(0) = 1,CD(0) =C(1) = > = D(1) =
DC(0)

implies pair (C, D) is strong semi compatible.

— 2\ _ 2 _ 2y _ 26t
Further at coincidence point # = 1,C(1) = ¢> = D(1) and CD(1)=C (') =, DC(1) =D (&) =&
This gives CD(1) # DC(1).

Resulting that the pair (C, D) is strong semi compatible but not weakly compatible.
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2.12 Definition (12

Self-mappings C, D in (X, E t) are called sub sequentially continuous if there exists a sequence
(t,) € X in order for Ct,, Dt,, — w' as n — oo for certain w' € X and satisfying

lgn Fepy, pw! o(B) = 1 and ILm Fper ewlo(B)=1 Va€eXandf >0.

n—soo » 7 N—soc0 ns K

2.12.1 Example
Here we give the example in which the (C, D) pair is sub sequentially continuous but not weakly compatible
Let X = R and d be usual distance on X and for each #; € [0, 1].
Define
a1t >0

Foc,ﬁ,a (tl) = { tl+d(<)ai? -1

Va,B in X and fixed a,#; > 0.
Define mappings C,D : X — X as

C(r)= ¢Vt € Rand D(t) =e2Vt €R.

2
Choose a sequence (t,;) = — Vm > 1. Then
m
2 2y
C (tm) :C(z) :e(mz) —1 and
m
2 (2
D () :D<2> :ez(mz) — lasm — oo
m

Moreover

3=

CD(tm):C(emlz):e<8 ) —e=C(1) = CD (1) — C(1)

4
DC (1) =D (e ) = 2™ — ¢k = D(1) = DC (1) = D(1) a5 m = .
This gives lim,_,e Fepy, , C(1),a(B) = 1 and limy,—e Fpcy,, D(1),a(B) =1
YaeXandff >0
Moreover C(0) = D(0) = 1 = CD(0) # DC(0) since
CD(0) = C(1) = e,e? = D(1) = DC(0)
Implies the (C, D) pair is sub sequentially continuous but not weakly compatible.
The following theorem was proved by V. K. Gupta et.al.
Theorem (A) (') “Let A, B, S and T be self-mappings on a complete probabilistic 2-metric space (X, E t) satisfying:
(ADA(X) C T(X), B(X) € S(X)
(A2) oneof A(X), B(X), T(X) or S(X) is closed
(A3) pairs (A, S) and (B, T)) are weakly compatible (A4) Fax py.q(t) > 1Fsy 1y4(t) forallx, yand t > 0
where r: [0,1]-> [0, 1] is some continuous function such that r(t) >t foreach0 <t <1
then A, B, S and T have unique common fixed point in X. ”
The above Theorem (A) can be further generalized as under.

3 Results and Discussion

3.1 Theorem

Let A, B, S and T be self -mappings on a complete probabilistic 2-metric space (X, F t) satistying
(3.1.1)A(X) € T(X), B(X) C S(X)
(3.1.2) pair (4, S) is strongly semi compatible and sub sequentially continuous and
the pair (B, T) is strongly semi compatible
(3.1.3) Fax. Bya(t) > 1 (Fsx1ya(t)),t > 0 and for all values of x, y in X
where r defined on [0, 1] to it -self be continuous function with r(t) > t foreach 0 < t < 1.
Then A, B, S and T have unique common fixed point in X.
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Proof: Take xp € X andAxp € A(X) C T(X) then 3x; € X with Axg = Tx; having Bx; € B(X) C S(X) then 3x; €
X with Bx; = Sx;. Recursively obtain the sequences (y,) and (x,) for n > 1 such that (y2,) = Axz, = Txa,11 and (you41) =

Bxpp4+1 = Mxy,12 Now our claim is to show that (y,) be a cauchy sequence.
For this take x = x2,,,y = x2,41 in (3.1.3) we get
Faxy,, Boogir, o (1) 2 Fsxy, T,y a(t) this gives
e o (®) Z 1B,y 0a(8) > By, (0.
Similarly

FY2n+1-, Yant2.a (t) > Fyzn Vontla (t)

In general Fy, _, y, 4(t) > Fy, , , ,(¢) foralln > 0.

Then <F, ,, -yn,a(t) > foralln > 0is an increasing sequence bounded above by 1.
Therefore it must converges to the limit L <1 asn — oo

In case of L < 1 wehave Fy |y, o(t) =L > r(1) > 1 this is absurd. Hence L = 1.

Hence for all n and p we have Fy,,  y, 4(f) = 1.

As a result, the Cauchy sequence (y,) in X must converge to point z € X because X is a complete space.

Consequently each sub sequence also has the same limit z.
That is Axpy,, Sxp, — z and Bxgy1, TX0p 1 —> 2 asn — oo,
By strongly semi compatibility of the pair (A, S) whenever
Axop,8xo, — z implies there exists sequence (¢,) € X such that
At,,, St, — i, € X with
lim Fast,, s@, a(t) = 1 and lim Fsay,, azq(t) = 1 forallz,a>0.... (3.1)
n—oo n—oo ’

Furthermore, the fact that sub sequentially continuous pair (A, S) implies lim, e Fasy, Ana(t) = 1 and

limy, e Fsas, sua(t) =1 forall 1,a>0 ... a (3.2)
Using (3.1) and (3.2) we obtain Faz s, (¢) = 1 this implies Ad = Si
From (3.1.1)A(X) C T(X),Sia = Ai € A(X) C T(X) implies
Jvy € X such that Siz = At = T'vy for some v € X.
Claim Bvy = Tv;.
Put x =i,y = vy in (3.1.3) we have get
Fri v a(t) > 1(Fsary,.a(t)) using Si = Tv;.
FAIZ,BV]a(t) Z r(FSIZ.Sﬁa(t)) = I'(l) =1
Hence Aii = Bv; results Aii = Sii = Tv; = Bv; = P! for some P! in X.

However, because the pair (4, S) is strongly semi compatible implies Ait = Sii = ASii = SAi = AP' = SP!.

Furthermore, the pair (A, S) is strongly semi compatible, resulting in
Errorconverting fromMathMLtoLaTeX

Faptspta(®) = 1 (Fip7,0,(0)) using AP'! = SP!and BP' = TP' = P'.
This gives Fj ,1.,1,(t) > 1 (ngl_pla(t)) .
If P' # AP" implies F 1 1,(t) > (FAP..Pla(t)) > Fppplalt):

This gives Fy ,1.,1,(t) > Fa,1.,1,(t) which is not possible.
Therefore AP' = SP' = BP' = TP!' = P'.

Uniqueness:
Let p; be the another fixed point then

https://www.indjst.org/
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AP' =sP' =BP' =TP' =Pl andAp, =Bp, =Sp1 =Tp1 = p1.
Now assume P! # p;-

By taking x = P! and y = p; in (3.1.3) we've got
FAp1~Bp1a(t) 2T (FSpl~Tp1a(t))

Fptopn @) =1 (Fptpa0) > Fytopal0):

Fyipa() > Foip (1) which is not possible hence P'=p.

Now we provide a supporting illustration to justify the theorem.

3.2 Example

Consider X = [0, 1] d is general distance in X and each #; € [0, 1] take the projection, define
— 1 >0
Fon (1) =4 ntd(ap) !
wpal) ={ T
%,x =0
A(x)=B(x)=¢ 1-Tx,0<x<3
xz,% <x<l1

NowA(X) = (g,1] = B(X)andS(X) = (0,1] = T (X)sothatA(X) C T(X)andB(X) C S(X).
Clearly 1/9 and 1 are coincidence points for the mappings A, S.

Atx=g5.A4(5) =S(5) =5 andAS(5) =A(5) = 51-

sA(5)=5(3)=(3)" implies AS () # 54 (5.

Consider a sequence (x,) = % — = foralln > 1. Then

1 3 1 3 2
1 3 1 3 2
= —_—— - :2 _—— — oo,
Sxp, 5(9 n) (9 n>—>9asn—>

Implies limy, ;00 AX, = im0 Sx,, is nonempty.
There exist another sequence (x,) = 1 — n% for all n > 1. Then
4 8
ASx, :As(l - n%) —A (1 - n%) - (1 - ni}) S 1=5(1),
4 8
SAxn:SA<1—ni3) :S(l—}%) - (1—,}3) 1 1=A(1) asn— oo,
This implies lim,_ye Fasy,, $(1),a(f) =1 and lim,_ye FsAy, s A(l),a(ﬁ) =1
Ya€ X and B > 0.
As a result, Pair (4, S) is strong semi-compatible.

Further for the sequence (x,) = (l — 12> for alln > 1. Then we have

n

1 1\* 1\8
Aan:AS<1—nz> :A<1—n3) :(1—n3> S 1=A(1)

1 1\* 1\*

SAxn:SA(l—n2 =S l—n—3 = (1—’13 —1=8(1)asn— oo

This gives lim, e Fasxy, A(1),a(B) = 1 and lim, e Fsay,, 5(1),a(B) = 1Ya € X and B > 0.

As a result, the pair (4, S) is strong semi compatible and sub sequentially continuous, while the pair (B, T) is strong semi
compatible and at x=1, the pair (B, T) is strong semi compatible and

A()=8S1)=B(1)=T(1)=1

As aresult, mappings A, S, B and T met all of the conditions in Theorem (3.1) while also contained the single common fixed
point at x=1.
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3.2.1 Corollary
In the theorem (3.3) take T=S we get.

Consider A, B and T are self -mappings on a complete probabilistic 2-metric space (X, E t) having
(3.1.2.1)AX)CT(X),B(X) CT(X)
(3.1.2.2) pair (A, T) is strong semi compatible sub sequentially continuous mappings and the pair of mappings (B, T) is faintly

compatible

(3.1.2.3) Fax Bya(t) > rFreTy,q(t) for all values of x,y in X and 7 > 0
where some continuous function r:[0, 1]-> [0, 1] in order for r(t) > t for every ¢ € (0, 1) then A, B and T have unique common

fixed point in X.

3.2.2 Corollary
In Theorem (3.3) take T=S and B=A we get.

Let A, T are self -mappings on a complete probabilistic 2-metric space (X, F t) satisfying

(3.1.3.)A(X) CT(X)

(3.1.3.2) Pair (A, T) is strong semi compatible sub sequentially continuous

(3.1.3.3) FaxAya(t) > 1 (Fremya(t)) VX, yand s >0

where some continuous function r:[0, 1]-> [0, 1] in order for r(t) > t for every ¢t € (0, 1) then A, T have unique common

fixed point in X.

4 Conclusion

We improved the result in Theorem (A) in this article by applying the concepts of strong semi compatible, sub sequentially
continuous mappings and none of the mappings are assumed as closed range spaces. Further we supported our result by
discussing a suitable example.
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